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Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction
channels for neutron-induced reactions at low energies
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A model to calculate particle-induced reaction cross sections with statistical Hauser-Feshbach theory including
direct reactions is given. The energy average of the scattering matrix from the coupled-channels optical model
is diagonalized by the transformation proposed by Engelbrecht and Weidenmüller [C. A. Engelbrecht and H. A.
Weidenmüller, Phys. Rev. C 8, 859 (1973)]. The ensemble average of S-matrix elements in the diagonalized
channel space is approximated by a model of Moldauer [P. A. Moldauer, Phys. Rev. C 12, 744 (1975)] using the
newly parametrized channel degree-of-freedom νa to better describe the Gaussian orthogonal ensemble (GOE)
reference calculations. The Moldauer approximation is confirmed by a Monte Carlo study using a randomly
generated S matrix, as well as the GOE threefold integration formula. The method proposed is applied to the
238U(n,n′) cross-section calculation in the fast-energy range, showing an enhancement in the inelastic scattering
cross sections.
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I. INTRODUCTION

Neutron scattering in the keV to MeV energy range is
one of the most important processes in many fields, for
which better understanding of nuclear reaction mechanisms
is always crucial. In particular, accurate neutron reaction cross
sections are needed for applications such as radiation transport
simulations for nuclear technology, particle detector response,
nuclear reaction rate calculation for nuclear astrophysics, and
so forth. When we calculate the nuclear reaction cross section
for a system where the dynamical or static nuclear deformation
is involved, the simple regime of the spherical optical model
plus the Hauser-Feshbach theory [1] has to be extended to
the coupled-channels scheme (e.g., Ref. [2]). Rotational bands
built on intrinsic or vibrational levels dominate the low-lying
excitation spectra for statically deformed nuclei, and it is
well known that these excited rotational states are strongly
populated by the collective motion of the target nucleus.

Typically, the direct reaction channels in the statistical
model have been considered in a perturbed way, in which a
flux going into the direct channels is subtracted from the total
compound nucleus formation cross section [3]; i.e., the direct
and compound cross sections are assumed to be independent.
Such an approximation has a great advantage to reduce the
computational burden, and therefore, many Hauser-Feshbach
codes, such as EMPIRE [4], TALYS [5], CCONE [6], COH3 [7,8],
etc., employ this approximation to calculate nuclear reaction
cross sections. However, it has been shown that the existence
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of direct reaction channels changes the compound reaction
cross sections [9]. Therefore it is important to assess the in-
dependence of the direct and compound reaction mechanisms
quantitatively, which exists implicitly in the approximation
aforementioned.

Statistical models for the compound nuclear reaction
connect energy average S-matrix elements (or transmission
coefficients) to energy average cross sections. While the
statistical Hauser-Feshbach theory provides such a link, it
has to be modified by the width-fluctuation correction that
accounts for statistical properties in the resonances. The width-
fluctuation correction enhances the cross section in the elastic
channel and reduces all other channels to fulfill the unitarity
condition. When strongly coupled channels exist, the energy
average S matrix, 〈S〉, is no longer diagonal. The imposed
unitarity condition yields additional correlations between the
elastic and other channels, hence the cross sections will be
further modified [10].

Kawai, Kerman, and McVoy (KKM) [10] obtained a
formula for the compound nuclear reaction including the direct
channels at the strong absorption limit. The actual calculations
of KKM are, unfortunately, very limited [11,12]. In parallel to
KKM, inclusion of the direct reaction in the statistical theory
was proposed by Engelbrecht and Weidenmüller [13], in which
〈S〉 is diagonalized by a unitary transformation. The statistical
model calculation is performed in the diagonalized space,
just like the no-direct-reaction cases. Hofmann et al. [14]
and Moldauer [15] performed the Engelbrecht-Weidenmüller
(EW) transformation to examine the effects of the direct
channels on the compound nuclear reaction. A more general
and rigorous theory was proposed by Nishioka, Weidenmüller,
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and Yoshida (NWY) [16] based on the so-called Gaussian
orthogonal ensemble (GOE) [17] together with the EW
transformation. However, the NWY equation obtained is
almost impossible to calculate. The most recent study on this
subject is by Capote et al. [18], who studied the impact of
the EW transformation on a realistic calculation of inelastic
scattering on 238U using the coupled-channels optical model
code ECIS [19]. An enhancement of the inelastic scattering
cross section was found [18], yet the compound reaction model
implemented in ECIS is limited and further investigation is
needed.

In the case of a spherical nucleus, we obtained a simple
relationship between the channel degree-of-freedom νa and
the optical model transmission coefficients Ta by applying
the Monte Carlo technique to GOE [20], which yields an
almost equivalent compound nucleus cross section to the GOE
threefold integration formula [17]. Such an empirical approach
facilitates computations of the Hauser-Feshbach theory in
the fast-energy range, where the number of open channels
tends to be too large to handle. Starting with the approach
by Moldauer [15], and adding the idea of GOE threefold
integration, we extend Moldauer’s approach to the actual cross-
section calculation for deformed nuclei. Because we show in
this paper that our model produces results almost identical to
those of the NWY theory, the calculated nuclear reaction cross
sections should be within reasonable uncertainties for many re-
alistic cases. This could be particularly important in calculating

nuclear reaction cross sections for actinides or in the rare earth
region, where the static nuclear deformation is large.

II. THEORY

A. Hauser-Feshbach theory with width-fluctuation correction

In the case of nuclear reaction without direct channels, the
Hauser-Feshbach theory with the width-fluctuation correction
reads

σab = π

k2
a

TaTb∑
c Tc

Wab = σ HF
ab Wab, (1)

where σab is the energy average cross section from channel
a to b, σ HF

ab is the Hauser-Feshbach cross section, ka is the
wave number of the projectile, Wab is the width-fluctuation
correction factor, and Tc is the transmission coefficient in
channel c calculated with the optical model S-matrix element
Tc = 1 − |〈Scc〉|2. Hereafter we omit the kinematic factor of
π/k2

a , unless otherwise specified.
The width-fluctuation correction factor is given by the GOE

model of Verbaarschot, Weidenmüller, and Zirnbauer [17].
This model gives an ensemble average of the fluctuation part,
SabS

∗
cd , and the width-fluctuation correction factor can be

calculated as a ratio to σ HF
ab . The so-called GOE triple-integral

formula is [17]

SabS
∗
cd = 1

8

∫ ∞

0
dλ1

∫ ∞

0
dλ2

∫ 1

0
dλ μ(λ,λ1,λ2)

∏
c

1 − Tcλ√
(1 + Tcλ1)(1 + Tcλ2)

J (λ,λ1,λ2), (2)

where

μ(λ,λ1,λ2) = λ(1 − λ)|λ1 − λ2|√
λ1(1 + λ1)

√
λ2(1 + λ2)(λ + λ1)2(λ + λ2)2

, (3)

J (λ,λ1,λ2) = δabδcdSaaS
∗
ccTaTc

(
λ1

1 + Taλ1
+ λ2

1 + Taλ2
+ 2λ

1 − Taλ

)(
λ1

1 + Tcλ1
+ λ2

1 + Tcλ2
+ 2λ

1 − Tcλ

)

+ (δacδbd + δadδbc)TaTb

{
λ1(1 + λ1)

(1 + Taλ1)(1 + Tbλ1)
+ λ2(1 + λ2)

(1 + Taλ2)(1 + Tbλ2)
+ 2λ(1 − λ)

(1 − Taλ)(1 − Tbλ)

}
. (4)

The compound cross section is readily calculated as
SabS

∗
ab = |Sab|2 = σab when 〈S〉 is provided, besides the

time-consuming threefold integration [21]. The GOE model
is believed to be a correct answer to the calculation of the
compound cross section. However, it is not so practical to
apply Eq. (2) to realistic cases. For example, a compound
nucleus after a particle or photon emission is often left in the
continuum state, where the decay channel is not well defined.
Even if we approximate the transition to one of the continuum
bins by a pseudo single level, the calculation time will be
enormous when there are many open channels. Alternatively,
there are several models to evaluate Wab. We adopt Moldauer’s
model [15,22–24], because Hilaire, Lagrange, and Koning [25]
reported that this model is practically accurate enough.
The width-fluctuation correction factor can be evaluated

numerically as

Wab =
(

1 + 2δab

νa

) ∫ ∞

0

dt

Fa(t)Fb(t)
∏

k Fk(t)νk/2
, (5)

Fk(t) = 1 + 2

νk

Tk∑
c Tc

t, (6)

where νa is the channel degree-of-freedom, which is related
to the channel transmission coefficient Ta . There are, again,
several models to express νa by Ta , which were derived
by a Monte Carlo study, such as that of Moldauer [26],
Ernebjerg and Herman [27], or LANL [20]. We here employ
the most recent model from LANL [20], because it produces
almost identical Wab compared to the GOE triple-integral
calculation [9].
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B. Generalized transmission coefficient

When direct reaction channels exist, in other words, the
optical model S matrix is not diagonal, the Hauser-Feshbach
cross section in Eq. (1) should be further modified. In this case
the energy average S matrix is given by the coupled-channels
calculation. When combining the coupled-channels method
with the Hauser-Feshbach theory, the existing cross-section
calculation codes, such as EMPIRE [4], TALYS [5], CCONE [6],
and COH3 [7], adopt a “direct-cross-section-eliminated” trans-
mission coefficient. This is defined as the probability of
formation of the compound nucleus on the nth state by a
nucleon having the orbital angular momentum and spin of
l and j :

T
(n)
lj =

∑
J�

∑
c

gJc

(
1 −

∑
c′

∣∣〈SJ�
cc′

〉∣∣2

)
δnc,nδlc,lδjc,j , (7)

where the suffix c indicates the quantum number in the channel,
J� is the total spin and parity, and gJc is the spin factor:

gJc = 2J + 1

(2jc + 1)(2Ic + 1)
. (8)

Ic is the spin of the nucleus state. Equation (7) gives a
partial-wave contribution to the total compound formation
cross section when the target is in its nth state,

σ CN(n) = π

k2
n

∑
lj

2j + 1

2s + 1
T

(n)
lj , (9)

where s is the intrinsic spin of the incoming particle. Because
we eliminate the off-diagonal elements in 〈S〉 by Eq. (7), the
meaning of the transmission coefficient is different from the
no-direct-reaction case. We call this a generalized transmission
coefficient.

The statistical model calculation is performed in the direct-
cross-section-eliminated space, assuming the channels are
diagonal. Such an assumption implies that the direct and
compound cross sections are independent, and the unitarity
condition is fulfilled only for the total reaction cross section.
Therefore the scattering cross sections are given by an
incoherent sum of the direct and compound components. For
example, the inelastic scattering cross section is written as

σab = σ DI
ab + T ′

aT
′
b∑

c T ′
c

Wab, (10)

where the direct cross section σ DI
ab is usually given by the

coupled-channels calculation, and we denote the generalized
transmission coefficients by T ′. Often another approximation
is made in addition to Eq. (7), which consists of replacing
the decay channel transmission coefficients T

(n)
lj by the ground

state T
(0)
lj calculated at a shifted energy, T

(n)
lj (E) = T

(0)
lj (E −

E(n)
x ), where E(n)

x is the excitation energy of the nth level. This
is not the case in our study. Making use of the time-reversal
property of the S matrix, the transmission coefficients for each
nth state can be calculated automatically by Eq. (7). Note that
the impact of this approximation is small when the optical
potential depends weakly on the incident energy.

C. Engelbrecht-Weidenmüller transformation

A rigorous treatment of off-diagonal elements in 〈S〉 is to
perform the EW transformation [13]. The particle penetration
is expressed in terms of Satchler’s transmission matrix [28],

Pab = δab −
∑

c

〈Sac〉〈S∗
bc〉, (11)

where the S-matrix elements 〈Sab〉 are usually given by the
coupled-channels calculation. Because P is Hermitian, this
can be diagonalized by a unitary transformation [13],

(UPU †)αβ = δαβpα, 0 � pα � 1, (12)

and the same matrix U diagonalizes the scattering matrix, i.e.,

〈S̃〉 = U 〈S〉UT . (13)

We use Greek subscripts for channel indices in the diagonal-
ized space and Latin subscripts for the normal space.

Because 〈S̃〉 is diagonal, a new transmission coefficient in
the diagonal channel space is defined as

Tα = 1 − |〈S̃αα〉|2 = pα, (14)

and the statistical model calculation is performed in the diag-
onal channel space to evaluate the fluctuating part 〈S̃αβ S̃∗

γ δ〉.
Finally a back-transformation from the channel space to the
cross-section space reads

σab =
∑
αβγ δ

U ∗
αaU

∗
βbUγaUδb〈S̃αβ S̃∗

γ δ〉. (15)

NWY [16] obtained an equivalent formula for the fluc-
tuation cross section, which is expressed in terms of the
nondiagonal 〈S〉. Although NWY does not require the P -
matrix diagonalization, a hefty computational burden is still
involved. Instead of calculating NWY, we follow the procedure
given above: the EW transformation is applied to nondiagonal
〈S〉, and the GOE triple-integral of Eq. (2) is applied to
the diagonalized channel space. This is the most accurate
procedure to calculate the cross sections when 〈S〉 is not
diagonal, and we consider this is the reference GOE cross
section, as this is equivalent to NWY. Based on this, we further
develop a technique, which is feasible in realistic cross-section
calculation cases, yet yields practically the same results as
the reference GOE. We follow Moldauer’s prescription [15],
in which the EW transformation [13] is invoked, although
an approximation—the decay amplitudes are normally dis-
tributed and their real and imaginary parts are uncorrelated—
was made to cross sections in the diagonalized space.

The back-transformation can be rewritten as [14]

σab =
∑

α

|Uαa|2|Uαb|2σαα

+
∑
α �=β

U ∗
αaU

∗
βb

(
UαaUβb + UβaUαb

)
σαβ

+
∑
α �=β

U ∗
αaU

∗
αbUβaUβb〈S̃ααS̃∗

ββ〉, (16)
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where σαβ is a width-fluctuation-corrected cross section in the
diagonalized channel space,

σαβ = pαpβ∑
γ pγ

Wαβ. (17)

When omitting σαα , σαβ , and 〈S̃ααS̃∗
ββ〉 from Eq. (16), we can

obtain a simple relation ∑
a

σab = �, (18)

where � is the dimension of coupled equations. This is given
in the Appendix. This relation is useful to implement the EW
transformation in a Hauser-Feshbach code.

Replacing the energy average (angle brackets) by the
ensemble average (overline), the GOE triple-integral formula
gives a new term of 〈S̃ααS̃∗

ββ〉 in Eq. (16) by setting a = b = α
and c = d = β. Moldauer [15] estimated this in terms of
the channel degree-of-freedom νa and the width-fluctuation-
corrected cross section σαβ as

S̃ααS̃∗
ββ 	

(
2

να

− 1

)1/2( 2

νβ

− 1

)1/2

σαβ. (19)

This estimation was partially confirmed by a GOE Monte Carlo

study [29], when S̃ααS̃∗
ββ is real. We generalize this expression

by expanding to the case of complex S̃ααS̃∗
ββ . The Jacobian of

Eq. (4) for a = b = α and c = d = β,

J ∝ SααS
∗
ββTαTβ, (20)

is real when Im(SααSββ) = 0. This requires an extra phase
factor:

S̃ααS̃∗
ββ 	 ei(φα−φβ )

(
2

να

− 1

)1/2( 2

νβ

− 1

)1/2

σαβ, (21)

where φα = tan−1 S̃αα .

D. Decay to uncoupled states

Actual cross-section calculations involve many uncoupled
or very weakly coupled states, such as the neutron emission
to the continuum, the photon emission in the neutron radiative
capture process, and nuclear fission. In the generalized
transmission calculation scheme, inclusion of these channels is
straightforward; the denominator of Eq. (10),

∑
c T ′

c , includes
the transmission coefficients for all uncoupled channels. The
particle emission transmission coefficients may be given by
the optical model, the photon channel is calculated with the
giant dipole resonance (GDR) model, etc.

In the case of the EW transformation, the penetration matrix
may have two blocks

P =
(

P1

P2

)
, (22)

where P1 is the coupled-channels P matrix and P2 is the
diagonal part that accounts for decaying into the uncoupled
states. The unitary transformation is performed on P1 only,
and the summation in the denominator of σαβ in Eq. (17) runs

over both the eigenvalues of P1 and the diagonal elements of
P2. Finally the uncoupled cross section is calculated by

σab =
∑

α

|Uαa|2σαβδβb. (23)

E. Monte Carlo technique for sampling the S matrix

The aim of this paper is twofold: (a) understanding
the limitation of the generalized transmission coefficient in
Eq. (7), in which no diagonalization procedure is required,
and (b) when the diagonalization is essential, determining how
accurate the approximation of Eq. (21) will be. To this end,
we have to explore a large parameter space spanning over
various S-matrix elements and the number of channels �.
A natural approach is to employ the Monte Carlo technique,
which facilitates model comparisons in a large multiparametric
space. In Ref. [9], we performed an exact GOE simulation of
S-matrix elements where the well-known statistical properties
in resonances, such as the Wigner distribution for the level
spacing, are automatically involved. The ensemble average of
the GOE generated S-matrix elements could be distributed
nonuniformly inside a unit circle on the complex plane
depending on a scattering system considered. Here we do not
study such particular correlations in the S-matrix elements, but
sample the matrix elements randomly to investigate general
cases. We draw a diagonal element of the S matrix from
a uniform distribution inside the unit circle on the complex
plane. The diagonal elements are generated by

〈Saa〉 = eiφ
√

1 − Ta, 1 � a � �, (24)

where 0 � φ < 2π and 0 <
√

1 − Ta < 1 are the sampled
phase and the transmission coefficient from the uniform
distribution. For the off-diagonal elements, we impose an-
other condition of |〈Sab〉|2 < 0.5|〈Saa〉||〈Sbb〉|. The sampled
S matrix is converted into P , and the matrix is diagonalized
to obtain its eigenvalues. If negative eigenvalues emerge, we
discard this S and resample. The constructed matrix has a
dimension of � × �.

With the generated S matrix, dimensionless cross
sections—the total cross section of σ T, the shape elastic
scattering σ SE, the direct inelastic scattering σ DI

ab , and the
compound formation σ CN—are calculated in a common way:

σ T = 2(1 − Re〈Saa〉), (25)

σ SE = |1 − 〈Saa〉|2, (26)

σ DI
ab = |〈Sab〉|2, (27)

σ CN = 1 − |〈Saa〉|2 = Ta, (28)

and the reaction cross section reads σ R = σ CN + ∑
b σ DI

ab .
Here we implicitly assumed that a is the particle incoming
channel. Because |〈S〉|2 � 1, clearly 0 � σT � 4. We generate
several hundred S matrices for each � = 2 ∼ 7 case.

III. SIMULATION USING RANDOM S MATRIX

A. Simulation for Engelbrecht-Weidenmüller transformation

Here we compare two methods to calculate the compound
cross sections. The first method is to employ the generalized
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transmission coefficients in Eq. (7). Using the randomly
generated S matrix this is written simply as

T ′
a = 1 −

∑
c

|〈Sac〉|2. (29)

The compound reaction cross sections are defined in the direct-
cross-section-eliminated space,

σ ′
ab = T ′

aT
′
b∑

c T ′
c

W ′
ab, (30)

where we use Eq. (2) to calculate W ′
ab. The second method is

to perform the EW transformation. The cross section is given

by Eq. (15), with S̃αβ S̃∗
γ δ by Eq. (2). This procedure yields the

correct results and is thus our reference GOE cross section.
The calculated cross sections with the generalized trans-

mission coefficients are shown in Fig. 1 by the ratio to the
reference GOE cross sections, as a function of the strength
of direct channels

∑
b σ DI

ab /σ R for � = 2 ∼ 7. In the case of
� > 2, the inelastic scatterings are summed

σ INL =
∑

b(a �=b)

σab. (31)

Because we generated the S matrix from the uniform distribu-
tion, such comparisons tend to produce extreme cases where
the coupling of direct channels is too strong. Nevertheless a
general tendency can be clearly seen; when the generalized
transmission coefficient is used, the elastic channel is over-
estimated and the inelastic channel is underestimated. The
impact of the EW transformation is large, when there are a few
channels open [e.g., Fig. 1(a)], and the direct cross sections
are large. Under such circumstances the approximated method
to calculate the cross section by employing the generalized
transmission coefficients leads to incorrect answers.

The underestimation in the inelastic channels decreases as
the number of channels � increases. That said, we expect
that the approximation with the generalized transmission
coefficients works well at the strong absorption limit, where
the elastic enhancement factor Wa is 2 [9]. In our Monte Carlo
technique, Wa is approximately given by

Wa 	 σaa/
T ′

a∑
c T ′

c

, (32)

where σaa is the compound elastic scattering cross section.
Figure 2 shows the inelastic channel underestimation as a
function of the elastic enhancement. The underestimation will
be very small at the strong absorption limit (Wa = 2), where
the width-fluctuation correction to the inelastic channels fades
out due to a large number of open channels. In other words, the
EW transformation is essential when the elastic enhancement
largely changes the inelastic channels.

B. Uncoupled states

To investigate the uncoupled channel in the EW transfor-
mation, we construct S with � = 3 as in

S =

⎛
⎜⎝

Saa Sba

Sab Sbb

Scc

⎞
⎟⎠, (33)
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FIG. 1. Ratio of calculated cross sections using the randomly
generated S matrix, as a function of the direct reaction strength. The
ratio is that of generalized transmission coefficient calculations to the
EW transformation case. Panel (a) is for a number of channels of
� = 2 and 3, panel (b) is for � = 4 and 5, and panel (c) is for � = 6
and 7.
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FIG. 2. Ratio of calculated inelastic scattering cross section
with the generalized transmission coefficient calculations to the
EW transformation case, as a function of the elastic enhancement
factor Wa .

where the channel c is uncoupled to the channels a and b. The
calculated cross sections with the generalized transmission
coefficients are shown by the ratio to the EW transformation in
Fig. 3. As opposed to the coupled inelastic scattering channel,
the cross section to the uncoupled channel increases very
slightly, but is almost not influenced by the channel coupling.
This suggests, in the case of neutron-induced reactions on
deformed nuclei, that the inelastic scattering cross sections will
be enhanced mainly at the expense of the elastic channel, while
the neutron capture and fission cross sections will practically
not change.
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FIG. 3. Ratio of the cross sections calculated with the generalized
transmission coefficient calculations to the cross sections calculated
with the EW transformation case, for � = 3 and the third channel is
uncoupled.

10-6

10-5

10-4

10-3

10-2

10-1

 0  20  40  60  80  100  120  140

G
O

E
 |<

S
aa

S
bb

* >
|

Sum of Transmission Coefficients

FIG. 4. Calculated |SaaS
∗
bb| with the GOE triple-integral formula

for randomly generated S matrix and number of channels. The results
are shown as a function of

∑
c Tc.

C. Simulation for Moldauer’s estimation

Because the term S̃ααS̃∗
ββ in Eq. (16) is a quantity in the

diagonalized channel space, we can evaluate this with the
GOE triple-integral of Eq. (2) whenever 〈S〉 is diagonal. We
replace S̃αα by 〈Saa〉 and apply the Monte Carlo technique to
calculate SaaS

∗
bb by sampling the diagonal S matrix, as well

as the number of channels � that is randomly varied from 2
to 200. We generated 500 such random S matrices, and the
calculated |SaaS

∗
bb| is shown by the symbols in Fig. 4. When

there are many open channels,
∑

c Tc � 1, this term will be
negligible.

Applying two different estimates for νa obtained by
Moldauer [26] and at LANL [20], Eq. (21) can be evaluated
very easily. Figure 5 shows the ratio of Eq. (21) to the GOE
results, using two functional forms for νa . Because SaaS

∗
bb

is complex due to the factor of SaaS
∗
bb in Eq. (2), the ratio

is taken for the absolute value (the module). It can be seen
clearly that the updated systematics of νa at LANL produces
an excellent agreement with GOE, except for in the very small∑

c Tc region, where all statistical models tend to fail [20].

D. Simulation for cross section

Our next step is to confirm whether Eq. (16) with the

estimation for S̃ααS̃∗
ββ in Eq. (21) is a good approximation for

the actual cross-section calculations. To this end, we calculate
the cross sections using the randomly generated nondiagonal S
matrix again and compare them with the reference GOE cross
sections.

The calculated cross sections for the compound elastic and
inelastic channels are shown by the deviation from GOE in
Fig. 6, as a function of the total cross section σ T. The standard
deviation is 0.83% for the � = 2 case and 0.29% for � = 5.
From this comparison, we conclude that Moldauer’s model of
Eq. (19) with the additional phase factor provides a very good
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FIG. 5. Comparison of Moldauer’s estimate for |SaaS
∗
bb| given by

Eq. (19) for various Ta values and channels, shown by the ratios to the
GOE calculation. Two different estimates for the channel degree-of-
freedom ν, Refs. [26] and [20], are used; panel (a) is for the smaller∑

c Tc case, and panel (b) is for the larger
∑

c Tc case.

approximation to the GOE triple-integral formula when the
off-diagonal elements in the S matrix exist. In reality, because
the actual direct channel coupling is much weaker than our
randomly generated S matrix, and the number of channels
tends to be larger, Eqs (16) and (21) should provide an excellent
alternative procedure to calculate compound reaction cross
sections, leading to cross sections almost identical to those of
the rigorous GOE formula [16].

IV. COUPLED-CHANNELS AND HAUSER-FESHBACH
MODEL IN A REALISTIC CASE

We now calculate compound cross sections for neutron-
induced reactions on 238U in the fast-energy range with the
coupled-channels Hauser-Feshbach code COH3 and implement
the EW transformation as well as all the necessary formulas
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FIG. 6. Compound elastic and inelastic cross sections calculated
with the randomly sampled S matrix as well as using Moldauer’s

estimate for |S̃ααS̃
∗
ββ |, as a function of the dimensionless total cross

section. The results are shown by the deviation from the GOE results.
The top panel is for the two-channel case, and the bottom panel is for
the five-channel case.

given previously. Note that the intention here is not to provide
the best-evaluated cross section, but to study how large the
impact of the EW transformation on actual cross-section
calculations will be. Albeit it is redundant, we summarize
here the procedure of cross-section calculation including the
EW transformation as a practical recipe for applications.

(i) For a given total spin and parity J�, solve the coupled-
channels equation. The coupled-channels S matrix is
converted into the P matrix by Eq. (11) and then
diagonalized by UPU † to obtain the eigenvalues pα

and the eigenvector U . We also need the diagonalized
S matrix, S̃ = USUT .

(ii) Calculate the transmission sum for all open channels
as

T =
∑

α

pα +
∑

k

Tk(uncoupled). (34)

(iii) Calculate the channel cross-section matrix in the
transformed space:

σαβ = pαpβ

T
Wαβ, (35)

where the width fluctuation factor Wαβ is given by
Eq. (5).

(iv) When calculating the elastic and inelastic scattering
cross sections in the physical space for a set of cou-
pled levels, each level may include several channels
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FIG. 7. Calculated 238U(n,n′) reaction cross sections with the EW transformation (solid curves) compared with the modified transmission
calculation (dashed curves), as well as with the evaluated cross sections in JENDL-4 (dot-dashed curves).

denoted by indices a,b, . . . Given a fixed set of
incoming (a) and outgoing (b) channels, sum over
a and b when a ∈ (ground state) and b ∈ (ground
or excited state). Summation α and β runs over all
the diagonal space. Calculate the cross section as in
Eq. (16) with Eqs. (17) and (21).

(v) For uncoupled levels, run a over the channels that
belong to the ground state. The cross section is given
by Eq. (23).

We employed the dispersive coupled-channels optical
potential by Soukhovitskii et al. [30], with the deformation
parameters of β2 = 0.214, β4 = 0.00931, and β6 = −0.0148
taken from the finite range droplet model [31]. We coupled
five levels in the ground-state rotational band, 0+, 2+, 4+, 6+,
and 8+. Although direct inelastic scattering to the vibrational
bands can be observed, we consider them as uncoupled levels
to simplify the calculations, otherwise a different optical model
would be needed.

The photon strength function is calculated with the GDR
model with the parameters of Ullmann et al. [32]. The level
density of 239U is calculated with Gilbert and Cameron’s
composite formula [33,34], and the level density parameter is
slightly adjusted to reproduce the average resonance spacing
of D0 = 20.26 ± 0.72 eV [35]. The fission barrier parameters
are taken from Iwamoto’s study [6] and adjusted to roughly
reproduce the evaluated fission cross section at 1 MeV
in ENDF/B-VII [36]. Note that the fission channel is not
important, because we are mainly interested in the cross
sections in the subthreshold fission region.

Figure 7 shows the comparison of calculated inelastic
scattering cross sections for the 2+, 4+, 6+, and 8+ states. The
dashed curves are calculated with the generalized transmission
coefficients as in Eq. (10). We also depict the evaluated cross
sections in JENDL-4 [6,37] for comparison, because these
cross sections were calculated with a similar optical model
with the coupled-channels Hauser-Feshbach code, CCONE [6],
in which the generalized transmission coefficients are adopted.
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FIG. 8. Ratios of calculated capture, total inelastic, and fission
cross sections without the EW transformation to the EW cases.

The solid curves are the result of the EW transformation. The
transformation always increases the inelastic scattering cross
section to the level that has the direct component, which we
already observed in Fig. 1 in the randomly generated S-matrix
model. Because the compound formation cross section σ CN

remains the same, the increase in the inelastic channels reduces
the enhancement in the compound elastic channel. However,
the reduction in the elastic scattering cross section is not so
visible, because the shape elastic scattering σ SE dominates the
elastic channel in this energy range.

The calculated capture, total inelastic, and fission cross
sections are shown in Fig. 8, as a ratio of the EW transformation
case to the generalized transmission case. The total inelastic
scattering includes both the coupled and uncoupled levels.
As we already saw in Fig. 3, the generalized transmission
calculation gives slightly larger cross sections for the uncou-
pled capture and fission channels. However, the change in
these cross sections is less than 2%, while uncertainties in the
calculated capture and fission cross sections are much larger
in general.

The ratios approach unity as the neutron incident energy
increases, and the impact of the EW transformation disappears
above a few MeV. Above that energy, the compound elastic
scattering cross section can be basically ignored, because
there are many open channels. Under such circumstances the
Hauser-Feshbach theory is justified, and the cross sections can
be calculated without the EW transformation.

V. CONCLUSION

An exact formula for the width-fluctuation-corrected
Hauser-Feshbach cross section, in which directly coupled
channels are involved, is used to perform the statistical model
calculation based on the GOE in the diagonalized space—

the so-called Engelbrecht-Weidenmüller (EW) transformation.
Nishioka, Weidenmüller, and Yoshida [16] obtained an equiv-
alent expression of the fluctuation cross section without the di-
agonalization procedure. Nevertheless, the latter has not been
employed in practical cross-section calculations, due to both
the complexity in the formula itself and technical difficulties
in applying actual cases. To overcome this problem, we have
developed an approximated method, which produces cross
sections almost identical to those of the theory of Nishioka
et al. and is feasible to compute cross sections in realistic cases
without any of the difficulties the GOE inherently possesses.
The method combines Moldauer’s approximation [15] with a
simple relation between the channel degree-of-freedom and
the optical model transmission coefficient, recently obtained
by a GOE numerical study at LANL [20].

We have confirmed the Moldauer’s approximation for the
first time by our Monte Carlo approach and found that an
extra phase factor should be included when Im(SααSββ) �= 0.
The method was applied to the description of neutron-induced
reactions on the 238U target in the fast-energy range, where
the elastic and inelastic scattering, the radiative neutron
capture, and the fission channels are relevant. We demonstrated
that the EW transformation indeed increases the calculated
inelastic scattering cross sections, while modest changes
were seen in the uncoupled channels, including the fission
and capture cross sections. We concluded that conventional
methods calculating the Hauser-Feshbach theory by adopting
the generalized (direct-cross-section-eliminated) transmission
coefficients lead to underestimation of the inelastic scattering
cross sections, when the direct channels are strongly coupled.
This underestimation decreases as the number of open chan-
nels increases. We believe this technique should be adopted
by existing Hauser-Feshbach codes, leading to more accurate
predictions of the scattering cross sections on collective nuclei.
To facilitate implementation of the EW transformation in the
Hauser-Feshbach codes, a special relation of the unitary matrix
in Eq. (16) is given in the Appendix.
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APPENDIX: SUM RULE IN THE
BACK-TRANSFORMATION

When setting the channel cross-section matrices, σαα , σαβ ,
and 〈S̃ααS̃∗

ββ〉 in Eq. (16) to be

σ̃ = 〈S̃S̃∗〉 =

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦, (A1)
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where σ̃ denotes the � × � matrix whose elements are given by Eq. (17), then the following equality is satisfied

∀b ∈ [[1,�]],
∑

a

σab = �. (A2)

Proof. Inserting the expression of σ̃ and 〈S̃S̃∗〉 into Eq. (16), we have

σab =
∑

α

|Uαa|2|Uαb|2 +
∑
α �=β

U ∗
αaU

∗
βb(UαaUβb + UβaUαb) +

∑
α �=β

U ∗
αaU

∗
αbUβaUβb

=
∑

α

|Uαa|2|Uαb|2 +
∑
α �=β

U ∗
αaU

∗
βbUαaUβb +

∑
α �=β

U ∗
αaU

∗
βbUβaUαb +

∑
α �=β

U ∗
αaU

∗
αbUβaUβb

=
∑

α

U ∗
αaUαa

⎛
⎝∑

β

U ∗
βbUβb

⎞
⎠ +

∑
α �=β

U ∗
αaUβa(U ∗

βbUαb + U ∗
αbUβb) (A3)

= S1 + S2, (A4)

where

S1 =
∑

a

∑
α

U ∗
αaUαa

⎛
⎝∑

β

U ∗
βbUβb

⎞
⎠, (A5)

S2 =
∑

a

∑
α �=β

U ∗
αaUβa(U ∗

βbUαb + U ∗
αbUβb). (A6)

Because U is a unitary matrix,

∀b ∈ [[1,�]],
∑

β

U ∗
βbUβb = 1,

∑
α

U ∗
αaUαa = 1, (A7)

thus

S1 =
∑

a

1 = �. (A8)

Once again, using the unitarity of U , one obtains∑
a

U ∗
αaUβa = δαβ. (A9)

Therefore

S2 =
∑

a

∑
α �=β

U ∗
αaUβa(U ∗

βbUαb + U ∗
αbUβb)

=
∑
α �=β

∑
a

U ∗
αaUβa(U ∗

βbUαb + U ∗
αbUβb)

=
∑
α �=β

δαβ(U ∗
βbUαb + U ∗

αbUβb)

= 0. (A10)
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