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Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub-
and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion
reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the
components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis.
Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission
fragment angular distributions and provides new information on fusion and fission dynamics.
Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes
into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized
by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base
of our approach is the quantum mechanical method to calculate the initial distributions over the components of
the total angular momentum of the nuclear system immediately following complete fusion.
Results: A method is suggested for calculating the initial distributions of the total angular momentum projection
onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei
with spins. The angular distributions of fission fragments for the 16O + 232Th ,12C + 235,236,238U, and 13C + 235U
reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies.
The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events
occurring in times not larger than the relaxation time for the tilting mode.
Conclusions: It is shown that the memory effects play an important role in the formation of the angular
distributions of fission fragments for the reactions induced by heavy ions. The approach developed for analysis of
the effects is a suitable tool to get insight into the complete fusion-fission dynamics, in particular, to investigate
the mechanism of the complete fusion and fission time scale.
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I. INTRODUCTION

The investigation of angular distributions of fission frag-
ments (ADs) for heavy-ion-induced reactions has brought
out many interesting possibilities to gain new information on
fusion and fission dynamics [1–4]. In particular, it was shown
in Refs. [5–7] that ADs depend on the durations of different
stages of heavy-ion-induced fission and their analysis makes
it possible to obtain information about fission time scale and
nuclear dissipation. It is well known [1] that consideration
of the dynamic aspects of fusion is important to explain
the behavior of the anisotropy of angular distributions of
fission fragments (ADA) at subbarrier energies, namely, its
anomalously high values with respect to the predictions of the
standard transition-state model [2,8] for some reactions with
heavy ions. The first attempts to explain the anomalously high
ADA have been taken within the preequilibrium K-state model
[9,10] and the quasifission orientation-dependent model of
Refs. [11,12]. In both models, a significant role is played by the
conditions that are realized in reaction entrance channels. The
pre-equilibrium K-states model predicts ADA significantly
higher than that of the standard transition-state model [8] for
near- and subbarrier reactions with entrance channel mass
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asymmetries larger than the Businaro-Gallone critical mass
asymmetry [(At − Ap)/(At + Ap) = 0.90, where At and Ap

are the mass numbers of the incident and target nuclei].
The quasifission orientation-dependent model asserts that for
collision of projectiles and actinide nuclei there is a critical
angle orientation of the prolate deformed nucleus of the target
relative to the beam. For the angles less than this critical
value, a dinuclear system is formed and then decays quickly
(quasifission) with the anomalously high ADA.

It was later demonstrated in Refs. [5,13–15] that ADA
is strongly dependent on the individual features of colliding
nuclei (such as spin and deformation) for sub- and near-barrier
fusion. Indeed, these effects were found in a number of
complete fusion reactions leading to the formation of excited
transuranium nuclei. For example, a significant difference
of AD was observed at the center-of-mass energies below
the Coulomb barrier in the 12C + 235,236U reactions [14,15].
It should be noted that the excitation energies of 247,248Cf
formed in the reactions were close to each other and exceeded
30 MeV. At such excitation energies, the specific features
of fissioning nuclei (for example, shell effects in the fission
barriers [16–18]) should not significantly affect AD. As is
noted in Refs. [5,14,15], more significant factors are the
deformations of the 236,235U target nuclei and the nonzero
spin in the ground state of the 235U nucleus (st = 7/2�) and
its absence in 236U. Indeed, because of the dependence of
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the Coulomb barrier on the mutual orientation of the colliding
deformed nuclei, both initial distributions over the total angular
momentum (J ) projections onto the symmetry axis (K) and
the beam axis (M) for the nuclear system formed as a result
of complete fusion will differ for these reactions at sub- and
near-barrier energies. The observed ADs were interpreted as
the manifestation of memory about the entrance channels of the
reactions. For the above-barrier energies, the fusion probability
loses the sensitivity to the mutual orientation of the deformed
colliding nuclei and ADs become similar.

There is a dynamical model developed in Refs. [19–21]
that is well suited for the consistent description of ADs in
heavy-ion-induced reactions for a very wide energy range.
Within this model, nuclear fission is described in a space of
the deformation variable using the Langevin equations and the
K value. K is considered as a variable undergoing random
transitions throughout the evolution of the fissioning nucleus
due to a coupling with the intrinsic degrees of freedom. The
probabilities of such transitions for each phase of the fission
process depend on the ratios between durations of these phases
and the relaxation time for the tilting mode, τK . This model was
successfully applied to describe the experimental data on ADA
and prefission neutron multiplicities for a number of reactions
leading to the formation of nuclei having such high angular
momenta and temperatures that the concept of transition states
at the saddle point of the fission barrier [2] becomes invalid.
It should be also noted that the dynamic model contains both
statistical models (the model of transition states in the saddle
points of fission barriers [2] and the scission point model
[22]) as special cases. For example, for nuclear fission with
temperatures significantly lower than the fission barriers, the
predictions of the dynamic and saddle point models are close.
The analysis of experimental data on ADs performed with
this model for a number of reactions with heavy ions showed
that the relaxation time for the tilting mode was in the range
τK = (20–30) × 10−21 s. This value is close to fission times of
heavy nuclei at temperatures comparable to the magnitudes of
the fission barriers. In Ref. [23], the dynamical model was
generalized to the case of the three-dimensional Langevin
model. Now, the related approaches have been developed,
in which the Langevin equation [24–26] has been used to
describe the evolution of K . The main advantage of this
model is a unified description of collective variables and K .
However, K is defined in the discrete set consisting of 2J + 1
values. Consequently, the approach used in Refs. [19–21]
seems to be more justified for calculations at subbarrier
energies, when small values of J play a significant role. On
the other hand, it seems that both approaches the approaches
used in Refs. [19–21] and [24–26] are equally applicable and
useful at above-barrier energies. Please note also that both
models contain one adjustable parameter (τK or a dissipation
coefficient for the tilting mode) and they are related to each
other [25,26]. The advantage of the model in Refs. [19–21]
is that it is free from assumptions about the magnitude of τK .
Whereas in Refs. [24–26] the reduced Langevin equation is
used to simulate the dynamics of K , which is justified only for
large dissipation coefficients for the tilting mode (or short τK ).

In this work, using the model in Refs. [19–21] as a basis,
we develop a dynamic approach to analyze ADs for heavy-

ion-induced reactions, which takes into account the entrance
channel effects, allows the analysis of experimental data in a
wide energy range including subbarrier and high above-barrier
energies, and provides new information on fusion and fission
dynamics. It should be emphasized that the approaches of
Refs. [9–11] are not appropriate for the analysis performed
in this article. For example, the mass asymmetries of the
entrance channels for the 12C + 235,236U reactions exceed the
Businaro-Gallone value, while their ADA are very different
for the sub-barrier energies (see Fig. 9). It is also expected
that the quasifission contributions are vanishingly small [2]
for these reactions. The pioneering and successful analysis of
Refs. [14,15] was based on the standard transition-state model
[2,8], modified for the rough accounting of the fission time
scale. Moreover these studies were performed only for the
near- and subbarrier energies with the use of the quasiclassical
expression for the initial distribution of K .

II. CALCULATION OF THE INITIAL DISTRIBUTIONS
OVER COMPONENTS OF THE TOTAL

ANGULAR MOMENTUM

The effect of the entrance channel of a fusion reaction on the
observed AD can be qualitatively clarified as follows. Let us
first consider a simpler case of complete fusion of a spherically
symmetric spinless particle with a deformed target nucleus.
Here the height of the fusion barrier depends on the mutual
orientation of the symmetry axis of the target nucleus and
the momentum of the incident particle [27]. In other words,
at beam energies close to (and below) the Coulomb barrier,
fusion will occur predominantly with the tip of the deformed
target nucleus. It should be emphasized that the spin st of
the target nucleus in the ground state is oriented along the
nucleus’ symmetry axis [13]. Thus, in the case of collisions
with a deformed target nucleus at subbarrier energies, fusion
will predominantly occur for the st orientation along the
incident particle momentum. Note that J of the system formed
during fusion is the sum of the channel spin S = st and the
collisional orbital momentum �, which in turn lies in the plane
perpendicular to the beam (Fig. 1, left). Therefore, at subbarrier
energies, the most probable values of K and M of the system
formed will be 0 for target nuclei with st = 0� (Fig. 1, middle)
and K(M) = st when st �= 0� (Fig. 1, right).

FIG. 1. Schematic diagram of the summation of angular momenta
in the complete fusion reaction between a light nucleus and a heavy
target nucleus having a nonzero spin in the ground state (left).
The total angular momentum of the nuclear system produced in a
subbarrier complete fusion for the most probable orientation of the
target nuclei with st = 0� (middle) and st �= 0� (right).
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Obviously, with an increase of collision energy, the depen-
dence of the fusion probability on the mutual orientation of the
incident particle momentum and the deformed target nucleus
will continuously weaken. When st �= 0�, at incident particle
energies significantly exceeding the Coulomb barrier, different
K and M should be occupied with almost equal probability
and, therefore, the distributions over K and M should be
equiprobable. Thus, the information about the partial fusion
cross section at a certain orientation angle of a deformed target
nucleus with respect to the beam axis makes it possible to
derive the initial distributions over K and M for the fissioning
system. For example, the following expression was obtained
in Ref. [13] for the distribution over J and M:

Y (J,M) =
∑∞

�=0

∑st

μt=−st
σ (�,μt )

∣∣Cst ,�,J
μt ,0,M

∣∣2

∑∞
�=0

∑st

μt=−st
σ (�,μt )

, (1)

where μt is the component of st along the beam axis, C
st ,�,J
μt ,0,M

is the Clebsch-Gordan coefficient, and σ (�,μt ) is the partial
fusion cross section, which can be expressed in terms of the
partial fusion cross sections dependent on the corresponding
orientation angles as follows:

σ (�,μt ) =
∫ ∣∣dst

st ,μt
(θt )

∣∣2
σ (�,θt ) sin(θt )dθt . (2)

Here dst
st ,μt

(θt ) is the symmetric-top wave function and θt is
the orientation angle of the target nucleus with respect to the
beam axis.

In this study, to calculate the initial distributions of the
fissioning system over K , it is proposed to use the relations
analogous to Eqs. (1) and (2):

Y (J,K) =
∑∞

�=0

∑�
K�=−� σ (�,K�)

∣∣Cst ,�,J
st ,K�,K

∣∣2

∑∞
�=0

∑�
K�=−� σ (�,K�)

, (3)

where K� is the component of � along the symmetry axis
of the deformed target nucleus. The partial cross sections
σ (�,K�) can be expressed in terms of the partial cross sections
dependent on the corresponding orientation angles as follows:

σ (�,K�) =
∫ ∣∣d�

K�,0(θt )
∣∣2

σ (�,K�) sin(θt )dθt . (4)

The expressions for Y (J,M) and Y (J,K) can easily be
generalized to the case of a deformed incident particle with
the spin sp. To this end, it is necessary to take into account
that |st − sp| � S � st + sp, while the maximum fusion prob-
ability of two nuclei at subbarrier energies corresponds to the
tip-to-tip collisions. Then, Y (J,M) can be written as

Y (J,M) =
∞∑

�=0

st+sp∑
S=|st−sp |

st∑
μt=−st

σ (�,μt ,M − μt )

×
∣∣CS,�,J

M,0,M

∣∣2∣∣Cst ,sp,S

μt ,M−μt ,M

∣∣2

∑∞
�=0

∑st

μt=−st

∑sp

μp=−sp
σ (�,μt ,μp)

, (5)

where

σ (�,μt ,μp) =
∫∫ ∣∣dst

st ,μt
(θt )

∣∣2∣∣dsp

sp,μp
(θp)

∣∣2

× σ (�,θt ,θp) sin(θt ) sin(θp)dθtdθp. (6)

In expressions (5) and (6), μp is the component of sp along
the beam axis and θp is the corresponding orientation angle. In
calculation of Y (J,K), it is necessary to take into account that
K is the sum of the components of three vectors (�, st , and sp)
along the symmetry axis of the deformed target nucleus:

Y (J,K) =
∞∑

�=0

st+sp∑
S=|st−sp |

�∑
K�=−�

σ (�,K�,Kp)

×
∣∣CS,�,J

K−K�,K�,K

∣∣2∣∣Cst ,sp,S

st ,K−st−K�,K−K�

∣∣2

∑∞
�=0

∑�
K�=−�

∑sp

Kp=−sp
σ (�,K�,Kp)

, (7)

and

σ (�,K�,Kp) =
∫∫ ∣∣d�

K�,0(θt )
∣∣2∣∣dsp

sp,Kp
(θp)

∣∣2

× σ (�,θt ,θp) sin(θt ) sin(θp)dθtdθp. (8)

Here Kp is the component of the vector sp along the symmetry
axis of the deformed target nucleus.

III. CALCULATION OF THE FUSION CROSS SECTIONS
FOR TARGET NUCLEI AND INITIAL

DISTRIBUTIONS OVER K AND M

In this study, the fusion cross sections were calculated
on the assumption of collisions of spherical incident nuclei
with deformed target nuclei, which is quite justified for the
12,13C + 235,236,238U and 16O + 232Th reactions under study.

The nucleus-nucleus potential was calculated as a sum
of the nuclear, Coulumb, and rotational energies: V = VN +
VC + Vrot For the nuclear part of the interaction potential, we
used the Woods-Saxon potential

VN = −V0

1 + exp
(R−Rp(θp)−Rt (θt )

a

) . (9)

Here R is the distance between the centers of mass of the
colliding nuclei, V0 is the potential depth, a is the diffusivity
parameter, and Rp,t are the radii of the incident and target
nuclei, which were assumed to be

Rp,t = r0A
1/3
p,t (1 + βp,tY20(θp,t ). (10)

For the Coulomb part of the potential, we used the expressions
obtained in Ref. [28], in which only the terms related to
quadrupole deformation of the target nucleus were left. The
rotational term of the nucleus-nucleus potential was calculated
as

Vrot = �
2�(� + 1)

2mR2
, (11)

where m is the reduced mass of the colliding nuclei. The partial
fusion cross section was determined as

σ (�,θp,θt ) = π�
2

2μEc.m.

2� + 1

1 + exp
( 2π[B(�,θt ,θp)−Ec.m.]

�ω(�,θt ,θp)

) , (12)

where B(�,θt ,θp) is the Coulomb barrier and �ω(�,θt ,θp) is
the oscillator frequency of the potential near its maximum.
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FIG. 2. Fission cross sections as functions of Ec.m. for the
12C + 236U (a), 12C + 235U (b), 12C + 238U (c), 13C + 235U (d), and
16O + 232Th (e) reactions. Experimental data are represented by
points: � are taken from Ref. [31], ♦ from Ref. [32], ◦ from Ref. [14],
� from Ref. [33], � from Ref. [34], • from Ref. [4], and � from
Ref. [35]. The curves are the model calculations (see text).

The total fusion cross section was calculated by the formula

σf =
∞∑

�=0

∫∫
σ (�,θt ,θp) sin(θt ) sin(θp)dθtdθp. (13)

In analysis of the experimental data on the fusion cross
sections for the 12,13C + 235,236,238U and 16O + 232Th reactions,
only the a and r0 parameters were varied. The potential
depth was fixed and its value was chosen to be the same as
that in Ref. [29], V0 = 70 MeV. The quadrupole deformation
parameters for the target nuclei were taken from Ref. [30]:
β = 0.207 and 0.215 for 232Th and 235,236,238U, respectively.
In Fig. 2, the results of calculations of the complete fusion
cross sections are compared with the experimental data.
The following diffusivities are obtained: a = 0.50 fm for
all reactions. The r0 parameter was chosen to be 1.23 fm

FIG. 3. Initial distributions over K at the subbarrier energy
Ec.m. = 55 MeV. The calculations are presented for 247Cf produced
with J = 17/2� in the 12C + 235U reaction (�) and for 248Cf produced
with J = 9� in the 12C + 236U reaction (•).

for the 12,13C + 235,236,238U reactions and 1.245 fm for the
16O + 232Th reaction.

Thus, the determined cross sections σ (�,θt ,θp) were used
in the calculations of the initial distributions over J , K , and M
according to relations (5)–(8). In Fig. 3, the initial distributions
over K are compared for the 12C + 235U and 236U reactions for
the subbarrier energy Ec.m. = 55 MeV. The fusion barriers are
in the range 56–65 MeV for the 12,13C + 235,236,238U reactions
and 73–84 MeV for the 16O + 232Th reaction dependent on the
mutual orientation of the colliding nuclei. It can be seen that
the distribution Y (J,K) has two maxima near K = ±7/2�

for the 12C + 235U reaction. The positions of the maxima
correspond to two possible components of st along the
symmetry axis of the deformed target nucleus 235U. In addition,
these data show that the existence of the nonzero spin of
the target nucleus results in a much wider initial distribution
over K for the 12C + 235U reaction, and this circumstance
should result in lower ADA at subbarrier energies in this
case. Broadening of the distributions over K with an increase
in the incident particle energy is shown in Figs. 4 and 5.
Such behavior of Y (J,K) is due to the gradual decrease of

FIG. 4. Initial distributions over K for 247Cf produced with J =
17/2� in the 12C + 235U reaction at Ec.m. = 55 (�), 60 (�), 65 (•),
and 70 (�) MeV.
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FIG. 5. Initial distributions over K for 248Cf produced with J =
8� in the 12C + 236U reaction at Ec.m. = 55 (�), 60 (�), 65 (•), and
70 (�) MeV.

the sensitivity of the fusion probability to the target nucleus
orientation at energies above the fusion barrier.

Finally, Fig. 6 shows the results of calculations of the
initial distributions over M for the 12C + 235U reaction at four
energies of incident carbon ions. As was expected, Y (J,M) has
two pronounced peaks at M = ±7/2� at subbarrier energies
and becomes equiprobable for above-barrier energies.

IV. ANALYSIS OF ANGULAR DISTRIBUTIONS OF
FISSION FRAGMENTS WITHIN THE DYNAMIC MODEL

In this study, ADs were calculated using the dynamic model
proposed in Refs. [19–21]. Within this model, the induced
fission dynamics is described using a system of stochastic
Langevin equations for one collective coordinate r and the
corresponding momentum p:

dr

dt
= p

m(r)

dp

dt
= −1

2

d

dr

( p2

m(r)

) − dF

dr
− β(r)p + f (t). (14)

FIG. 6. Initial distributions over M for 247Cf produced in
the 12C + 235U reaction at Ec.m. = 55 (�), 60 (�), 65 (•), and
70 (�) MeV.

Here r is the distance between the centers of mass of the
two halves of the nucleus along the fission valley. The
fission valley is determined by the method proposed in
Ref. [36] using the parametrization of Ref. [37] for axially
and mirror symmetrical nuclear shapes. In Eq. (14) β(r)
is the damping parameter of the fission mode, and f is a
random force with the following properties: 〈f (t)〉 = 0 and
〈f (t1),f (t2)〉 = 2D(r)δ(t1 − t2). D(r) is assumed to satisfy the
Einstein relation D(r) = m(r)β(r)T , where T is the nuclear
temperature. The inertial parameter m(r) was calculated along
the fission valley using the hydrodynamic Werner-Wheeler
approximation [38] and the method described in Ref. [39]. The
conservative forces in Eq. (14) were determined as a derivative
of the free energy F (r,T ,J,K) = V (r,J,K) − ad (r)T 2. In
this case, it was assumed that the nuclear temperature obeys
the relation T = √

Eint/ad (r), with Eint = E∗ − p2/(2m) −
V (r,J,K), where E∗ is the total nucleus excitation energy. The
parameter of level density ad was assumed to be dependent
on deformation: ad (r) = a1dA + a2dA

2/3BS(r), where A is
the mass number of the fissioning nucleus and BS(r) is the
dimensionless surface energy functional. The values of a1d and
a2d were taken from Ref. [40]. In calculation of the potential
energy of the rotating nuclear system, its dependence on K
was taken into account:

V (r,J,K) = BS(r)E0
S(Z,A) + BC(r)E0

C(Z,A)

+ [J (J + 1) − K]2
�

2

2	⊥
+ K2

�
2

2	||
, (15)

here Z is the charge of the fissioning nucleus; BC(r) is a
dimensionless Coulomb energy functional; E0

S and E0
C are the

surface and Coulomb energies of the corresponding spherical
system, respectively; and 	⊥ and 	|| are the momenta of inertia
with respect to the axes perpendicular and parallel to the
symmetry axis of the fissioning nucleus. The approximations
suggested in Ref. [36] were used to calculate both BS(r) and
BC(r).

To take into account the evaporation of light prescission
particles (neutrons, protons, α particles, and γ quanta),
calculations of the corresponding decay probabilities for an
excited system within the statistical theory of nuclear reactions
were incorporated into dynamic calculations. The algorithm of
such calculations is described in detail in Refs. [6,23,41]. The
initial values of r and p were generated for each Langevin
sample, proceeding from the distribution in the form

�(r,p,J ) = 1√
2πmT

exp

(
− p2

2mT

)
δ(r − req). (16)

Here req is the collective coordinate for the equilibrium
deformation. The initial values of J , K , and M were generated
from the distributions Y (J,K) and Y (J,M), taking into
account only discrete values within the ranges −J � K � J
and −S � M � S.

Within the dynamic model, K was considered to be
fluctuating due to the interaction with the intrinsic degrees
of freedom. The algorithm of calculations taking into account
fluctuations of K is as follows. At each step of the numerical
integration of the system of stochastic Langevin equations
(14), the probability of changing K is considered. This
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probability is assumed to be equal to h/τK , where h is
the numerical integration step for the Langevin equations.
Furthermore, a random number, ξ , is generated, which has
a uniform distribution on the interval [0,1]. If the condition
ξ < h/τK is satisfied, a new value is assigned to K , which is
chosen from the distribution

P (K) ∝ exp

(
−�F (r,J,K,T )

T

)
. (17)

Here �F is the free energy variation with the change of
K . Other details of the dynamic model are described in
Refs. [19,21]. Thus, within the approach proposed, each
Langevin sample reaching the scission point is characterized
by certain values of J , K , and M . It should be emphasized
that J at the scission point differs from the initial value due
to emission of the light particles. Accordingly, the values of
K were corrected after each emission event. In addition, we
neglected the variation in M as a result of emission of light
particles. This assumption is quite justified and often used for
reactions induced by heavy ions [3,4,19,21,23,25,26]. As a
result, ADs are calculated as an average over the ensemble of
Langevin samples leading to fission:

W (θ ) = 1

Nf

Nf∑
i=1

1

2
(2Ji + 1)

∣∣dJi

Ki ,Mi
(θ )

∣∣2
, (18)

where Nf is the number of Langevin samples reaching the
scission point.

Within this approach, ADs depend strongly on the rela-
tionship between the relaxation time τK and the durations of
different stages of fission. Thus, it is necessary to determine
with maximum accuracy the time scale of induced fission and,
therefore, the damping coefficient β of the collective nuclear
motion. To calculate β, we used the one-body mechanism of
nuclear dissipation [42] (wall + window formula [43–45]). As
a free parameter, we introduced the reduction coefficient ks ,
which makes it possible to decrease the contribution to dissipa-
tion from the interaction of nucleons with the nucleus surface

FIG. 7. Multiplicity of prescission neutrons (νpre). Experimental
data for the 16O + 232Th reaction are taken from Ref. [46]. The
calculation results are presented for the reaction leading to production
of the 248Cf compound nuclei: the solid line is for the 16O + 232Th
reaction, the dashed line for the 12C + 236U reaction, and the dashed-
dotted line for the 13C + 235U reaction.

FIG. 8. Comparison of ADA calculation with different τK =
10 × 10−21 s (�), 20 × 10−21 (◦), and 30 × 10−21 s (�) and the
experimental data for the 12C + 236U reaction (•, Refs. [14,15]; �,
Ref. [32]).

[43]. To determine the ks value, we used the experimental data
on the multiplicity of prescission neutrons. It should be noted
that the multiplicity of light prescission particles is almost
independent of τK [19–21,23,25,26]. This circumstance allows
one to determine the coefficient ks on the basis of analysis
of neutron multiplicities and then varying τK to describe the
experimental ADA. Note that, among the 12C + 235,236,238U
and 16O + 232Th reactions under consideration, only the latter
one is characterized by experimental data on the multiplicity
of prescission neutrons [46]. However, the 12C + 236U and
13C + 235U reactions also lead to the formation of 248Cf and,
as it was shown in Ref. [2], the observed average multiplicity
of prescission neutrons depends strongly only on Z/A and
the excitation energy of the fissioning system. In Fig. 7, the
experimental data on the multiplicity of prescission neutrons
for the 16O + 232Th reaction are compared with the results of
calculations. In this case, proceeding from the requirement of
the best description of the experimental data, we estimated
ks = 0.2.

FIG. 9. Comparison of the experimental ADA and the calcula-
tions performed with τK = 20 × 10−21 s. For the 12C + 236U reaction
the experimental points are marked as in Fig. 8, the calculation results
are presented by ◦. For the 12C + 235U reaction, the experimental
points [14,15] are marked as �, and the calculation results are
presented by �.
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FIG. 10. The same as in Fig. 9. For the 12C + 238U reaction the
experimental points [14,15] are marked as •, and the calculation
results are marked as ◦. For the 13C + 235U reaction, the experimental
points [34] are marked as �, and the calculation results are marked
as �.

Selected in this way ks was used to calculate ADs.
Further, we varied only τK to achieve the best description
of the experimental data on ADs with the use of the initial
distributions (5)–(8). Figure 8 shows the sensitivity of the ADA
calculations to the choice of the τK value. As can be seen, for
the subbarrier energies an increase of τK leads to the increase
of ADA. This is due to the increasing role of fission occurring
in time not exceeding τK . In contrast, the decrease of ADA
for the above-barrier energies with the τK rise indicates the
increasing role of configurations more distant from the scission
point. The best description of the experimental ADA in the
whole energy range under study provides the τK = 20 × 10−21

s value. It should be noted that this value falls within the
τK range from Refs. [19–21] where the experimental ADA
were analyzed for a number of reactions in the framework
of the dynamical model only for the above-barrier energies.
Figures 9 and 10 demonstrate the quality of the description of
experimental ADA with τK = 20 × 10−21 s and ks = 0.2 for
all reactions under study. These results suggest the following
statement. For the energies of incident particles below the
Coulomb barrier, ADs are significantly influenced by the

FIG. 11. The same as in Fig. 9 for the 16O + 232Th reaction.
Experimental points are marked as follows: •, from Ref. [4]; �, from
Ref. [32]; �, from Ref. [9]; and �, from Ref. [47]. The calculation
results are presented as ◦.

FIG. 12. The fraction of fission events occurring in a time
not exceeding τK in the total yield of fission fragments for the
12C + 236U (◦),12C + 235U (♦),12C + 238U (�),13C + 235U (�), and
16O + 232Th (�) reactions. For the 12C + 235U reaction the calculation
results are not presented in the range Ec.m. = 58–84 MeV due to the
overlap with the results for the 12C + 236U and 13C + 235U reactions.

memory of the reaction entrance channels. For this reason
both in the calculations and in the experimental data there
are significant differences of ADA for the reactions on the
235U target nuclei with the nonzero ground-state spin and the
spinless 238,236U target nuclei. For the above-barrier energies,
when the initial distributions over K and M tend to be
equiprobable, the magnitudes and the energy dependencies
of ADA become similar. Changing behavior of ADA in the
transition from the sub- to above-barrier energies is also
observed both in the calculations and in the experimental data
for the 16O + 232Th reaction (Fig. 11). Here the discrepancy
between the calculations and the experimental data at the
subbarrier energies can be explained by the contribution of
quasifission [48].

Thus, the developed dynamic approach allows the analysis
of experimental data on ADs of excited heavy nuclei produced
in heavy-ion-induced reactions in a wide energy range,
including the subbarrier energies, where the memory effects
play an important role, and above-barrier energies, where the
existing statistical models are not applicable. This approach
allows us to study the phenomenon of nuclear dissipation, the
complete fusion processes, and to obtain information about
the induced fission time scale. In particular, in this work we
have identified the contribution of fission events occurring in
time shorter than τK in the total fragment yields (Fig. 12). As
can be seen from Fig. 12 the fraction of such events in the
subbarrier range is not more than 0.1 for all reactions under
study. Here it should be noted that these results may change,
considering the dependencies of τK on the deformation, the
angular momentum, and perhaps the temperature. In the future,
using such dependencies we plan to analyze the available data
[26,49,50] on these dependencies using not only AD but also
other fission characteristics (e.g., fragment spins).

V. CONCLUSIONS

A dynamic approach suitable for the analysis of ADs for
complete fusion-fission reactions with heavy ions has been
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developed. This approach is applicable to a wide energy range
starting from subbarrier fusion and ending with the collision
energies when the fission at temperatures higher than fission
barrier values plays an important role. On the basis of the
results of Ref. [13] we suggested the quantum-mechanical
expressions to calculate the initial distributions over K . The

experimental data analysis on ADA and prescission neutron
multiplicities for a number of reactions leading to the produc-
tion of the Cf isotopes has provided the information on nuclear
viscosity, the relaxation time of the tilting mode, and the
fraction of fission events occurring before the establishment
of the equilibrium distribution over K .

[1] S. Kailas, Phys. Rep. 284, 381 (1997).
[2] J. O. Newton, Fiz. Elem. Chastits At. Yadra 21, 821 (1990)

[Sov. J. Part. Nucl. 21, 349 (1990)].
[3] B. B. Back, Phys. Rev. C 31, 2104 (1985).
[4] B. B. Back, R. R. Betts, J. E. Gindler, B. D. Wilkins, S. Saini,

M. B. Tsang, C. K. Gelbke, W. G. Lynch, M. A. McMahan, and
P. A. Baisden, Phys. Rev. C 32, 195 (1985).

[5] R. G. Thomas, R. K. Choudhury, A. K. Mohanty, A. Saxena,
and S. S. Kapoor, Phys. Rev. C 67, 041601(R) (2003).

[6] V. A. Drozdov, D. O. Eremenko, S. Yu. Platonov, O. V. Fotina,
and O. A. Yuminov, Yad. Fiz. 64, 221 (2001) [Phys. Atom. Nucl.
64, 179 (2001)].

[7] V. A. Drozdov, D. O. Eremenko, O. V. Fotina, S. Yu. Platonov,
O. A. Yuminov, and G. Giardina, Yad. Fiz. 66, 1669 (2003)
[Phys. Atom. Nucl. 66, 1622 (2003)].

[8] R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic
Press, New York, 1973).

[9] V. S. Ramamurthy, S. S. Kapoor, R. K. Choudhury, A. Saxena,
D. M. Nadkarni, A. K. Mohanty, B. K. Nayak, S. V. Sastry, S.
Kailas, A. Chatterjee, P. Singh, and A. Navin, Phys. Rev. Lett.
65, 25 (1990).

[10] Z. Liu, H. Zhang, J. Xu, Y. Qiao, X. Qian, and C. Lin, Phys.
Rev. C 54, 761 (1996).

[11] D. J. Hinde, M. Dasgupta, J. R. Leigh, J. P. Lestone, J. C. Mein,
C. R. Morton, J. O. Newton, and H. Timmers, Phys. Rev. Lett.
74, 1295 (1995).

[12] D. J. Hinde, M. Dasgupta, J. R. Leigh, J. C. Mein, C. R. Morton,
J. O. Newton, and H. Timmers, Phys. Rev. C 53, 1290 (1996).

[13] R. D. Butt, M. Dasgupta, I. Gontchar, D. J. Hinde, A. Mukherjee,
A. C. Berriman, C. R. Morton, J. O. Newton, A. E. Stuchbery,
and J. P. Lestone, Phys. Rev. C 65, 044606 (2002).

[14] J. P. Lestone, A. A. Sonzogni, M. P. Kelly, and R. Vandenbosch,
Phys. Rev. C 56, R2907(R) (1997).

[15] J. P. Leston, A. A. Sonzogni, M. P. Kelly, and R. Vandenbosch,
J. Phys. G: Nucl. Part. Phys. 23, 1349 (1997).

[16] V. A. Drozdov, D. O. Eremenko, S. Yu. Platonov, O. V. Fotina,
O. A. Yuminov, G. Mandaglio, F. Manganaro, and V. M.
Romaniuk, Int. J. Mod. Phys. E 19, 1249 (2010).

[17] V. A. Drozdov, D. O. Eremenko, S. Yu. Platonov, O. V. Fotina,
O. A. Yuminov, G. Giardina, G. Fazio, F. Malaguti, P. Oliva,
and V. Togo, Int. J. Mod. Phys. E 19, 1227 (2010).

[18] D. O. Eremenko, B. Mellado, S. Yu. Platonov, O. V. Fotina,
O. A. Yuminov, G. Giardina, G. Rappazzo, and F. Malaguti,
J. Phys. G: Nucl. Part. Phys. 22, 1077 (1996).

[19] V. A. Drozdov, D. O. Eremenko, O. V. Fotina, S. Yu. Platonov,
and O. A. Yuminov, AIP Conf. Proc. 704, 130 (2004).

[20] V. A. Drozdov, D. O. Eremenko, O. V. Fotina, S. Yu. Platonov,
G. Giardina, F. Malaguti, and O. A. Yuminov, Nucl. Phys. A
734, 225 (2004).

[21] D. O. Eremenko, V. A. Drozdov, M. H. Eslamizadex, S. Yu.
Platonov, O. V. Fotina, and O. A. Yuminov, Phys. At. Nucl. 69,
1423 (2006).

[22] P. D. Bond, Phys. Rev. C 32, 471 (1985).
[23] A. V. Karpov, R. M. Hiryanov, A. V. Sagdeev, and G. D. Adeev,

J. Phys. G: Nucl. Part. Phys. 34, 255 (2007).
[24] J. P. Lestone, Phys. Rev. C 59, 1540 (1999).
[25] P. N. Nadtochy, E. G. Ryabov, A. E. Gegechkori, Yu. A.

Anischenko, and G. D. Adeev, Phys. Rev. C 85, 064619 (2012).
[26] P. N. Nadtochy, E. G. Ryabov, A. E. Gegechkori, Yu. A.

Anischenko, and G. D. Adeev, Phys. Rev. C 89, 014616 (2014).
[27] I. I. Gontchar, M. Dasgupta, D. J. Hinde, R. D. Butt, and A.

Mukherjee, Phys. Rev. C 65, 034610 (2002).
[28] N. Takigawa, T. Rumin, and N. Ihara, Phys. Rev. C 61, 044607

(2000).
[29] A. S. Il’inov, Yu. Ts. Oganesyan, and E. A. Cherepanov, Sov. J.

Nucl. Phys. 36, 69 (1982).
[30] P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[31] T. Murakami, C.-C. Sahm, R. Vandenbosch, D. D. Leach, A.

Ray, and M. J. Murphy, Phys. Rev. C 34, 1353 (1986).
[32] S. Kailas, D. M. Nadkarni, A. Chatterjee, A. Saxena, S. S.

Kapoor, R. Vandenbosch, J. P. Lestone, J. F. Liang, D. J. Prindle,
A. A. Sonzogni, and J. D. Bierman, Phys. Rev. C 59, 2580
(1999).

[33] V. E. Viola and T. Sikkland, Phys. Rev. 128, 767 (1962).
[34] B. P. Ajitkumar, K. M. Varier, B. V. John, A. Saxena, B. K.

Nayak, D. C. Biswas, R. G. Thomas, and S. Kailas, Phys. Rev.
C 77, 021601(R) (2008).

[35] H. Zhang, Z. Liu, J. Xu, X. Qian, Y. Qiao, C. Lin, and K. Xu,
Phys. Rev. C 49, 926 (1994).

[36] J. P. Lestone, Phys. Rev. C 51, 580 (1995).
[37] S. Trentalange, S. E. Koonin, and A. J. Sierk, Phys. Rev. C 22,

1159 (1980).
[38] K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C 13, 2385

(1976).
[39] J. Bartel, K. Mahboub, J. Richert, and K. Pomorski, Z. Phys. A

354, 59 (1996).
[40] A. V. Ignatyuk, M. G. Itkis, V. N. Okolovich, G. N. Smirenkin,

and A. S. Tishin, Yad. Fiz. 21, 1185 (1975) [Sov. J. Nucl. Phys.
21, 612 (1975)].
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