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Identical particle correlations at fixed multiplicity are considered by means of quantum canonical ensemble of
finite systems. We calculate one-particle momentum spectra and two-particle Bose-Einstein correlation functions
in the ideal gas by using a recurrence relation for the partition function. Within such a model we investigate the
validity of the thermal Wick’s theorem and its applicability for decomposition of the two-particle distribution
function. The dependence of the Bose-Einstein correlation parameters on the average momentum of the particle
pair is also investigated. Specifically, we present the analytical formulas that allow one to estimate the effect of
suppressing the correlation functions in a finite canonical system. The results can be used for the femtoscopy
analysis of the A + A and p + p collisions with selected (fixed) multiplicity.
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I. INTRODUCTION

The correlation femtoscopy method (for reviews see, e.g.,
Refs. [1–3]) uses momentum correlations of identical particles
to extract information about the spatiotemporal structure of
extremely small and short-lived systems created in nucleon
and nuclear collisions. The method is grounded in the
Bose-Einstein or Fermi-Dirac symmetric properties of the
quantum states. Because in high-energy nucleus-nucleus or
hadron-hadron collisions most of produced particles are pions,
the Bose-Einstein correlations of two identical pions are
usually analyzed to increase the statistics of the correlation
femtoscopy measurements. Inasmuch as mean particle mul-
tiplicities increase with collision energy, one can divide a
whole set of high-energy collision events into subsets with
fixed charged-particle multiplicities. In recent papers [4] it
was considered even a possibility of single-event correlation
femtoscopy—at least, theoretically, because in reality not
enough pairs remain for a statistically meaningful analysis
in a single event. Typically, the ensemble of events with
charged-particle numbers selected in some fixed multiplicity
bins is analyzed. In heavy -ion collisions, the measurement of
observables as a function of the multiplicity class has a long
history and is regarded as a proxy for centrality dependence.
Recently, due to the start of Large Hadron Collider (LHC)
experiments where colliding energies per nucleon pair are in a
TeV region, the fixed particle multiplicity technique has also
been utilized for analysis of the Bose-Einstein correlations of
identical particles in proton-proton collisions [5].

It is firmly established now that high-energy heavy-ion col-
lisions are described basically by relativistic hydrodynamics
(for recent reviews, see Ref. [6]) and that at the later dilute
stage of matter evolution the hydrodynamics is followed by the
highly dissipative hadronic gas expansion that is modeled by a
hadronic cascade model like UrQMD [7] till the free streaming
regime is reached. The so-called particlization—transition
from continuous medium (hydrodynamic) consideration of
the system to its particle-based description—is associated
typically with the lowest possible temperature when the system

is still close to local thermal and chemical equilibrium. It
defines the isotherm that is often called the chemical freeze-out
hypersurface. The situation is less clear in high-multiplicity
proton-proton collisions, and there are also attempts to
describe particle momentum spectra in such collisions using a
hydrodynamic approach (see, e.g., Ref. [8]).

It is worth to noting that quantum statistics is not an
inherent property of these, as well as many other, quasiclassical
models. Typically, when hadrons are generated on the parti-
clization hypersurface, the single-particle weight is sampled
according to the Bose-Einstein or Fermi-Dirac distributions
in the grand canonical ensemble (with viscous corrections,
if necessary) in the framework of the so-called Cooper-Frye
prescription [9]. As for the two-identical-particle spectra,
the current quasiclassical simulations utilize the factorized
decomposition of the two-particle emission function into the
single-particle ones with the additional multiplier propor-
tional to the module squared of two-particle symmetrized
or antisymmetrized amplitudes, so that the correlation func-
tion becomes (omitting all nonprincipal details) C(p1,p2) ∝
〈1 ± cos(p1 − p2)(x1 − x2)〉, where angular brackets mean
averaging over an emission function. Such a local “switching
on” of the quantum statistic effects in two-particle cross
sections is just like in the final-state-interaction method.
However, the quantum statistics is not associated with local
two-particle interaction but is the global effect, and complete
symmetrization or antisymmetrization of the total system
is required to find the correct results for one- and multi-
particle momentum spectra. Such an analysis was done in
Refs. [10,11]. It has been shown that for thermal identi-
cal particles the abovementioned procedure for one- and
two-boson spectra evaluations in quasiclassical models is
correct if one provides the symmetrization in an ensemble of
initially independently emitted thermal Boltzmann particles
with the Poisson distribution for the particle numbers in
the ensemble. Otherwise, the above-described prescription
for the simulation of the single- and double-particle spectra and
the correlation function C(p1,p2) is not correct. In particular,
it is violated for the states with a fixed boson number. The
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detailed grounding of such a conclusion, provided in Ref. [11]
with corresponding numerical calculations, is based on the
nonrelativistic Kopylov-Podgoretsky model [1] of initially
Boltzmann independent factorized sources (with subsequent
symmetrization).

In this article we use as a basis thermal canonical and
grand-canonical bosonic ensembles for quantum relativistic
ideal gases, which allows us to avoid the specific procedure of
“switching on” the quantum statistics as well as the assumption
of initially distinguishable sources. Our aim is to clarify the
general reasons of violation of the standard prescriptions for
C(p1,p2) (see above) when one calculates the correlation
function in events with fixed multiplicity or just on an event-
by-event basis [4]. The answer is not trivial and depends on the
applicability of the thermal Wick’s theorem [12]. It is beyond
the scope of this study to give a comprehensive analysis and
prescription for quasiclassical event generators dealing with
p + p and A + A collisions. Rather, the purpose of this paper
is to show how imposed particle number constraints affect
the single-particle momentum density and the two-particle
momentum correlation function in a canonical ensemble of a
finite system, as well as to present the analytical estimates for
these values in some tractable approximations. In particular,
the conditions under which the standard decomposition of
two-particle distribution can be applied are considered.

II. ONE- AND TWO- PARTICLE MOMENTUM SPECTRA
IN GRAND-CANONICAL AND CANONICAL ENSEMBLES

OF IDENTICAL BOSONS

We begin with a brief overview of the properties of the
quantum grand-canonical ensemble of a noninteracting boson
field with plane waves satisfying periodic boundary conditions
on the walls of a cubic box (see, e.g., Ref. [13]).

A. Momentum spectra and Wick’s theorem in a
grand-canonical ensemble

The basic object, a grand-canonical statistical operator, can
be written as follows:

ρ = exp[−β(Ĥ − μN̂ )], (1)

where β = 1/T is the inverse temperature, Ĥ = ∑
p εpa+

p ap

is the Hamiltonian, εp is the energy of the single-particle
state, and N̂ = ∑

p a+
p ap is the particle number operator.

Creation, a+
p , and annihilation, ap, operators satisfy the

following canonical commutation relation in the discrete-mode
representation:

[ap,a+
p′ ] = δpp′ , (2)

where δpp′ is the Kronecker delta function. For notational
simplicity, here and below we write p instead of (px,py,pz).
The expectation value of the operator Â can be expressed as

〈Â〉 = Tr[ρÂ]

Z
, (3)

where Z is the grand-canonical partition function,

Z = Tr[ρ]. (4)

In what follows we assume for simplicity that the chemical
potential μ = 0. For μ �= 0 the substitution εp → εp − μ has
to be utilized in corresponding expressions.

Using the eigenstates of the particle number operator,

|p1, . . . ,pN 〉 = 1√
N !

a+
p1

· · · a+
pN

|0〉, (5)

and the identity∑
N

∑
p1,...,pN

|p1, . . . ,pN 〉〈p1, . . . ,pN | = 1, (6)

one can write the statistical operator (1) in the form

ρ =
∑
N

∑
p1,...,pN

e−βεp1 −···−βεpN |p1, . . . ,pN 〉〈p1, . . . ,pN |.

(7)

Inasmuch as our aim here is to calculate the two-boson
correlation function, we are interested in the expectation values
of operators a+

p1
ap2 and a+

p1
a+

p2
ap1ap2 ; other n-point operator

functions can be calculated in a similar way, if necessary. For
calculations we adapt the method proposed in Ref. [12] (see
also Refs. [13,14]). The corresponding results are, of course,
well known, but it allows us to show a simple example of
calculations within the method of Ref. [12] and will help to
reveal differences between calculations with and without a
fixed particle number constraint.

Our starting point is the relationship

apρ = ρape−βεp , (8)

which can be proved by using an elementary operator algebra
and Eq. (7). Then, using trace invariance under the cyclic
permutation of an operator, we get

Tr
[
ρa+

p1
ap2

] = e−βεp2 Tr
[
ρap2a

+
p1

]
= e−βεp2 Tr

[
ρa+

p1
ap2

] + e−βεp2 δp1p2 Tr[ρ]. (9)

From the above equation we have〈
a+

p1
ap2

〉 = δp1p2

eβεp2 − 1
, (10)

which is a familiar Bose-Einstein distribution. Similarly, the
trace Tr[ρa+

p1
a+

p2
ap1ap2 ] can be expressed as

Tr
[
ρa+

p1
a+

p2
ap1ap2

] = e−βεp2 δp1p2 Tr
[
ρa+

p2
ap1

]
+ e−βεp2 δp2p2 Tr

[
ρa+

p1
ap1

]
+ e−βεp2 Tr

[
ρa+

p1
a+

p2
ap1ap2

]
, (11)

and we have

Tr
[
ρa+

p1
a+

p2
ap1ap2

] = δp1p2

eβεp2 − 1
Tr

[
ρa+

p2
ap1

]
+ δp2p2

eβεp2 − 1
Tr

[
ρa+

p1
ap1

]
. (12)

Then, taking into account Eq. (10), 〈a+
p1

a+
p2

ap1ap2〉 reads〈
a+

p1
a+

p2
ap1ap2

〉 = 〈
a+

p2
ap1

〉〈
a+

p1
ap2

〉 + 〈
a+

p1
ap1

〉〈
a+

p2
ap2

〉
,

(13)
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which is nothing but the particular case of the thermal Wick’s
theorem [12] (see also Ref. [15] where the applicability
of the thermal Wick’s theorem for inhomogeneous locally
equilibrated noninteracting systems is analyzed). Note that to
derive Eqs. (10) and (13) we do not need an explicit expression
for the grand-canonical partition function (4).

B. The momentum spectra in a canonical ensemble with a fixed
particle number constraint (discrete-mode representation)

Now, let us apply the fixed particle number constraint to the
grand-canonical statistical operator (1). For this aim, one can
utilize the projection operator PN ,

PN =
∑

p1,...,pN

|p1, . . . ,pN 〉〈p1, . . . ,pN |, (14)

which automatically invokes the corresponding constraint.
Then we assert that the canonical statistical operator with the
constraint, ρN , is

ρN = PNρPN

=
∑

p1,...,pN

e−βεp1 −···−βεpN |p1, . . . ,pN 〉〈p1, . . . ,pN |. (15)

The expectation value of the operator Â can be defined as

〈Â〉N = Tr[ρNA]

ZN

, (16)

where ZN is the corresponding canonical partition function,

ZN = Tr[ρN ]. (17)

To evaluate the expectation values of the operators a+
p1

ap2 and
a+

p1
a+

p2
ap1ap2 with the canonical statistical operator ρN , see

Eqs. (15) and (16), we first utilize elementary operator algebra
to prove that

apρN = ρN−1ape−βεp . (18)

Then, to evaluate the trace Tr[ρNa+
q1

aq2 ], we exploit its
invariance under cyclic permutations and get

Tr
[
ρNa+

p1
ap2

] = e−βεp2 Tr
[
ρN−1ap2a

+
p1

]
= e−βεp2 Tr

[
ρN−1a

+
p1

ap2

]+e−βεp2 δp1p2 Tr[ρN−1].

(19)

From Eq. (19) we have the iteration relation

〈
a+

p1
ap2

〉
N

= e−βεp2 δp1p2

ZN−1

ZN

+ e−βεp2
ZN−1

ZN

〈
a+

p1
ap2

〉
N−1.

(20)

By using Eq. (20) one can prove by induction (see also Ref. [16]
and references therein) that

〈
a+

p1
ap2

〉
N

= δp1p2

N∑
i=1

e−iβεp2
ZN−i

ZN

. (21)

In the same way we obtain

〈
a+

p1
a+

p2
ap1ap2

〉
N

= e−βεp2
ZN−1

ZN

〈
ap2a

+
p1

a+
p2

ap1

〉
N−1

= e−βεp2
ZN−1

ZN

(〈
a+

p1
a+

p2
ap1ap2

〉
N−1

+ δp1p2

〈
a+

p2
ap1

〉
N−1 + δp2p2

〈
a+

p1
ap1

〉
N−1

)
,

(22)

and one can prove by induction that

〈
a+

p1
a+

p2
ap1ap2

〉
N

= δp1p2

N∑
i=1

e−iβεp2
ZN−i

ZN

〈
a+

p2
ap1

〉
N−i

+ δp2p2

N∑
i=1

e−iβεp2
ZN−i

ZN

〈
a+

p1
ap1

〉
N−i

.

(23)

Finally, using Eq. (21) and taking into account that 〈a+
pi

apj
〉0 =

0, we see that Eq. (23) becomes〈
a+

p1
a+

p2
ap1ap2

〉
N

= (
δp1p2δp2p1 + δp2p2δp1p1

)
×

N−1∑
i=1

N−i∑
j=1

e−iβεp2 e−jβεp1
ZN−i−j

ZN

. (24)

It is immediately apparent from Eqs. (21), (23), and (24)
that for the noninteracting canonical ensemble with the fixed
particle number constraint the decomposition (13), which
follows from the thermal Wick’s theorem, is no more valid.1

Also, notice that for practical utilizations of Eqs. (21) and (24)
one needs first to calculate the canonical partition functions.
The latter can be done by means of the recurrence relations
as given in Ref. [18]. Below, for the reader’s convenience, we
present an elementary derivation of it. As the starting point we
utilize the relation ∑

p

〈a+
p ap〉N = N, (25)

which follows from the definition of ρN [see Eqs. (15)
and (16)]. Then, accounting for Eq. (21) we get

NZN =
N∑

i=1

∑
p

e−iβεpZN−i . (26)

The above expression can be rewritten as

ZN = 1

N

N−1∑
i=0

Zi

∑
p

e−(N−i)βεp . (27)

Taking into account that Z0 = 〈0|0〉 = 1, we get Z1 =∑
p e−βεp . Then the recurrence relation can be expressed in

1Please note also Ref. [17], where expressions for these expectation
values are derived in rather compact form at the price of an additional
integration.
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its final form as

ZN = 1

N

N−1∑
i=0

ZiZ1[(N − i)β], (28)

where for notational convenience we have defined the quanti-
ties

Z1(jβ) =
∑

p

e−jβεp . (29)

Then, the use of Eqs. (28) and (29) allows one to determine
the canonical partition functions and, therefore, to calculate
Eqs. (21) and (24) in the canonical ensemble with periodical
boundary conditions.

C. Canonical ensemble in the thermodynamic limit

It is worth noting that periodical boundary conditions are
just a mathematical trick that allows convenient mathematical
description of finite-volume systems. To eliminate these
artificial assumptions, the transition to the thermodynamic
limit is typically applied. Then, the number (or the mean
number in a grand-canonical ensemble) of particles N and the
volume V of the system go to ∞ while keeping the particle
density n = N/V constant. As a result, the discrete-mode rep-
resentation tends to the continuous momentum representation
of the canonical operators. In this limit, strictly speaking,
normalization of the statistical operator fails because the
partition function diverges, but the expectation values can still
be defined. There are no problems with the application of this
limit to the expectation values (10) and (13) calculated in the
grand-canonical ensemble, but the computation of Eqs. (21)
and (23) in the canonical ensemble is a more involved problem
because Eqs. (21) and (23) explicitly depend on canonical
partition functions. To overcome this problem, let us first
utilize Eq. (26) to write ZN−j−1/ZN−j as

ZN−j−1

ZN−j

= N − j

N − j − 1

∑N−j−1
i=1

∑
p e−iβεpZN−j−i−1∑N−j

i=1

∑
p e−iβεpZN−j−i

.

(30)

It is immediately apparent from Eq. (30) that for any fixed j
in the thermodynamic limit

lim
N,V →∞

ZN−j−1

ZN−j

= lim
N,V →∞

ZN−1

ZN

≡ γ, (31)

and therefore,

lim
N,V →∞

ZN−j

ZN

= lim
N,V →∞

(
ZN−1

ZN

)j

. (32)

Thus we observe that Eq. (30) in the thermodynamic limit
becomes the identity,

ZN−1

ZN

=
∑∞

i=1

∑
p e−iβεp

(
ZN−1

ZN

)i+1

∑∞
i=1

∑
p e−iβεp

(
ZN−1

ZN

)i
. (33)

By using Eq. (32), one can write the sum in Eqs. (21) and (24)
for γ e−βεp < 1 as follows:〈

a+
p1

ap2

〉
N,V →∞ = δp1p2

eβεp2 γ −1 − 1
(34)

and〈
a+

p1
a+

p2
ap1ap2

〉
N,V →∞ = δp1p2δp2p1 + δp2p2δp1p1

(eβεp1 γ −1 − 1)(eβεp2 γ −1 − 1)
.

(35)

Note that the above expressions satisfy the principle of
thermodynamic equivalence between the canonical ensemble
and the grand-canonical ensemble with eβμ = ZN−1

ZN
(see also

Ref. [19]).
Finally, redefining in the thermodynamic limit δ(k − k′) =

(2π )−3V δkk′ and a(k) = [(2π )−3V ]1/2[2E(k)]1/2ak , E(k) =√
k2 + m2, we get

〈a+(p1)a(p2)〉 = 2E(p2)δ(p1 − p2)

eβE(p2)γ −1 − 1
(36)

and

〈a+(p1)a+(p2)a(p1)a(p2)〉

= 4E(p2)E(p1){[δ(p1 − p2)]2 + [δ(0)]2}
(eβE(p1)γ −1 − 1)(eβE(p2)γ −1 − 1)

. (37)

It is easily seen from Eqs. (36) and (37) that
〈a+(p1)a+(p2)a(p1)a(p2)〉 can be written as

〈a+(p1)a+(p2)a(p1)a(p2)〉 = 〈a+(p2)a(p1)〉〈a+(p1)a(p2)〉
+ 〈a+(p1)a(p1)〉〈a+(p2)a(p2)〉.

(38)

Equation (38) is the particular case of the thermal Wick’s
theorem [12]. Evidently, this is the consequence of general
results about the equivalency of canonical and grand-canonical
ensembles in the thermodynamic limit. However, when par-
ticle production occurs from extremely small systems with
a typical size of 10−14 m created in relativistic nucleus
and particle collisions, one should use an approximation of
the thermodynamic limit with great caution especially in
correlation femtoscopy analysis of the system’s effective size.

III. TWO-BOSON CORRELATIONS AT FIXED
MULTIPLICITIES AND FINITE VOLUMES

In the previous section we calculated the expectation values
of creation and annihilation operators both in a finite volume
with periodical boundary conditions and in the thermodynamic
limit. We demonstrated that only for the latter case is the
thermal Wick’s theorem applied in the canonical ensemble
of noninteracting particles with the fixed particle number
constraint. Our aim in this section is to adjust these results
for correlation femtoscopy analysis of systems created in
high-energy particle and nucleus collisions. To do this, one
needs to take into account, first, that experimentally measured
observables are one- and two-particle momentum spectra in
the continuous-mode momentum representation, and, second,
that finite sizes measured by this method do not allow one
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to treat these systems in the thermodynamic limit. Then, to
be able to consider such systems in a simple approximation,2

let us assume that the Compton wavelength and the thermal
one are much less than the size of the system. This allows
one to use the continuous-mode momentum representation as
an approximation to the discrete momentum representation in
a finite volume without invoking the thermodynamic limit.
To evaluate quantities of interest, we use as the starting
point Eqs. (21) and (24), where we substitute (2π )−3V δkk′ →
δV (k − k′) and ak → a(k)[(2π )−3V ]−1/2[2E(k)]−1/2. Note
that the appearance of δV (k − k′) instead of (2π )−3V δkk′ [or
δ(k − k′)] does not mean modification of the commutation
relation of the creation and annihilation operators but just
some modification of the averaging of their products for the
case when the spatial particle number density, which can
be calculated from the one-particle Wigner function (see,
e.g., Ref. [14]), comes to be not constant in full space but
related to a finite system. Also, it is natural to assume that
the corresponding density distribution is not sharp but has
a smooth cutoff. The important example is that in a grand-
canonical system with a Gaussian spatial particle number
density distribution one should put

δV (k − k′) = R3

(2π )3/2
e−(k−k′)2R2/2 (39)

in Eqs. (10) and (13) to reproduce the corresponding den-
sity behavior and the Gaussian distribution of the particle
momentum difference observed in Bose-Einstein two-particle
correlation data.3 Let us assume that the same substitution (39)
can be applied also in a canonical ensemble with fixed particle
multiplicity, Eqs. (21) and (24). Then the parameter R is
related to the volume V used in the discrete-mode “box”
representation as follows:

R3 = V (2π )−3/2. (40)

The computation of 〈a+(k)a+(k′)a(k)a(k′)〉N and
〈a+(k)a(k)〉N makes it possible to obtain the two-particle
correlation function, which is defined as

CN (p,q) = CN

〈a+(p1)a+(p2)a(p1)a(p2)〉N
〈a+(p1)a(p1)〉N 〈a+(p2)a(p2)〉N , (41)

where p = (p1 + p2)/2, q = p2 − p1, and CN is the normal-
ization constant; the latter is needed to normalize the theoreti-
cal correlation function in accordance with normalization that
is applied by experimentalists: CN (p,q) → 1 for |q| → ∞.

2An exact approach should be based on a local equilibrium
statistical operator for finite systems, similar to how it was realized
in Ref. [15] for the particular case of a grand-canonical ensemble in a
locally equilibrated longitudinally expanding system. However, for a
canonical ensemble with a fixed particle number, this is an especially
nontrivial problem.

3The corresponding results for a specific case that includes the
symmetrization procedure for an initially nonsymmetrized amplitude
of boson radiation from factorized independent (noncoherent) sources
are presented in Ref. [11].
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FIG. 1. The two-pion correlation functions C(qx = q,qy =
0,qz = 0; px = p,py = 0,pz = 0), with p = 0.2 GeV/c, R = 3 fm,
and T = 0.06 GeV in the case of the two-particle system: N = 2.
The dotted line corresponds to the “standard” expression for the
pure Bose-Einstein correlation function (CF) of the Gaussian source.
The dashed line is related to the CF when one-boson spectra in
the two-boson system is calculated from the two-particle spectra by
integrating it over one of the momenta. The solid line corresponds to
our approximation based on Eq. (42).

Substitution of Eqs. (21) and (24) into Eq. (41) yields

CN (p,q)

= CN

(
1 + e−q2R2) ∑N−1

i=1

∑N−i
j=1 e−iβE(p2)−jβE(p1) ZN−i−j

ZN∑N
i=1

∑N
j=1 e−iβE(p2)e−jβE(p1) ZN−i

ZN

ZN−j

ZN

,

(42)

where we performed the transition to the continuous-mode
representation as is described above. Despite its complexity,
this expression allows a trivial evaluation of the |q| → ∞ limit.
Namely, because E(p1) and E(p2) tend to ∞ when |q| → ∞
at fixed p, we see that CN (p,q) → CN

ZN−2ZN

Z2
N−1

in this limit. If

we now demand that CN (p,q) → 1 when |q| → ∞, we see
that the normalization factor introduced in Eq. (41) is

CN = Z2
N−1

ZN−2ZN

. (43)

Note that systems with small particle numbers can be easily
investigated by exploiting recurrence relations for the partition
function and performing straightforward exact calculations.
In Fig. 1 we illustrate and compare the results for two-pion
correlation functions C(qx = q,qy = 0,qz = 0; px = p,py =
0,pz = 0) (41), with p = 0.2 GeV/c, R = 3 fm, and T =
0.06 GeV in the case when the two-pion spectrum, see the
numerator of Eq. (42), is calculated for the two-particle system:
N = 2. Our aim here is, in particular, to compare the results
of the calculations of the two-particle momentum correla-
tions (41) by means of Eq. (42) with some other prescriptions.
First, we present the “standard” correlation function C(p,q) =
1 + exp (−q2R2) that, in fact, corresponds to the correlation
function (42) with N = 2 in the numerator and N = 1 in
the denominator (the prefraction normalization constant C2 is
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modified correspondingly). Such a formal case was considered
in Ref. [3], and it was shown that the above “standard”
expression can be obtained only for a fairly large system
when one can ignore the quantum uncertainty principle in
particle radiation. It is worth noting that the same “standard”
behavior of the two-particle correlation function takes place
in the grand-canonical ensemble for bosons [10] when the
(effective) system sizes are much larger then the thermal de
Broglie wavelength [3,15].

The second result that we present for the two-particle
correlation function corresponds to the case when the one-
particle pion spectra [〈a+(p1)a(p1)〉2 and 〈a+(p2)a(p2)〉2 in
Eq. (41)] are calculated by integration of the two-particle
momentum spectra [numerator of Eq. (42)] over one of the
particle momenta.

The third result is based on our approximation (42) of the
correlation function of a finite system without any modifica-
tion. One can see that the last result qualitatively reproduces
the previous one where the one-particle spectra are calculated
from the two-particle ones in a direct way (that is, in fact, an
exact self-consistent approach) and the two-particle spectra
are taken in our finite-system approximation [numerator
of Eq. (42)]. Namely, in both approaches the correlation
functions are suppressed (their intercepts are reduced), they
lose the Gaussian form even for the Gaussian source, and
the correlation function C(p,q) becomes less than unity at
intermediate q values and approaches the limiting value of
1 from below. Such a similarity of the results supports our
approximation (42) of the two-particle momentum distribution
function.4

To see the corresponding effects in the systems with finite
but rather large N , as can happen in relativistic particle and
nucleus collisions, let us first write the recurrence relation (28)
as

ZN = 1

N

N−2∑
i=0

ZiZ1[(N − i)β] + 1

N
ZN−1Z1(β). (44)

Utilizing again Eq. (28), one can express ZN−1 as

ZN−1 = 1

N − 1

N−2∑
i=0

ZiZ1[(N − i − 1)β]. (45)

Thus we observe that

ZN

ZN−1
= N − 1

N

∑N−2
i=0 ZiZ1[(N − i)β]∑N−2

i=0 ZiZ1[(N − i − 1)β]
+ 1

N
Z1(β).

(46)

Now, using Eq. (29), one can change the order of summations
in Eq. (46) and get

ZN

ZN−1
= αN−2 exp (−βm)

N − 1

N
+ Z1(β)

N
, (47)

4It is worth noting that the same peculiarities of the two-particle
momentum correlations for fixed-N systems were obtained in
Ref. [11]. The ultimate reason for such behavior is the violation
of the Wick’s theorem for heat systems with fixed multiplicities.

where

αN−2 =
∑

p fN−2(βεp) exp (−βεp + βm)∑
p fN−2(βεp)

, (48)

fN−2(βεp) =
N−2∑
i=0

Zi(β) exp [−(N − i − 1)βεp], (49)

and m is a particle mass. It is apparent from Eq. (48) that
αN−2 < 1. Now, note that in the continuous-mode repre-
sentation

∑
p → V

(2π)3

∫
d3p, εp → E(p) =

√
p2 + m2, and

Eq. (47) takes the following form,

ZN

ZN−1
= 1

(2π )3

V

N
I (β) + αN−2 exp (−βm), (50)

where

I (β) ≡
∫

d3p exp [−βE(p)] = 4πβ−1m2K2(βm) (51)

and V = (2π )3/2R3 [see Eq. (40)]. Taking into account that
αN−2 < 1 and assuming the low particle number density
approximation,

1

(2π )3

V

N
I (β) � 1, (52)

we then get5

ZN−1

ZN

� (2π )3 N

V
I−1(β)  1. (53)

It is easily seen that ZN−i−1

ZN
= ZN−i−1

ZN−i
· · · ZN−1

ZN
 ZN−1

ZN
 1,

giving from Eqs. (42) and (43) the following approximate
formula,

C(p,q) �
1 + (e−βE(p1) + e−βE(p2))ZN−3

ZN−2

1 + (e−βE(p1) + e−βE(p2))ZN−2

ZN−1

(1 + e−q2R2
),

(54)

which can be further simplified as

C(p,q) �
[

1 + (e−βE(p1) + e−βE(p2))

(
ZN−3

ZN−2
− ZN−2

ZN−1

)]

× (1 + e−q2R2
). (55)

Taking into account Eq. (53), the above expression reads

C(p,q) �
[

1 − (2π )3

V I (β)
(e−βE(p1) + e−βE(p2))

](
1 + e−q2R2)

.

(56)

To see qualitative peculiarities of the above expression
explicitly, let us rewrite Eq. (56) for βm � 1.6 Then
I (β) ≈ λ−3

T e−βm, where λT = (2πmT )−1/2 is the so-called

5An attentive reader will notice that Eq. (53) is associated with the
Boltzmann approximation in the thermodynamic limit.

6Our conclusions are valid, in fact, for any βm values, because only
the quantitative strength of the effect depends on the βm value.
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thermal wavelength, T = 1/β, and Eq. (56) can be simplified
as

CN (p,q) �
[

1 − (2π )3 λ3
T

V
eβm(e−βE(p1) + e−βE(p2))

]

× (
1 + e−q2R2)

. (57)

It is instructive to compare the above expression with a typical
experimental parametrization of the two-boson Bose-Einstein
correlation function, which looks like

CN (p,q) = 1 + λ(p) exp
(−R2

Gq2
)
. (58)

Here 0 � λ(p) � 1 describes the correlation strength, RG is
the Gaussian interferometry radius, and to allow comparison
with our simple model we simplify the real experimental three-
dimensional parametrization by assuming spherical symmetry
in Eq. (58). To do this comparison, first note that λ(p) =
CN (p,0) − 1, and one can see from Eq. (57) that the intercept
CN (p,0) is

CN (p,0) � 2

[
1 − 2(2π )3 λ3

T

V
e−βE(p)+βm

]
. (59)

Therefore for the correlation strength parameter λ(p) we get
in the limit of small particle number densities (52)

λ(p) � 1 − 4e−βE(p)+βm(2π )3 λ3
T

V
. (60)

Note that the Bose-Einstein correlations are suppressed,
λ(p) < 1, and that λ(p) → 1 when V → ∞; therefore
Eq. (60) represents the finite-volume effect in a canonical
ensemble with fixed particle multiplicity. One can see that
the suppression becomes stronger when the system size tends
to the thermal de Broglie wavelength. It has been shown in
the model of independent incoherent emitters that λ → 0 in
a finite system at fixed multiplicity, if particle number tends
to infinity [11,20]. It is interesting to note that λ is usually
interpreted as a measure of coherence in a theoretical model:
λ = 0 for a pure quantum state and 0 < λ � 1 for a mixed
quantum state (see, e.g., Refs. [2,3]). However, in the case of
a thermal system with fixed multiplicity, the suppression of
the correlation function is the result of violation of the Wick’s
theorem. Then the coherence effects need an additional specific
treatment [3].

Using Eq. (60), we see that Eq. (57) can be written in the
form

C(p,q) � 1
2 [1 + λ(p)f (p,q)]

(
1 + e−R2q2)

, (61)

where the factor

f (p,q) = e−βE(p1) + e−βE(p2)

2e−βE(p)
(62)

results in non-Gaussian behavior of the correlation function
with respect to |q|. Namely, for |p| � |q| and |p| � m,

e−βE(p1) + e−βE(p2)

2e−βE(p)
≈ exp

(
− q2

8T
√

p2 + m2

)

× cosh

(
pq

2T
√

p2 + m2

)
. (63)

Equations (58), (61), and (62) allow us to relate R and
RG for small |q|, when R2q2  1 and R2

Gq2  1. Then,
expanding C(p,q) in q and keeping the first term in the Taylor
series, we get from Eq. (61)

C(p,q) � 1
2 (1 + λ(p))(2 − R2q2), (64)

and we also get from Eq. (58)

C(p,q) � 1 + λ(p)
(
1 − R2

Gq2
)
. (65)

Here we assume that the system size is large enough in
comparison with the thermal wavelength, etc., and replace
f (p,q) by 1. After equating Eqs. (64) and (65) we get
eventually

R2
G = 1 + λ(p)

2λ(p)
R2. (66)

We remind the reader that this rough approximation is valid
only when λ is close to unity. It is interesting to note that
the Gaussian interferometry radius exhibits a decrease as the
pair momentum increases that is similar to the well-known
behavior of the homogeneity length that is associated with
the Gaussian interferometry radius in a locally equilibrated
expanding system [21].

IV. CONCLUSIONS

In this paper, we have analyzed the single- and two-particle
momentum spectra for finite canonical systems of noninter-
acting particles with a fixed particle number constraint. We
find that the corresponding expressions satisfy the thermal
Wick’s theorem in the thermodynamic limit and do not satisfy
it in the general finite case. Our analysis implies that contrary
to traditional beliefs (see, e.g., Ref. [4]), decomposition of
two-particle distribution functions through one-particle ones
is questionable for the class of events with fixed multiplicities
originating from small thermal systems.

Furthermore, we evaluated the two-particle correlation
function in a low particle number density approximation in
a canonical ensemble model. An analysis of the two-particle
correlation function indicates that even for Gaussian sources
the correlation function is non-Gaussian and reaches values
less than unity in some intermediate region of relative mo-
mentum of particles q; the apparent source size (interferometry
radius extracted from the typical experimental parametrization
for small values of |q|) decreases with the half-sum pair
momentum |p| and at large |p| reaches the static Gaussian
source value.

It was found that the finite-size effect in thermal systems
with fixed multiplicity results in a reduction of the intercept
of the correlation function. In approximation of small particle
number density, the “coherence parameter” λ becomes smaller
than unity and decreases when the system size approaches the
thermal de Broglie wavelength. As |p| increases the parameter
rises gradually and reaches the constant value of 1. It is
interesting to note that measured with various methods of
analysis by different LHC collaborations [5] values of λ in p +
p collisions are smaller than unity and exhibit a decrease as the
average momentum of the pair increases. This is at variance
with the behavior of λ in a canonical ensemble model with a
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fixed particle number constraint and could be caused by a spe-
cific nonthermal mechanism of particle production in p + p
collisions, e.g., by pions originated from resonances, but anal-
ysis of the latter goes beyond the scope of the present article.

In the present work, to make the problem tractable, we
used a simple static canonical ensemble model: while the
particle-emitting sources produced in high-energy nucleus
and particle collisions are expanding, interactions between
the emitted particles are rather complicated and include the
resonance decays, etc. Therefore, further investigations based
on a more realistic model of an evolving source could be of
great interest. However, we hope that the present analysis
sheds light on the additional causes (besides the purity,
long-lived resonances, and coherence) of the suppression
of the correlation function intercept value expressed by the
parameter λ. Namely, we found that this parameter is a measure
of the degree of the Wick’s theorem violation in a thermal

system with a fixed particle number constraint. The results of
our analysis may be useful for interpretation of the results of
the correlation femtoscopy of events with fixed multiplicities
and also for event-generator modeling of the two-particle
Bose-Einstein correlations arising in small thermal systems
created in relativistic nucleus and particle collisions.

ACKNOWLEDGMENTS

Yu.S. is grateful to ExtreMe Matter Institute EMMI/GSI
for support and a visiting professor position. This work is
partially supported by the Tomsk State University Competi-
tiveness Improvement Program. This research was carried out
within the scope of the EUREA: European Ultra Relativistic
Energies Agreement (European Research Group: “Heavy Ions
at Ultrarelativistic Energies”) and is supported by the National
Academy of Sciences of Ukraine, Contract No. F7-2016.

[1] M. I. Podgoretsky, Fiz. Elem. Chast. At. Yad. 20, 628 (1989)
[Sov. J. Part. Nucl. 20, 266 (1989)].

[2] U. A. Wiedemann and U. Heinz, Phys. Rep. 319, 145 (1999);
R. M. Weiner, ibid. 327, 249 (2000); Introduction to Bose-
Einstein Correlations and Subatomic Interferometry (Wiley,
New York, 2000); M. Lisa, S. Pratt, R. Soltz, and U. Wiedemann,
Annu. Rev. Nucl. Part. Sci. 55, 357 (2005).

[3] Yu. M. Sinyukov and V. M. Shapoval, Phys. Rev. D 87, 094024
(2013).

[4] C. Plumberg and U. Heinz, Phys. Rev. C 91, 054905 (2015); 92,
044906 (2015); arXiv:1512.07631.

[5] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. D
84, 112004 (2011); S. S. Padula (CMS Collaboration),
arXiv:1502.05757; ATLAS Collaboration, Eur. Phys. J. C 75,
466 (2015).

[6] U. Heinz, J. Phys.: Conf. Ser. 455, 012044 (2013); U. Heinz
and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013); C.
Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011
(2013); P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013);
R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl.
Phys. 86, 35 (2016).

[7] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998); M.
Bleicher et al., J. Phys. G 25, 1859 (1999).

[8] K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, and K.
Mikhailov, Phys. Rev. C 83, 044915 (2011); V. M. Shapoval, P.
Braun-Munzinger, Iu. A. Karpenko, and Yu. M. Sinyukov, Phys.
Lett. B 725, 139 (2013); T. Kalaydzhyan and E. Shuryak, Phys.
Rev. C 91, 054913 (2015); Y. Hirono and E. Shuryak, ibid. 91,
054915 (2015).

[9] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
[10] Yu. M. Sinyukov and B. Lorstad, Z. Phys. C 61, 587

(1994).
[11] R. Lednicky, V. Lyuboshitz, K. Mikhailov, Yu. Sinyukov,

A. Stavinsky, and B. Erazmus, Phys. Rev. C 61, 034901
(2000).

[12] C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958);
M. Gaudin, ibid. 15, 89 (1960).

[13] N. N. Bogolubov and N. N. Bogolubov, Jr., An Introduction to
Quantum Statistical Mechanics (Gordon and Breach, New York,
1992).

[14] S. R. de Groot, W. A. van Leeuwen, and Ch. G. van Weert,
Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980).

[15] Yu. M. Sinyukov, Preprint ITP-93-8E (unpublished); Heavy Ion
Phys. 10, 113 (1999).

[16] W. J. Mullin and J. P. Fernández, Am. J. Phys. 71, 661
(2003).

[17] W. Magnus and F. Brosens, arXiv:1505.04923.
[18] P. T. Landsberg, Thermodynamics (Interscience, New York,

1961); P. Borrmann and G. Franke, J. Chem. Phys. 98, 2484
(1993).

[19] D. Y. Petrina, Mathematical Foundations of Quantum Statistical
Mechanics: Continuous Systems (Springer, Dordrecht, 1995).

[20] S. Pratt, Phys. Lett. B 301, 159 (1993).
[21] Yu. M. Sinyukov, Nucl. Phys. A 566, 589 (1994); in Hot

Hadronic Matter: Theory and Experiment, edited by J. Letessier,
H. H. Gutbrod, and J. Rafelski (Plenum, New York, 1995),
p. 309; S. V. Akkelin and Yu. M. Sinyukov, Phys. Lett. B 356,
525 (1995); Z. Phys. C 72, 501 (1996).

014908-8

http://dx.doi.org/10.1016/S0370-1573(99)00032-0
http://dx.doi.org/10.1016/S0370-1573(99)00032-0
http://dx.doi.org/10.1016/S0370-1573(99)00032-0
http://dx.doi.org/10.1016/S0370-1573(99)00032-0
http://dx.doi.org/10.1016/S0370-1573(99)00114-3
http://dx.doi.org/10.1016/S0370-1573(99)00114-3
http://dx.doi.org/10.1016/S0370-1573(99)00114-3
http://dx.doi.org/10.1016/S0370-1573(99)00114-3
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151533
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151533
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151533
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151533
http://dx.doi.org/10.1103/PhysRevD.87.094024
http://dx.doi.org/10.1103/PhysRevD.87.094024
http://dx.doi.org/10.1103/PhysRevD.87.094024
http://dx.doi.org/10.1103/PhysRevD.87.094024
http://dx.doi.org/10.1103/PhysRevC.91.054905
http://dx.doi.org/10.1103/PhysRevC.91.054905
http://dx.doi.org/10.1103/PhysRevC.91.054905
http://dx.doi.org/10.1103/PhysRevC.91.054905
http://dx.doi.org/10.1103/PhysRevC.92.044906
http://dx.doi.org/10.1103/PhysRevC.92.044906
http://dx.doi.org/10.1103/PhysRevC.92.044906
http://arxiv.org/abs/arXiv:1512.07631
http://dx.doi.org/10.1103/PhysRevD.84.112004
http://dx.doi.org/10.1103/PhysRevD.84.112004
http://dx.doi.org/10.1103/PhysRevD.84.112004
http://dx.doi.org/10.1103/PhysRevD.84.112004
http://arxiv.org/abs/arXiv:1502.05757
http://dx.doi.org/10.1140/epjc/s10052-015-3644-x
http://dx.doi.org/10.1140/epjc/s10052-015-3644-x
http://dx.doi.org/10.1140/epjc/s10052-015-3644-x
http://dx.doi.org/10.1140/epjc/s10052-015-3644-x
http://dx.doi.org/10.1088/1742-6596/455/1/012044
http://dx.doi.org/10.1088/1742-6596/455/1/012044
http://dx.doi.org/10.1088/1742-6596/455/1/012044
http://dx.doi.org/10.1088/1742-6596/455/1/012044
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0218301313300294
http://dx.doi.org/10.1142/S0218301313300294
http://dx.doi.org/10.1142/S0218301313300294
http://dx.doi.org/10.1142/S0218301313300294
http://dx.doi.org/10.1016/j.ppnp.2015.09.002
http://dx.doi.org/10.1016/j.ppnp.2015.09.002
http://dx.doi.org/10.1016/j.ppnp.2015.09.002
http://dx.doi.org/10.1016/j.ppnp.2015.09.002
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1103/PhysRevC.83.044915
http://dx.doi.org/10.1103/PhysRevC.83.044915
http://dx.doi.org/10.1103/PhysRevC.83.044915
http://dx.doi.org/10.1103/PhysRevC.83.044915
http://dx.doi.org/10.1016/j.physletb.2013.07.002
http://dx.doi.org/10.1016/j.physletb.2013.07.002
http://dx.doi.org/10.1016/j.physletb.2013.07.002
http://dx.doi.org/10.1016/j.physletb.2013.07.002
http://dx.doi.org/10.1103/PhysRevC.91.054913
http://dx.doi.org/10.1103/PhysRevC.91.054913
http://dx.doi.org/10.1103/PhysRevC.91.054913
http://dx.doi.org/10.1103/PhysRevC.91.054913
http://dx.doi.org/10.1103/PhysRevC.91.054915
http://dx.doi.org/10.1103/PhysRevC.91.054915
http://dx.doi.org/10.1103/PhysRevC.91.054915
http://dx.doi.org/10.1103/PhysRevC.91.054915
http://dx.doi.org/10.1103/PhysRevD.10.186
http://dx.doi.org/10.1103/PhysRevD.10.186
http://dx.doi.org/10.1103/PhysRevD.10.186
http://dx.doi.org/10.1103/PhysRevD.10.186
http://dx.doi.org/10.1007/BF01552625
http://dx.doi.org/10.1007/BF01552625
http://dx.doi.org/10.1007/BF01552625
http://dx.doi.org/10.1007/BF01552625
http://dx.doi.org/10.1103/PhysRevC.61.034901
http://dx.doi.org/10.1103/PhysRevC.61.034901
http://dx.doi.org/10.1103/PhysRevC.61.034901
http://dx.doi.org/10.1103/PhysRevC.61.034901
http://dx.doi.org/10.1016/0029-5582(58)90285-2
http://dx.doi.org/10.1016/0029-5582(58)90285-2
http://dx.doi.org/10.1016/0029-5582(58)90285-2
http://dx.doi.org/10.1016/0029-5582(58)90285-2
http://dx.doi.org/10.1016/0029-5582(60)90285-6
http://dx.doi.org/10.1016/0029-5582(60)90285-6
http://dx.doi.org/10.1016/0029-5582(60)90285-6
http://dx.doi.org/10.1016/0029-5582(60)90285-6
http://dx.doi.org/10.1119/1.1544520
http://dx.doi.org/10.1119/1.1544520
http://dx.doi.org/10.1119/1.1544520
http://dx.doi.org/10.1119/1.1544520
http://arxiv.org/abs/arXiv:1505.04923
http://dx.doi.org/10.1063/1.464180
http://dx.doi.org/10.1063/1.464180
http://dx.doi.org/10.1063/1.464180
http://dx.doi.org/10.1063/1.464180
http://dx.doi.org/10.1016/0370-2693(93)90682-8
http://dx.doi.org/10.1016/0370-2693(93)90682-8
http://dx.doi.org/10.1016/0370-2693(93)90682-8
http://dx.doi.org/10.1016/0370-2693(93)90682-8
http://dx.doi.org/10.1016/0375-9474(94)90700-5
http://dx.doi.org/10.1016/0375-9474(94)90700-5
http://dx.doi.org/10.1016/0375-9474(94)90700-5
http://dx.doi.org/10.1016/0375-9474(94)90700-5
http://dx.doi.org/10.1016/0370-2693(95)00765-D
http://dx.doi.org/10.1016/0370-2693(95)00765-D
http://dx.doi.org/10.1016/0370-2693(95)00765-D
http://dx.doi.org/10.1016/0370-2693(95)00765-D



