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Background: In the past year we have been exploring the effect of the explicit inclusion of nonlocality in (d,p)
reactions.
Purpose: The goal of this paper is to extend previous studies to (d,n) reactions, which, although similar to (d,p)
reactions, have specific properties that merit inspection.
Method: We apply our methods (both the distorted-wave Born approximation and the adiabatic wave
approximation) to (d,n) reactions on 16O, 40Ca,48Ca,126Sn,132Sn, and 208Pb at 20 and 50 MeV.
Results: We look separately at the modifications introduced by nonlocality in the final bound and scattering
states as well as the consequences reflected on the differential angular distributions. The cross sections obtained
when using nonlocality explicitly are significantly different than those using the local approximation, just as in
(d,p) reactions. Due to the particular role of the Coulomb force in the bound state, often we found the effects of
nonlocality to be larger in (d,n) than in (d,p) reactions.
Conclusions: Our results confirm the importance of including nonlocality explicitly in deuteron-induced
reactions.
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I. INTRODUCTION

Transfer reactions are of great interest to nuclear structure
and nuclear astrophysics as a means to probe the properties of
nuclei and their reactions. Deuteron-induced transfer reactions
play a prominent role in our field and are particularly attractive
from the theoretical perspective due to the controlled number
of channels in the reactions mechanism. Even though deuteron-
induced single nucleon transfer has been used in our field for
several decades, there are still aspects concerning the reaction
theory that deserve attention.

Recently we have studied the effects of nonlocality in the
optical potentials on (d,p) reactions [1–3]. In Refs. [1,2] we
focused on nonlocality in the proton channel, namely, in the
neutron bound state and the proton scattering state. We found
that the effects were significant, reducing the magnitude of the
wave function in the nuclear interior. For the bound state due
to the normalization condition, the reduction of the magnitude
in the nuclear interior resulted in an increase in the asymptotic
tail. As a consequence, in general, nonlocality in the bound
state and the scattering state produced effects of opposite sign,
an increase in the cross section due to the bound state, and
a decrease due to the scattering state. We found the overall
effect to be mostly dominated by the bound state but strongly
dependent on the beam energy. In all cases nonlocality was
found to be significant.

The original study [1] used the Perey and Buck nonlocal
potential [4]. The study was repeated for 40Ca(d,p) reactions
[2] using the dispersive optical potential [5]. The comparison
between results obtained with the Perey and Buck interaction
and the dispersive optical model interaction demonstrated that,
although the magnitude of the effects can be optical potential
dependent, they are always significant and need to be carefully
considered in the analysis of deuteron-induced reactions.

More recently [3] we have generalized the adiabatic wave
approximation (ADWA) [6] to include nonlocal interactions.

This enabled the inclusion of nonlocality in the deuteron
channel when studying (d,p) reactions. Our systematic study
of (d,p) reactions [3] shows that the effects of nonlocality
in the entrance channel are weaker for lighter systems but
can become very important for reactions on heavy targets.
In Ref. [3] we have also investigated the effective method of
including nonlocality through an energy shift [7].

Proton transfer (d,n) reactions are an important comple-
mentary tool to the neutron transfer (d,p) reactions in studying
nuclear structure. These provide important insight into the
proton orbitals in the nucleus. These reactions are also pursued
for astrophysical reasons. At the energies of astrophysical
interest, proton capture rates are unfeasibly low, and (d,n)
reactions provide a good indirect tool to access the same
information (e.g., Ref. [8]).

The (d,n) reactions are experimentally more demanding
than (d,p) reactions given the challenges with the detection
of the neutron. Stable beam facilities have carried out a
few (d,n) studies throughout the past few decades (e.g.,
Refs. [9,10]). In addition, nowadays there is a renewed interest
in (d,n) reactions due to the exciting opportunities brought
with rare isotope experiments in inverse kinematics. This
is demonstrated by the new detector developments that are
ongoing in various laboratories (e.g., low-energy neutron
detector array [11], versatile array of neutron detectors at low
energy [12]) but also by the number of (d,n) experiments
approved in various program advisory committees (National
Superconducting Cyclotron Laboratory alone has three such
experiments on the books). The angular distributions of the
outgoing neutron provide angular momentum information
on the state populated and are an essential element in
the standard analysis. In some recent cases, the challenge
of neutron detection has been circumvented by measur-
ing the γ rays [8] with excellent energy resolution. Then
no angular distributions can be extracted, only total cross
sections.
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On the theoretical side, the same methods that are applicable
to (d,p) reactions can usually be immediately applied to (d,n)
reactions. However the sensitivities to the model space and
input parameters are generally not the same. The Faddeev
method [13] has recently been applied to (d,n) reactions
[14]. As pointed out in that work, (d,n) reactions represented
different challenges to (d,p) reactions, particularly concerning
the handling of the Coulomb force through screening. In
Ref. [14] only light targets were considered, and the aim was
mostly to establish whether the Faddeev method could indeed
reproduce the existing (d,n) data.

This paper follows naturally from our previous studies
[1–3]. Here we concentrate on the effects of nonlocality in
(d,n) reactions using both the distorted-wave Born approxi-
mation (DWBA) and the adiabatic wave approximation. We
summarize briefly the ingredients necessary for the calculation
of the cross section in Sec. II. Next, in Sec. III, we present the
results for the (d,n) reactions on 16O, 40Ca,48Ca,126Sn,132Sn,
and 208Pb at Ed = 20 and 50 MeV as well as a discussion of
these results and a comparison with our previous (d,p) results.
Finally, in Sec. IV we draw our conclusions.

II. THEORY AND INPUTS

The theory used in our current studies is covered in detail
in Refs. [1,3]. Here we just highlight the various ingredients
necessary and the relevant inputs used.

The (d,n) transfer cross section is obtained through the
calculation of the T matrix [15]. The exact T matrix for the
A(d,n)B reaction can be written in the postform as

T = 〈φpAχ
(−)
nB |Vnp + �|�(+)〉, (1)

where φpA is the proton-target bound state and χ
(−)
nB is

the neutron-scattering state in the exit channel distorted by
U ∗

nB . The initial state �(+) is the full three-body solution
describing the d + A relative motion. The transition operator
is dominated by the NN interaction, and the additional operator
� = UnA − UnB has a negligible contribution to the cross
section for all cases considered here with the exception of
the lightest target. In this paper, we study the effects of the
inclusion of nonlocality in the potentials UnA, UpA, and UnB .

We will first start by focusing on the effects of nonlocality
in the final state, which can be performed in the DWBA. In
the standard formulation of the DWBA, the exact three-body
initial deuteron state is replaced by the elastic channel,

T = 〈φpAχ
(−)
nB |Vnp|φdχel〉. (2)

Here φd is the deuteron ground-state wave function, and χel

corresponds to the solution of an optical model equation with
a deuteron optical potential usually fitted to deuteron elastic
scattering.

Second we will include nonlocality in the entrance channel,
and, for this purpose, we will use the finite-range ADWA of
Ref. [3]. In that method, the T matrix for the transfer process
looks like,

T = 〈φpAχ
(−)
nB |Vnp|φ0χad〉, (3)

where φ0 is proportional to the deuteron bound-state wave
function and χad is the scattering solution of a single channel
nonlocal equation where the distorting potential is an adiabatic
potential derived from a three-body model for the reaction and
includes deuteron breakup for all orders (see Ref. [3] for more
details).

The inputs to our calculations are completely consistent
with the calculations in Ref. [1] for the DWBA calculations
and with Ref. [3] for the ADWA calculations. This is important
as part of the aim of this study is the comparison between
(d,p) and (d,n) reactions in what concerns nonlocality. As in
Refs. [1,3], the local interactions for investigating the role
of nonlocality are obtained by imposing specific physical
constraints. As such, the local interactions reproduce the
same elastic scattering as the Perey and Buck interaction, and
the local interaction used for the bound states has the same
geometry as the real part of the Perey and Buck interaction
and reproduces the same binding energy.

III. RESULTS

A. Nonlocality in the final bound and scattering states

When considering nonlocality in (d,n) reactions as com-
pared to (d,p) reactions it is important to realize that the
final state has in general different quantum numbers and
the transferred nucleon has a different separation energy. In
Table I we present the details of the final proton state for
the various reactions to be studied and compare its properties
to those neutron states populated in the corresponding (d,p)
reaction [1].

We note that in all our calculations we assume a pure single-
particle structure for the proton states with spectroscopic factor
S = 1. Because the reactions we are considering are mostly
peripheral, we also look at the single-particle ANC of the tail
of the wave function as defined in Ref. [15].

TABLE I. Properties of the final bound states: Orbital (�,j ),
the separation energy Sp/n, the asymptotic normalization coefficient
(ANC) for the bound states produced with the local interaction Cloc

and the nonlocal interaction Cnloc, and the percent difference between
the square of the nonlocal and the local ANCs, relative to the nonlocal
�(C2).

Orbital Sp/n (MeV) Cloc Cnloc �(C2)

p + 16O d5/2 0.60 1.476 1.639 23.3
n + 16O d5/2 4.14 1.094 1.286 38.2

p + 40Ca f7/2 1.09 32.375 39.38 48.0
n + 40Ca f7/2 8.36 3.09 3.685 42.2

p + 48Ca f7/2 9.63 45.029 56.56 57.7
n + 48Ca p3/2 5.15 6.367 7.177 27.1

p + 126Sn g7/2 7.97 4446 6683 126
n + 126Sn h11/2 5.55 1.301 1.468 27.3

p + 132Sn g7/2 9.67 4791 7243 129
n + 132Sn f7/2 2.37 1.503 1.716 30.4

p + 208Pb h9/2 3.80 2.32 × 107 3.60 × 107 139
n + 208Pb g9/2 3.94 3.46 3.99 33.0
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One of the important differences between (d,n) and (d,p)
reactions is the role of the Coulomb force in the bound state.
This aspect, combined with differences in the angular mo-
mentum, can change considerably the effect that nonlocality
has on the tail of the wave function due to the normalization
condition. In Table I we show, for all the single-particle states
considered in this paper, the ANC obtained when the local
interaction is used, the ANC when the nonlocal interaction
is used, and the percentage difference between the square of
the ANC for the nonlocal interaction and the square of the
ANC obtained when the local interaction is used, relative to
the square of the nonlocal ANC. For the heavier systems,
the percentage difference in the squares of the ANCs is
larger for the proton single-particle states than in the neutron
single-particle states. The strong Coulomb force concentrates
the probability at shorter distances and therefore enhances the
effect of nonlocality.

We found in all (d,n) cases studied that the effect of
nonlocality on the scattering state was much weaker than that
on the bound states. The differences on the scattering state are
all similar to those described in Ref. [1], namely, a reduction
of the amplitude in the interior region. As we will demonstrate
in the following section, it is the bound-state properties that
dominate the effect of nonlocality in the (d,n) cross sections.

B. Transfer cross sections

We first consider the effects of nonlocality in the exit
channel within the DWBA as performed in Ref. [1]. Figures 1
and 2 are illustrations of the effects obtained. In these
figures we show the results when including nonlocality only
in the exit channel (solid black line) and compare it with
the corresponding local calculation (red dashed line). As in
previous studies, nonlocality has a marked effect not only on
the magnitude of the cross section, but also on the shape.
Overall, nonlocality in the final state increases the cross
section, an effect that is more pronounced at lower energies.
This effect is completely justified by the larger ANC Cnloc as
compared to Cloc (see Table I).

We then also include nonlocality in the entrance channel
within the ADWA as performed in Ref. [3]. Figures 1 and 2 also
contain the ADWA results: The green dot-dashed line includes
nonlocality consistently in the entrance and exit channel,
and the blue dotted line is the corresponding ADWA local
result. Again, nonlocality affects both shape and magnitude
of the differential cross sections. The effect of nonlocality
in the deuteron channel is particularly strong for the heavier
targets, consistent with the result from Ref. [3]. As observed
in Ref. [3], our (d,n) results using the first-order DWBA
can differ significantly from the distributions predicted within
the ADWA. This demonstrates the importance of including
deuteron breakup explicitly in the reaction mechanism.

In Figs. 1(b) and 2(a) we show the results of calculations at
slightly different energies than those in our systematic study
for the purpose of comparison to data from Refs. [9,10],
respectively. The insets of these figures show the theoretical
distributions normalized to the data at the peak to better
compare the angular dependences. Because the Perey and
Buck potential, created in the 1960s, was only fit to two data
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FIG. 1. Angular distributions for 48Ca(d,n) 49Sc at (a) 20 MeV
and (b) 79 MeV with data from Ref. [9]. The inset shows the
theoretical distributions normalized to the peak of the data.

sets, it is not expected that it will do well reproducing the
magnitude and details of the experimental angular distribution
for a wide range of targets and energies. Nevertheless, as seen
in Figs. 1(b) and 2(a), both the DWBA and the ADWA provide
a reasonable qualitative description of the process. Note that
it is not the purpose of this paper to analyze these data and
extract structure information but rather to unveil the effects on
the transfer cross section by using nonlocal optical potentials
instead of the typical local potentials. So far, interpretation of
the data is performed with local potentials, e.g., Ref. [8].

In Fig. 2(a) the DWBA provides a better description of
the data than the ADWA. This may be due to the assumption
in the ADWA that the excitation energy of the deuteron is
small compared to the beam energy. For a detailed quantitative
description of 208Pb(d,n) 209Bi at 25 MeV, one should use a
model that includes deuteron breakup for all orders without
making the adiabatic approximation, such as the Faddeev
method. Currently, Faddeev calculations for heavy targets are
not feasible. However, since in both the DWBA and the ADWA
nonlocality effects are large, we expect that it will also hold
true for more advanced reaction theories.

To quantify the nonlocal effects, we have summarized in
Tables II–V the percentage difference obtained at the peak of
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FIG. 2. Angular distributions for 208Pb(d,n) 209Bi at (a) 25 MeV
with data from Ref. [10] and (b) 50 MeV. The inset shows the
theoretical distributions normalized to the peak of the data.

the cross section when nonlocality is included relative to the
corresponding calculations when only local interactions are
used

�xs = 100[σnloc(θpeak) − σloc(θpeak)]/σloc(θpeak). (4)

Focusing first on the effects seen within the DWBA, it is
clear that most of the effects we found are due to the effect

TABLE II. Effects of nonlocality in the (d,n) reaction at 20 MeV
within the DWBA. Percent differences of the cross section at the
peak of the angular distributions including nonlocality relative to
the cross section at the peak of the distribution when only local
interactions are used: including nonlocality only in the bound state
(bound), including nonlocality only in the scattering state (scatt), and
including nonlocality in both states (total).

Reaction Bound (%) Scatt (%) Total (%)

16O(d,n) 17F 22.01 −7.88 12.75
40Ca(d,n) 41Sc 40.30 −1.66 39.46
48Ca(d,n) 49Sc 33.89 −11.36 21.91
126Sn(d,n) 127Sb 50.83 −7.08 52.43
132Sn(d,n) 133Sb 54.15 −14.77 36.63
208Pb(d,n) 209Bi 64.64 −13.52 53.21

TABLE III. Effects of nonlocality in the (d,n) reaction at 50 MeV
within the DWBA. Percent differences of the cross section at the
peak of the angular distributions including nonlocality relative to
the cross section at the peak of the distribution when only local
interactions are used: including nonlocality only in the bound state
(bound), including nonlocality only in the scattering state (scatt), and
including nonlocality in both states (total).

Reaction Bound (%) Scatt (%) Total (%)

16O(d,n) 17F 34.76 −6.09 27.39
40Ca(d,n) 41Sc 19.33 −9.43 9.23
48Ca(d,n) 49Sc 21.21 −11.11 9.53
126Sn(d,n) 127Sb 36.48 −11.51 24.29
132Sn(d,n) 133Sb 31.81 −11.86 20.72
208Pb(d,n) 209Bi 33.21 −14.18 19.51

of nonlocality in the bound state. This very strong sensitivity
is largest for the lowest energy as one would expect given
that at 20 MeV the reaction is more peripheral. These large
differences in the cross sections would mostly disappear if the
ANCs were constrained in our calculations. At higher energies,
the magnitude of the nonlocal effect is the same as for the (d,p)
reactions: up to 30%.

We next turn to the calculations within the ADWA. As
seen in previous studies, the effects of nonlocality in the
deuteron channel can be important, but effects appear to be
less important in the (d,n) reaction than in the (d,p) reaction.
The effects in the entrance channel can cancel the effects in the
exit channel. We find that while at 20 MeV the overall effect
can be very large (nearly a factor of 2), at the higher energy,
the percentage difference only goes up to ≈20%. The total
percentage differences in the ADWA are in general smaller
than those found in the DWBA, particularly for the heavier
targets, underlining the importance of consistently including
nonlocality in the deuteron channel.

Because the final state in most reactions in our systematic
study is not the same in (d,p) and (d,n) reactions, we
performed additional test studies, whereby both reactions
populated the same final state and had the same separation
energy. The conclusions from these additional calculations are
clear: It is the Coulomb force in the final bound state that
introduces the large differences we found in the magnitude of

TABLE IV. Effects of nonlocality in (d,n) reactions at 20 MeV
within the ADWA. Percent differences of the cross section at the peak
of the angular distributions including nonlocality relative to the cross
section at the peak of the distribution when only local interactions are
used: including nonlocality only in the entrance channel (entrance),
including nonlocality only in the exit channel (exit), and including
nonlocality in both (total).

Reaction Entrance (%) Exit (%) Total (%)

16O(d,n) 17F 0.10 29.81 26.26
40Ca(d,n) 41Sc −3.19 54.83 43.42
48Ca(d,n) 49Sc 20.77 26.73 49.73
126Sn(d,n) 127Sb 20.29 72.93 95.01
132Sn(d,n) 133Sb 0.23 29.63 46.55
208Pb(d,n) 209Bi −13.43 35.07 25.18
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TABLE V. Effects of nonlocality in (d,n) reactions at 50 MeV
within the ADWA. Percent differences of the cross section at the peak
of the angular distributions including nonlocality relative to the cross
section at the peak of the distribution when only local interactions are
used: including nonlocality only in the entrance channel (entrance),
including nonlocality only in the exit channel (exit), and including
nonlocality in both (total).

Reaction Entrance (%) Exit (%) Total (%)

16O(d,n) 17F −1.10 12.79 14.16
40Ca(d,n) 41Sc 12.26 17.82 23.82
48Ca(d,n) 49Sc −3.06 −3.49 −3.27
126Sn(d,n) 127Sb −2.04 8.26 19.31
132Sn(d,n) 133Sb −2.35 4.01 13.00
208Pb(d,n) 209Bi 9.33 −0.63 22.07

the nonlocal effects. The effects of nonlocality in the nucleon
and deuteron scattering states are all similar in (d,p) and (d,n)
reactions. However, the additional repulsive barrier caused by
the Coulomb force in the bound-proton final state produces
a larger sensitivity to nonlocality. Constraints on the ANC
of the final bound state would very much reduce the large
dependences found.

IV. SUMMARY AND CONCLUSIONS

In this paper we explore the effects of nonlocality in (d,n)
reactions. Our systematic study includes (d,n) reactions on
16O, 40Ca,48Ca,126Sn,132Sn, and 208Pb at 20 and 50 MeV.
We use both the distorted-wave Born approximation and
the adiabatic wave approximation to compare the results on
(d,n) reactions with those on (d,p) reactions (Refs. [1,3],
respectively). For a meaningful comparison with Refs. [1,3]
we use the nonlocal interaction by Perey and Buck [4] and
impose the same physical constraints in generating the local
interactions. For the scattering and a local phase equivalent
potential was obtained by fitting the elastic scattering gen-
erated from the corresponding nonlocal potential. The local

and nonlocal bound states reproduced the same experimental
binding energies. Effects of nonlocality are determined by
comparing the transfer cross sections using the nonlocal optical
potentials and the phase equivalent local interactions.

Just as in the (d,p) reaction case, the DWBA calculations
show that nonlocality in the final bound state increased the
cross sections for (d,n) reactions, whereas nonlocality in the
final scattering state reduces those cross sections. However
the effect of the final bound state is much larger than that of
the scattering state, and therefore overall cross sections are
increased due to nonlocality. This increase is substantially
larger in (d,n) reactions than in (d,p) reactions because
the presence of the Coulomb interaction in the bound state
increases its sensitivity to nonlocality. This is the most marked
difference between (d,n) and (d,p) reactions.

For the ADWA results, nonlocality in the deuteron channel
is insignificant for light targets but can have a substantial
effect on the cross section for intermediate mass and heavy
targets [just as we observed in the (d,p) case]. It is also very
dependent on the particular characteristics of the final state
being populated. The interplay of the effects of nonlocality in
the entrance and the exit channel produce a total percentage
difference at the peak of the angular distributions that can go
up to a factor of 2 for the lower energy, whereas it is around
20% for the higher-energy case.

Given the very strong effect of nonlocality on the asymp-
totic normalization coefficient for proton bound states, it is
important that future analyses of (d,n) reactions be performed
under a physical constraint on the ANC, which may come from
another peripheral reaction measurement.
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