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Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model
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We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge,
and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG)
model. We emphasize the importance of including weak decays along with other resonance decays in the HRG,
while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial
particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of
resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX
experiments. We find good agreement between our model calculations and the experimental measurements for
both net-proton and net-charge distributions.
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I. INTRODUCTION

The Beam Energy Scan (BES) program at Brookhaven
National Laboratory’s Relativistic Heavy-Ion Collider (RHIC)
has drawn much attention to explore the quantum chromody-
namics (QCD) phase diagram in terms of temperature T and
baryon chemical potential μB [1–4]. Several theoretical mod-
els suggest the existence of a critical point in the T -μB plane
where the first-order phase-transition line originating from
high μB ends [5–7]. The location of the critical point can be
explored by systematically varying T and μB . Experimentally,
one can vary T and μB by varying the center-of-mass energy
of the colliding ions. It has been suggested that the excitation
function of conserved numbers such as net-baryon, net-charge,
and net-strangeness fluctuations should show a nonmonotonic
behavior as a possible signature of QCD critical end point
(CEP) [8–10].

In the thermodynamic limit, the correlation length ξ
diverges at the CEP [1]. The moments of the net-baryon,
net-charge, and net-strangeness distributions are related to the
ξ of the system and hence these moments can be used to look
for signals of a phase transition and critical point [11,12]. Also,
the comparison of experimentally measured cumulants with
the lattice calculations enables us to extract the freeze-out pa-
rameters i.e., freeze-out temperature Tf and μB , of the system
produced in heavy-ion collisions [13–15]. In recent years, lots
of effort has been applied on both theoretical and experimental
fronts to study the fluctuation of conserved quantities. Current
experiments at RHIC (PHENIX and STAR) have reported
their measurements of higher moments for net-charge [15,16]
and for net-proton [17] multiplicity distributions at different
center-of-mass energies (

√
s

NN
) using the data from the BES.

Experimentally, the net-baryon number fluctuations are not
directly measured, because not all neutral baryons are detected
by most of the experiments. Hence, net-baryon fluctuations are
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accessible via measuring the net-proton distributions [18]. The
net-charge fluctuations are accessible by measuring the stable
charged particles such as pions, kaons, and protons along
with their antiparticles [15,16]. Similarly, the measurement
of net-kaon fluctuations act as proxy for net-strangeness
fluctuations, because higher mass strange particles are not
directly measured. There are several sources of nonequilibrium
fluctuations that can diminish the fluctuations measured by
experiments [19]. It is important to identify the noncritical
baseline to understand the critical properties of different
conserved number fluctuations.

Experimentally measured moments of the net distribu-
tions are related to the cumulants as follows: mean M =
C1; variance σ 2 = C2 = 〈(δN)2〉; skewness S = C3/C

3/2
2 =

〈(δN )3〉/σ 3, and kurtosis κ = C4/C2
2 = 〈(δN )4〉/σ 4 − 3,

where N is the multiplicity of the distribution and δN =
N − M . Hence, the ratios of the cumulants are related
to the moments as follows: σ 2/M = C2/C1, Sσ = C3/C2,
κσ 2 = C4/C2, and Sσ 3/M = C3/C1. Furthermore, the ratios
moments/cumulants can be related to the susceptibilities of
nth order (χn) obtained from the lattice QCD or the HRG
model calculations as σ 2/M ∼ χ (2)/χ (1), Sσ ∼ χ (3)/χ (2),
κσ 2 ∼ χ (4)/χ (2), and Sσ 3/M ∼ χ (3)/χ (1). One advantage of
measuring the ratios is that the dependence of volume on the
experimental measured individual cumulants cancel out in the
ratios. Experimentally, one measures only the final abundance
of hadrons, which includes both primordial particle production
as well as contributions from the resonance decays. Production
of resonances play an important role for studying various
properties of interaction dynamics in the heavy-ion collisions.
Resonances having short lifetime that subsequently decay into
stable hadrons and can affect the final hadron yields and their
number fluctuations.

The HRG model has been successful in explaining the
particles produced in heavy-ion collisions from energies
typical of the Brookhaven National Laboratory Alternating
Gradient Synchrotron (AGS) to those of the Large Hadron
Collider (LHC) [20–22]. The susceptibilities and their ratios in
hadronic phase calculated in the HRG model reasonably agree
with the lattice QCD results at lower μB [12]. Several studies
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have been performed with the HRG model for the fluctuation
of conserved quantities, which are considered as baselines
for such measurements [23–27]. Also, similar baseline studies
have been performed by using independent production models
and transport models [28–31] . Keeping in mind the existence
of CEP in the QCD phase diagram and the efforts applied on
both the theoretical and experimental sides, it is important
to calculate the more appropriate baseline for comparison
with experimental data. In the present work, we estimate the
contribution of resonances to the conserved number fluctuation
by using the HRG model. As discussed in Ref. [32], we also
calculate the effect of average decay and by considering the
higher-order correlated terms, the inclusion of weak decays
in the model, and the effect of different kinematic cuts on
the resonance as well as on the primordial particles. It is
important to consider the weak decays because many of the
particles which are considered as stable in Ref. [32] decay
before reaching the detector. For example, experimentally,
η0 or �0 particles are detected by reconstruction from their
decayed daughters which are measured by the detector. Hence
their contributions to the fluctuation of stable particles are
influenced.

The paper is organized as follows: In the following section,
we discuss the HRG model used in this study as well as the
implementation of resonance decays. In Sec. III, the results for
the observables χ (2)/χ (1), χ (3)/χ (2), χ (4)/χ (2), and χ (3)/χ (1)

for considering different decay cases as well as inclusion of
weak decays and effect of kinematical cuts are discussed.
Section IV discuss the comparison of our model calculations
to the experimental measurements. Finally, in Sec. V, we
summarize our findings and discuss the implication of this
work.

II. HADRON RESONANCE GAS MODEL
AND RESONANCE DECAYS

The partition function in the HRG model includes all rele-
vant degrees of freedom of the confined, strongly interacting
matter and contains all the interactions that result in resonance
formation [24]. The heavy-ion experiments cover only a
limited phase space, so one can access only a part of the fireball
produced in the collision which resembles the grand canonical
ensemble [33]. Assuming a thermal system produced in the
heavy-ion collisions, the thermodynamic pressure P can be
written as sum of the partial pressures of all the particle species
i which may be baryon (B) or meson (M):

P

T 4
= 1

V T 3

∑
B

lnZi(T ,V,μi) + 1

V T 3

∑
M

lnZi(T ,V,μi),

(1)
where

lnZi(T ,V,μi) = ±Vgi

2π2

∫
d3pln{1 ± exp[(μi − E)/T ]},

(2)
where T is the temperature, V is the volume of the system,
μi is the chemical potential, and gi is the degeneracy factor of
the ith particle. The total chemical potential of the individual
particle is μi = BiμB + QiμQ + SiμS , where Bi , Qi , and
Si are the baryon, electric charge, and strangeness number

of the ith particle, with corresponding chemical potentials
μB , μQ, and μS , respectively. The +ve and −ve signs
correspond to baryons and mesons, respectively. In a static
fireball, a particle of mass m, the volume element (d3p)
can be written as d3p = pT mT coshηdpT dηdφ and energy
(E = mT coshη) of the particle, where mT is the transverse
mass (m2 + p2

T )1/2, where pT , η, and φ represent the transverse
momentum, pseudorapidity, and azimuthal angle, respectively.
The experimental acceptances can be applied by considering
the corresponding ranges in pT , η, and φ. The fluctuations
of the conserved numbers are obtained from the derivative of
the thermodynamic pressure with respect to the corresponding
chemical potentials μB, μQ, or μS . The nth-order generalized
susceptibilities χ are written as

χ (n)
x = dn[P (T ,μ)/T 4]

d(μx/T )n
. (3)

For mesons χx can be expressed as

χ (n)
x,meson = Xn

V T 3

∫
d3p

∞∑
k=0

(k + 1)n−1

×exp

{−(k + 1)E

T

}
exp

{
(k + 1)μ

T

}
, (4)

and for baryons,

χ
(n)
x,baryon = Xn

V T 3

∫
d3p

∞∑
k=0

(−1)k(k + 1)n−1

×exp

{−(k + 1)E

T

}
exp

{
(k + 1)μ

T

}
, (5)

where X represents either Bi , Qi , or Si of the ith particle
depending on whether the susceptibility χx represents net
baryon, net electric charge, or net strangeness. The total
generalized susceptibilities will be the sum of susceptibility
of mesons and baryons as χ (n)

x = ∑
χ (n)

x,mesons + ∑
χ

(n)
x,baryons.

In the HRG model, at the chemical freeze-out time,
all the particles (primordial as well as resonances) are in
equilibrium. The collision energy dependence of freeze-out
parameters (μB and Tf ) are parametrized as given in Ref. [21].
The energy dependence of μB is given as, μB(

√
s

NN
) =

1.308/(1 + 0.273
√

s
NN

) and the μB dependence of freeze-
out temperature is given as Tf (μB) = 0.166 − 0.139μ2

B −
0.053μ4

B . Furthermore, the ratio of baryon to strangeness
chemical potential on the freeze-out curve is parametrized as
μS

μB
� 0.164 + 0.018

√
s

NN
. Similarly, the energy dependence

of μQ and μS are parametrized as given in Ref. [24]. In
the HRG model, after the production of all the particles,
the resonances are allowed to decay to their corresponding
daughter particles, thus contributing to the final abundance of
the stable meson and baryon numbers. These decay daughters
from the resonance can influence the fluctuation of the final
hadrons. The ensemble-averaged stable particle yield will
have contributions from both primordial production and the
resonance decay [23,34],

〈Ni〉 = 〈N∗
i 〉 +

∑
R

〈NR〉〈ni〉R, (6)
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where 〈N∗
i 〉 and 〈NR〉 correspond to the average primordial

yield of particle species i and of the resonances R, respectively.
The summation runs over all the resonances which decay to the
final particle i and 〈ni〉R = ∑

r bR
r nR

i,r is the average number of
particle type i produced from the resonance R. Furthermore,
bR

r is the branching ratio of the rth decay channel of the
resonance R and nR

i,r is the number of particle i produced
in that decay branch. The generalized susceptibility for stable
particle i of nth order can be written as

χ
(n)
i = χ

∗(n)
i +

∑
R

χ
(n)
R 〈ni〉nR. (7)

The second term in Eq. (7) includes contributions from
fluctuations of primordial resonances and average number
of produced particle of type i. We follow Eqs. (17)–(20)
from Ref. [32] to calculate the average contributions from the
resonances, where we consider fluctuation in the resonance
production only and the number of decay daughters are
assumed to be fixed. In this work, we refer to this as average
decay contributions. For completeness we rewrite the same
cumulant equations here as given in Ref. [32]:

〈(�Ni)
2〉 = 〈(�N∗

i )2〉 +
∑
R

〈(�NR)2〉〈ni〉2
R, (8)

〈(�Ni)
3〉 = 〈(�N∗

i )3〉 +
∑
R

〈(�NR)3〉〈ni〉3
R, (9)

〈(�Ni)
4〉 = 〈(�N∗

i )4〉 +
∑
R

〈(�NR)4〉〈ni〉4
R. (10)

Resonance decay processes are probabilistic in nature, which
itself causes the final particle number fluctuations. In Eqs. (8)–
(10) above, we use 〈ni〉, which is same as the sum of
the branching ratios of the different decay branches of the
resonance. But the number of decay products follow a random
distribution which gives fluctuation in the final number of
particles. A detailed discussion of resonance decay is given
in Refs. [23,26,32]. After considering the fluctuation in the
produced daughters, the modified cumulants in Eqs. (8)–(10)
of the stable particle from the resonance contributions (full
decay) can be written as [32]

〈(�Ni)
2〉 = 〈(�N∗

i )2〉 +
∑
R

〈(�NR)2〉〈ni〉2
R

+
∑
R

〈NR〉〈(�ni)
2〉R, (11)

〈(�Ni)
3〉 = 〈(�N∗

i )3〉 +
∑
R

〈(�NR)3〉〈ni〉3
R

+ 3
∑
R

〈(�NR)2〉〈ni〉R〈(�ni)
2〉R

+
∑
R

〈NR〉〈(�ni)
3〉R, (12)

〈(�Ni)
4〉 = 〈(�N∗

i )4〉 +
∑
R

〈(�NR)4〉〈ni〉4
R

+ 6
∑
R

〈(�NR)3〉〈ni〉2
R〈(�ni)

2〉R

+
∑
R

〈(�NR)2〉[3〈(�ni)
2〉2

R + 4〈ni〉R〈(�ni)
3〉R

]

+
∑
R

〈NR〉〈(�ni)
4〉R. (13)

Above Eqs. (11)–(13), which we refer to as full decay,
the fluctuation of the daughter particles is also considered
along with the fluctuation of the resonances. If there is no
correlation between the daughter particles, the fluctuation in
the multiplicity calculated by using Eqs. (11)–(13) will be
very close to the average fluctuation contribution (6)–(10)
from resonance decay [32]. The higher-order terms 〈(�ni)2〉R ,
〈(�ni)3〉R , and 〈(�ni)4〉R will be zero for the resonances
having only one decay channel or the number of species i being
same in each decay branch. Hence, the higher-order terms will
have higher contribution for the net-charge and net-kaon cases
compared with the net-proton case. In this calculation, we
included mesons and baryons of mass up to 2.5 GeV as listed
in the particle data book. We consider two different cases:
one with weakly decaying particles regarded as stable and in
another letting the weakly decaying particles decay into stable
ones. In line with Ref. [32], for the first case, we considered 26
weakly decaying particles as stable. By including weak decays
in addition to the strongly decaying particles in our analysis, we
observe substantial change on the values of cumulant ratios for
all the conserved numbers, which we discuss in the following
section.

III. RESULTS AND DISCUSSION

Figures 1–3 show the variation of the susceptibility ratios
for net-bayon, net-charge, and net-strangeness as a func-
tion of the collision energies by considering average-decay
[Eqs. (6)–(10)] and full-decay contributions [Eqs. (11)–(13)]

FIG. 1. Collision energy dependence of susceptibility ratios
(χ (2)/χ (1), χ (3)/χ (2), χ (4)/χ (2), and χ (3)/χ (1)) calculated in full phase
space for net baryons without resonance decay, primordial protons,
and primordial protons with resonance decay including weak-decay
resonances.
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FIG. 2. Collision energy dependence of susceptibility ratios
(χ (2)/χ (1), χ (3)/χ (2), χ (4)/χ (2), and χ (3)/χ (1)) calculated in full phase
space for net charge without resonance decay, primordial charged
particles (π,K,p), and primordial charged hadrons with resonance
decay including weak-decay resonances.

of resonances as discussed in previous section. Figure 1 shows
ratios considering all the baryons including the resonances
without decay, only primordial protons, primordial protons
with average decay contributions from baryonic resonances
using Eqs. (6)–(10), and primordial protons with contributions
from fluctuation of resonances and their daughter particles
(full decay) using Eqs. (11)–(13). Experimentally, net-baryon
fluctuations are accessible through net-proton fluctuations.
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FIG. 3. Collision energy dependence of susceptibility ratios
(χ (2)/χ (1), χ (3)/χ (2), χ (4)/χ (2) and χ (3)/χ (1)) calculated in full phase
space for net strangeness without resonance decay, primordial kaons,
and primordial kaons with resonance decay including weak-decay
resonances.

There is significant effect of decay contributions observed
compared with no decay of resonances. However, the dif-
ference between average decay and full decay is negligible,
which is in agreement with the findings of Ref. [32].

The net-charge fluctuations are accessible through measur-
ing fluctuations of stable charged particles (π , K , and p).
Figure 2 shows susceptibility ratios for net charge, which
includes all the resonances without decay, only primordial
stable charged particles (π , K , and p), primordial particles
with average decay contributions from the resonances using
Eqs. (6)–(10), and primordial stable particles with full decay
contributions using Eqs. (11)–(13). There is substantial change
in the susceptibility ratios by including the resonance decay
contributions, particularly for higher

√
s

NN
of χ (2)/χ (1) and

χ (3)/χ (2) ratios for lower collision energies. The resonance
decay effect for net charge is larger compared with net baryon
because, in case of baryons, all the baryonic resonances decay
into only one baryon in each decay branch, which is not the
case for net charge. Most of the higher-mass resonances decay
into more than one charged particle. Also the higher-mass
resonances again decay into resonance which, after few decay
iterations, decay into final stable hadrons. Furthermore, the
neutral resonances also contribute to the net-charge fluctuation.
For example, consider the ρ0 meson, which decays into π+π−
at about 100%: if both daughter particles are accepted in the
detector then the contribution to the mean of the net charge
from ρ0 is zero. In an ideal HRG model in the grand canonical
ensemble, thermally produced and noninteracting particles
and antiparticles are uncorrelated, so the susceptibility of
the net-conserved quantity is χ

(n)
net = χ

(n)
+ + (−1)nχ (n)

− . The
second- and fourth-order susceptibilities of ρ0 will contribute
to the net-charge susceptibility because the susceptibility of
particle (π+) and antiparticle (π−) will be added. But the
contribution of ρ0 to the first- and third-order susceptibilities
of the net-charge will be zero. This may be one reason why
there is more effect of resonance decay in the χ (2)/χ (1) and
χ (3)/χ (2) ratios.

Experimentally, the net-strangeness fluctuations are acces-
sible through measuring the net-kaon fluctuations. Figure 3
shows the susceptibility ratios of net-strange particles without
resonance decay, considering only primordial kaons, primor-
dial kaons with average decay contributions from the strange
resonances using Eqs. (6)–(10), and primordial kaons with full
decay contributions using Eqs. (11)–(13). For net strangeness
there is also significant resonance contributions observed in
the χ (3)/χ (2) and χ (4)/χ (2) ratios from the resonance decay
compared with no decay of resonances. Note that the mean
of the net-strangeness multiplicity is zero due to the imposed
strangeness neutrality and isospin asymmetry in the initial state
of Au + Au collisions [24]. Therefore, χ (2)/χ (1) and χ (3)/χ (1)

diverges in the case of net-strange multiplicity distributions in
the HRG model, which is not shown in Fig. 3.

Figures 4–6 show the energy dependence of the suscepti-
bility ratios for net-baryon, net-charge, and net-strangeness.
Figure 4 shows the susceptibility ratios for net baryon without
resonance decay, primordial net protons, and net protons
from primordial and resonance contributions without weak
decays and including weak decay particles in addition to the
resonance contributions from strong decay. The resonance
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phase space for net-baryon without resonance decay, and primordial
proton, primordial proton with and without including weak decay in
addition to the strongly decaying resonances.

decay contributions are calculated by using full decay con-
tributions as expressed in Eqs. (11)–(13). We consider K0,
K̄0, η0, �0, ±, 0, �−, �0, and �− and their antiparticles
as weak-decay particles. In Ref. [32], these particles were
considered as stable particles and only strongly decaying
particles were considered in the resonance decay. In the present
work we explicitly considered their weak decays in addition
to the strongly decaying particles. There is very little effect
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FIG. 5. Variation of susceptibility ratios (χ (2)/χ (1), χ (3)/χ (2),
χ (4)/χ (2), and χ (3)/χ (1)) as a function of
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space for net charge without resonance decay, primordial charged
particles (π,K,p), and primordial charged particles with and without
including weak decay in addition to the strongly decaying resonances.
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FIG. 6. Variation of susceptibility ratios (χ (2)/χ (1), χ (3)/χ (2),
χ (4)/χ (2), and χ (3)/χ (1)) as a function of

√
s

NN
calculated in full phase

space for net strange without resonance decay, primordial kaons, and
primordial kaons with and without including weak decay in addition
to the strongly decaying resonances.

on the χ (2)/χ (1) ratio for all the energies, but the χ (3)/χ (2),
χ (4)/χ (2), and χ (3)/χ (1) ratios further decrease at all

√
s

NN

as compared with the values obtained when excluding weak
decays. Similarly, Fig. 5 shows the susceptibility ratios for
net-charge without decay of resonances, primordial π , K , p,
and contributions from strongly decaying resonances both with
and without weak decays. There is visible difference between
the results with and without inclusion of weak decays. Figure 6
shows the susceptibility ratios for net strangeness without
decay of resonances, only primordial kaons, with and without
inclusion of weak decays in addition to the contribution from
strongly decaying resonances. There is significant difference
in the susceptibility ratios with and without inclusion of
weak-decay contributions except for the χ (3)/χ (1) ratio. For
all cases, net-baryon, net-charge, and net-strangeness, it is
important to consider weak-decay contributions in addition
to the strongly decaying particles while comparing model
calculations with the experimental observables. Without decay
of resonances and primordial contributions in Figs. 4–6, the
results are same as shown in Figs. 1–3.

Figures 7–9 show the variation of susceptibility ratios as a
function of

√
s

NN
for various pT acceptances for net-baryon,

net-charge, and net-strangeness. The ratios without resonance
decay are also shown for comparison. The pT -acceptance
cuts have been applied to the stable particles only and the
resonances are taken over the full pT range. We have also
shown another case where the pT cut is applied to all the
particles (stable as well as resonances). Although there is
significant difference between the results with and without
resonance decay, the pT acceptance has very minimal effect
on the susceptibility ratios after inclusion of resonance decay
for all conserved quantities. In Ref. [25], which was studied
without taking resonance decay into account, a clear pT
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FIG. 7. Collision-energy dependence of susceptibility ratios
(χ (2)/χ (1), χ (3)/χ (2), χ (4)/χ (2), and χ (3)/χ (1)) for net protons for
different pT acceptances within |η| < 0.5. The results are for
primordial protons with resonance decay including weak-decay
resonances.

dependence was observed for net-charge and net-strangeness
cases at all collision energies. In reality, the acceptance cuts
should be applied separately on the daughters of resonances.
The resonance may be produced in full acceptance which can
be outside the experimental acceptance, still the decay daugh-
ters have a chance to be accepted within the experimental ac-
ceptance because of their decay kinematics. It was mentioned
in Ref. [32] that, due to the elastic scatterings in the thermally
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different pT acceptances with |η| < 0.5. The results are for primordial
charged particles (π,K,p) with resonance decay including weak-
decay resonances.
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FIG. 9. Collision-energy dependence of susceptibility ratios
(χ (2)/χ (1), χ (3)/χ (2), χ (4)/χ (2), and χ (3)/χ (1)) for net kaons for differ-
ent pT acceptances within |η| < 0.5. The results are for primordial
kaons with resonance decay including weak-decay resonances.

equilibrated hadronic phase, the kinematic cuts affect the same
manner for the primordial particle and antiparticle from the
resonance decay. However, this may not be true when the
detector will have asymmetric azimuthal acceptance.

IV. COMPARISON WITH EXPERIMENTAL
MEASUREMENTS

Experimentally measured moments (M , σ , S, κ) of the
net distributions are related to the susceptibilities as fol-
lows: σ 2/M ∼ χ (2)/χ (1), Sσ ∼ χ (3)/χ (2), κσ 2 ∼ χ (4)/χ (2).
Figure 10 shows the energy dependence of σ 2/M , Sσ , and
κσ 2 of net-proton distribution for central (0%–5%) Au + Au
collisions measured by the STAR experiment [17]. The exper-
imental data are studied within midrapidity (|y| < 0.5) and pT

range 0.4 to 0.8 GeV/c. The data are compared with the HRG
calculations with no decay of resonances, only primordial
protons, and resonance decay with and without inclusion of
weak-decay contributions in addition to the contribution from
strongly decaying resonances within the same experimental
acceptance. Note that we have applied the same pT acceptance
cuts to the primordial and to the resonances. The HRG
calculations without resonance decay fail to explain σ 2/M
at higher collision energies and Sσ values at lower

√
s

NN
.

The σ 2/M values are well described by considering only
primordial protons but overestimate the Sσ and κσ 2 values.
The ratio σ 2/M calculated in HRG with resonance decay along
with inclusion of weak-decay contributions are closer to the
experimental values. The Sσ values lie between resonance
decays with and without inclusion of weak decays. The κσ 2

values at lower
√

s
NN

are better described by inclusion of
weak decays. For higher collision energy (above 30 GeV),
the HRG model under-predicts the experimental values. This
may be because of the regeneration of the resonances at
higher collision energies, as observed in Refs. [32,35]. Hence
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FIG. 10. The collision energy dependence of σ 2/M , Sσ , and κσ 2

of the net baryon calculated using HRG model including resonance
decay contributions. The model calculations are compared with
the experimental net proton cumulant ratios for the most-central
(0%–5%) Au + Au collisions by the STAR experiment.

it is important to consider the weak decays in addition to
the strongly decaying resonances in the HRG model while
comparing with experimental data.

Figure 11 shows the energy dependence of σ 2/M , Sσ , and
κσ 2 of net-charge distributions for the most-central (0%–5%)
Au + Au collisions within |η| < 0.5 and a pT range within
0.2 to 2.0 GeV/c measured by the STAR experiment [16].
The experimental net-charge results are compared with the
HRG calculations considering without resonance decay, only
charged stable particles (π,K,p), and resonance decay with
and without inclusion of weak decays along with strongly
decaying resonances. The HRG results for σ 2/M without res-
onance decay and considering only primordial particles shows
lower values compared with the experimental data, whereas
the HRG calculations with resonance decay overestimate the
experimental data. Inclusion of weak decays further worsen
the agreement with the experimental data at higher

√
s

NN
. The

experimental Sσ and κσ 2 values are explained by all cases
of HRG because of the large uncertainties in the measured
experimental data.

Figure 12 shows the collision energy dependence of σ 2/M ,
Sσ , and κσ 2 of the net-charge distribution for the most-
central bin (0%–5%) in Au + Au collisions measured by
PHENIX experiment [15]. The experimental measurements
are within |η| < 0.35 and pT between 0.3 and 2.0 GeV/c. The
experimental data are compared with the HRG calculations
considering no decay of resonances, only primordial charged
hadrons (π,K,p), with and without inclusion of weak decays
in the resonance decay. The kinematic acceptance cuts applied
to the HRG calculations are same as in experimental data. As
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FIG. 11. The collision energy dependence of σ 2/M , Sσ , and
κσ 2 of the net-charge calculated by using HRG model including
resonance-decay contributions. The model calculations are compared
with the experimental net-charge cumulant ratios for the most-central
(0%–5%) Au + Au collisions by the STAR experiment.
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FIG. 12. The collision energy dependence of σ 2/M , Sσ , and
κσ 2 of the net charge calculated by using HRG model including
resonance decay contributions. The model calculations are compared
with the experimental net-charge cumulant ratios for the most-central
(0%–5%) Au + Au collisions by the PHENIX experiment.
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observed in STAR net-charge results, the HRG calculations
without resonance decay are more close to the experimental
σ 2/M values. Inclusion of resonance decay overestimate the
experimental data. Inclusion of weak decay in the reso-
nance decay further deviates from the experimental values.
The disagreement in σ 2/M between experimental data and
the HRG may be because of the acceptance cuts. As mentioned
before, we applied the kinematic acceptance cuts on the
resonance not on their daughter particles. However, if we
consider the resonances in full phase space for a 4π detector
then the neutral resonances will not contribute to the net-charge
fluctuations. For example, the case ρ0, K∗0, or �0, if we
measure the daughter particles in full phase space, they will
also not contribute to the net-charge fluctuation. This may
be one of the reasons why σ 2/M are not explained by
HRG model with resonance decay. The HRG calculations
without resonance decay fails to explain the experimental
Sσ at all

√
s

NN
. The Sσ are well explained by resonance

decay with weak-decay contributions. In this case also, results
from only primordial charged particles are more close to the
experimental data. The κσ 2 values are well explained by HRG
with resonance decay within the experimental uncertainties at
all energies studied. The κσ 2 values without resonance decay
also shows similar results as with resonance decay. However,
considering only primordial charged particles explain the
experimental data very well at higher

√
s

NN
but fails to explain

them at lower collision energies.

V. SUMMARY

In conclusion, we studied the effect of resonance decay on
conserved number fluctuations by using a hadron resonance
gas model. There is a significant effect of resonance decay as
compared to no decay of resonances for all the conserved
number fluctuations. The effect of considering primordial
particles with average decay contributions of the resonances
are studied. There is small effect whether we consider average
decay or full decay of resonances. The inclusion of weak
resonance decays in addition to the strongly decaying particles
show visible differences compared to no inclusion of weak
decays. The effect of different pT acceptance cuts on the
resonance decay are very minimal for all the conserved
numbers. The experimental data for net proton and net charge
are compared with the HRG calculations, which are estimated
within the similar kinematic acceptance as in the experiment.
The cumulant ratios of net-proton distributions are better
explained by considering the resonance decay contributions,
and the agreement further improves by inclusion of weak
resonance decays. The HRG calculations for net charge with
resonance decay overestimates the experimental σ 2/M values.
However, the Sσ and κσ 2 of net-charge experimental values
are well explained by HRG calculations with resonance decay,
which further improves by including the weak decays. Hence,
it is important to consider resonance decays and with weak-
decay resonance contribution before comparing the model
calculations with experimental data.
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