
PHYSICAL REVIEW C 94, 014324 (2016)

Diabatic crossing of chiral “twins” in the odd-odd 106Ag nucleus: A theoretical perspective
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A systematic study of both the observed positive-parity magnetic rotation band and the negative-parity �I = 1
doublet bands in an odd-odd 106Ag nucleus is carried out. The negative-parity doublet bands depict some
unusual features that have not been observed in any isotope in the mass A = 100 region. For instance, (i) the
moment of inertia of the partner band is quite different from that of the yrast band, and (ii) these bands cross
each other at an angular momentum of I = 14�. Also, the observed significantly large but constant B(M1)
transitions confirm that the strong M1 transitions are being reinforced by the contributions from collective
rotation. To explain these features, a collective model has been developed whose kinetic and potential energies
are extracted from the tilted-axis cranking model. Instead of the triaxial parameter γ , a second-order phase
transition is found to be responsible for the spontaneous breakdown of chiral symmetry. Analytical solution of
the Schrödinger equation has generated a doublet nondegenerate eigenvalue spectrum. The ensuing model results
based on the two-quasiparticle configuration πg 9

2
⊗ νh 11

2
exhibit similarities with many observed features of the

negative-parity doublet bands and hence confirm their chiral character. The cranking mass parameter in kinetic
energy plays an important role in diabatic crossing between these emerged chiral twin bands.
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I. INTRODUCTION

The occurrence of chirality in nuclear physics was first
suggested in 1997 by Frauendorf and Meng [1] and is expected
to occur in nuclei having triaxial shapes. Petrache et al. [2]
have reported a pair of �I = 1 bands with same parity in
134Pr, which have been interpreted by Frauendorf and Meng
[1] as a first candidate for chiral twin bands. These bands
arise mainly due to the possible existence of two enantiomeric
(left- and right-handed) forms of the nucleus. Since then
a large number of experimental investigations have been
undertaken to establish the existence of chiral twin bands
in several mass regions of nuclear landscape [3–8]. It is
emphasized that the observed doublet must have identical or,
in practice, very similar rotational spectra, spin alignments,
and electromagnetic transition probabilities.

In the year 2007, Joshi and co-workers [9] have observed
some novel features of the negative-parity �I = 1 doublet
bands in the 106Ag nucleus. For example, the moment of inertia
of the partner band is quite different from that of the yrast band
and these bands cross each other at an angular momentum,
I ∼ 14�. Such a unique characteristic, i.e., diabatic crossing of
the doublet at a particular angular momentum, has not yet been
observed in other nuclei in the mass A ∼ 100 region [3,10–14].
In favor of different moments of inertia, they have suggested
that the main and partner bands originate, respectively, from
the triaxial and the axially symmetric shapes. Therefore, the
shape transformation induced by chiral vibration has been
given as a possible explanation for a planar axial rotation band
being a partner of a triaxial band. Although the chiral “twins”
have energies close to each other, it is rare to observe a crossing
between them. An additional characteristic of chiral bands is
that their in-band B(M1) and B(E2) values as well as their
B(M1)/B(E2) ratios should be identical [15,16]. Recently,
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the Tata Institute of Fundamental Research group [17] has
observed identical B(M1) and B(E2) transition probabilities
in both these bands and has fully supported the claim of Joshi
et al. [9].

The triaxial deformation, which is a key ingredient of
chiral rotation, was investigated for the negative-parity �I = 1
doublet bands in 106Ag by Ma and co-workers [18]. They have
revealed that the main and the partner bands in this nucleus do
not correspond to two different shapes (i.e., triaxial and axially
symmetric), but rather these bands correspond to magnetic
rotation (MR) bands based on two different quasiparticle
configurations, namely: π (g 9

2
)1 ⊗ ν(h 11

2
)1 (for the main band)

and π (g 9
2
)1 ⊗ ν(h 11

2
)3 (for the partner band). Alternatively,

Lieder and co-workers [19] in their more recent investigation
have drawn similar conclusions but with a different four-
quasiparticle configuration [π (g 9

2
)1 ⊗ ν((g 7

2
/d 5

2
)2h 11

2
)] for the

partner band. Both these works have rejected the proposal of
Joshi et al. [9]. The absence of triaxiality in 106Ag brings up
questions regarding its chiral rotation.

Thus, the above analyses have emphasized two contrasting
possibilities for the negative-parity �I = 1 doublet bands in
the 106Ag isotope, i.e., (i) the chiral twins emerging from shape
transformation and (ii) the MR bands based on two distinct
quasiparticle configurations. However, direct evidence for the
existence of a generalized triaxial shape in a nuclear system
is not possible, because two different deformation parameters
β (quadrupole deformation) and γ (an extent of departure
from the symmetric shape) cannot be extracted from a single
experimental B(E2,I → I − 2) value. Further, similar B(E2)
values for the observed doublet do not support the two
different quasiparticles picture. Therefore, the explanation
corresponding to chiral twins cannot be completely ruled out.
To resolve this paradox and to get an insight into the origin
of different moments of inertia of these doublet bands, I have
developed a model parallel to the collective model of Chen
et al. [20].
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Before proceeding to strengthen my viewpoint, I would like
to mention an important aspect related to chiral symmetry.
Recently, Bhattacharya and Kleinert [21] have discussed the
chiral symmetries in both two- and three-dimensional angular
momentum systems. Their simple model calculations clearly
reveal that the chiral structures prevail not only in a three-
dimensional angular momentum system Hamiltonian but also
in a two-dimensional angular momentum system Hamiltonian.

Dimitrov and co-workers [22] have established the chiral
character in an odd-odd 134Pr nucleus on the basis of
the nonplanar tilted-axis cranking (TAC) calculations. Their
self-consistent minimization of the Routhian has fixed the
bandhead of chiral partner bands in a planar configuration. This
means at low spin, the proton-particle prefers to combine with
the neutron-hole in a plane and leads to two-degenerate TAC
solutions with the tilt angles θ and (π − θ ). Correspondingly,
a �I = 1 band is supported at the bandhead. Higher spins
in their TAC solutions emerge from the nonplanar angular
momentum distributions. In this way, two planar TAC so-
lutions bifurcate onto four nonplanar ones with an increase
in rotational frequency. Thus, the nonplanar TAC solutions
have generated a pair of identical �I = 1 bands of same
parity. Because triaxial nuclei are generally γ soft, it is
not yet clear whether the TAC solutions corresponding to a
planar configuration at higher spins fulfill the self-consistent
constraint. On the other hand, it is quite possible that a planar
TAC solution fulfills that self-consistent constraint accurately.
The present calculations of positive-parity bands (Sec. II B)
have reflected the testing limit of self-consistent minimization.
Further, because the TAC approach is based on the mean-field
theory, the description of quantum tunneling between the
identical doublet �I = 1 bands is not possible [23,24].

To describe the energy splitting between the chiral twin
bands, one has to go beyond the mean-field approximation.
Numerous efforts in this direction have already been carried
out by various authors [25–27]. Alternatively, Chen and
co-workers [20] have developed the collective model for
explaining the prominent features of chiral twin bands. They
have established the collective Hamiltonian by extracting
the potential energy and mass parameter from the TAC
model. In their approach, they have realized for the first time
the importance of the double-well potential (DWP) for the
emergence of chiral structures.

The DWP of a physical system is generally expressed as
VDWP = −αφ2 + λφ4, where α and λ are positive constants
and φ is a variable of a quantum mechanical state. This
potential has two sets of extrema, i.e., φ0 = 0 and φ0 = ±√

α
2λ

.
The minima are located at φ0 = ±√

α
2λ

= 〈0|φ|0〉, rather than
at φ0 = 0. This means that the energy at φ0 = ±√

α
2λ

is
lower than that at φ0 = 0. Therefore, φ0 = 0 corresponds
to the normal state while 〈0|φ|0〉 = ±√

α
2λ

are the stable
ground states of the physical system. Also, these two ground
states satisfy 〈0|φ|0〉 �= −〈0|φ|0〉 under the transformation
φ → −φ. That is, the symmetry of the ground states has
been destroyed. Obviously, this spontaneous breakdown of
symmetry occurs due to the nonlinear term λφ4 in the potential.
According to Landau’s theory of phase transition, the system
undergoes a second-order phase transition in such a case

where the normal state φ0 = 0 changes to the stable ground
state 〈0|φ|0〉 = ±√

α
2λ

. Recently, it has been established that
a single �I = 1 band that is developed in the left well at time
t = 0 tunnels to the right well of opposite handedness with
the evolution of time [28]. Further, the tunneling through the
DWP lifts the degeneracy between the rotational partners.

The main aim of the present paper is to establish the
chiral character of the negative-parity �I = 1 doublet bands
in the 106Ag nucleus. The collective Hamiltonian for a system
of one g 9

2
proton-hole and one h 11

2
neutron-particle coupled

to a triaxial rigid rotor is constructed. The potential energy
and mass parameters involved in the collective Hamiltonian
are extracted from the TAC model. Instead of the triaxial
parameter γ , a second-order phase transition is found to
be responsible for the spontaneous breakdown of chiral
symmetry. Analytical solution of the Schrödinger equation
has generated a doublet nondegenerate eigenvalue spectra. The
ensuing model results exhibit similarities with many observed
features of the negative-parity doublet bands and hence ensure
their chiral character. The cranking mass parameter in kinetic
energy is found to play an important role in diabatic crossing
between these emerged chiral twin bands.

A complete model of the TAC developed by Frauendorf
may be found in Ref. [29]. In Sec. II A, a brief account of the
TAC model is presented for completeness. Because the mass
A ∼ 110 region is quite prone to both MR bands [30–34]
and chiral twin bands [3,10,12]. Therefore, the 106Ag nucleus
may also be considered to lie in the island of magnetic-dipole
and chiral twin bands. He and co-workers [35] have already
claimed the magnetic rotation character in the positive-parity
�I = 1 band. In Sec. II B, I have also analyzed this positive
parity MR band using the TAC model. Section II C highlights
the contributions of TAC in the observed negative-parity
doublet bands in 106Ag. The collective model is developed
in Sec. II D. The results and discussions are presented in Sec.
III. Finally, the conclusions are summarized in Sec. IV.

II. THEORETICAL FORMALISM

Many calculations have been reported in the literature both
for the MR and the chiral doublet bands on the basis of a
multiparticle version of the TAC model where pairing and
residual interactions have also been included [22,24,29,36]. In
an odd-odd 106Ag isotope, both the MR (positive-parity) band
and the suspected negative-parity chiral twins are observed
[9,35] side by side. First, I investigate both these phenomena
by using the TAC model and pinpoint the similarities and
dissimilarities between theory and observed data. A very brief
outline of this model is presented, which is barely necessary
to support the following discussion. This model has already
been used by me and my colleagues to explain the observed
features of the MR bands [37–39].

A. Tilted-axis cranking model

Within the pairing plus quadrupole-quadrupole interaction,
the quasiparticle Routhian [29] is given by

h′ = hsp − �ω0β

[
cos γ q0 − sin γ√

2
(q2 + q−2)

]

−�(P + + P ) − λn − 
ω · 
j, (1)
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with 
ω · 
j = ω(j1 sin θ cos φ + j2 sin θ sin φ + j3 cos θ ).
Here, hsp is the single-particle Hamiltonian of a deformed
field (e.g., a deformed oscillator or a deformed Woods-Saxon
potential); ω is the cranking frequency; θ and φ are the tilt
angles of the resultant angular momentum with respect to
the principal 3-axis and 1-axis, respectively; and ji (i = 1 to
3) are the components of the particle angular momentum 
j
along the three axes, where the 3-axis is the symmetry axis.
Further, �ω0 = 41

A
1
3

MeV, β and γ are the usual deformation

parameters. q0, q2, and q−2 are the expectation values of
the respective components of the quadrupole tensor Q. The
operator P + creates the pair field, the strength of which is
fixed by the gap parameter �. In the following calculations,
the proton and neutron pairing gap parameters have been
chosen as 80% of the experimental odd-even mass difference
and are calculated by using the expressions given in Ref. [40]
with the binding energies taken from the atomic mass tables
[41]. The Fermi level is fixed to give an average particle
number at the cranking frequency ω = 0.

The total Routhian E′(ω) is calculated by using the
Strutinsky renormalization technique [42]:

E′(ω) = ELD − Esmooth + 〈ω|h′|ω〉. (2)

Here, ELD is the liquid-drop energy and the smooth part of
the energy, Esmooth, is calculated by the Strutinsky averaging
method. The deformation parameters (ε2, ε4, and γ ) and the
tilt angles (θ and φ) are found self-consistently by minimizing
the total Routhian E′(ω) for a given frequency and a chosen
configuration.

B. Analysis of positive-parity MR band

The Beijing group [35] has studied the high-spin states in
the 106Ag nucleus and has identified the MR character in the
positive-parity �I = 1 band on the basis of the TAC model.
Parallel to this study, I have also carried out the TAC calcula-
tions for this band just to test the self-consistent constraint. A
self-consistent solution (corresponding to each variable in the
Hamiltonian) is the one at which the total angular momentum
〈 
j 〉 is parallel to the angular frequency 
ω [43]. Once the
self-consistent constraint is fulfilled, the Routhian attains a
minimum value for a given set of parameters.

In the observed positive-parity MR band in 106Ag [35],
the bandhead spin I is 13+, which indicates the multi-
quasiparticle character of the band. Taking the bandhead
spin and parity into consideration, I have chosen a four-
quasiparticle configuration,

{π (g 9
2
) ⊗ ν[(h 11

2
)2(g 7

2
/d 5

2
)]},

similar to that of Ref. [35]. Using the constant values of �p

(=0.893 MeV), �n (=0.739 MeV), and ω (=0.15 MeV),
a self-consistent minimization determines the deformation
parameters ε2, ε4, and γ , respectively, as 0.144, 0.0, and 5.1◦.
Because γ � 30◦, a nearly prolate shape with an average tilt
angle of θ ∼ 70◦ emerges.

Figure 1 shows the plot of the angular momentum I vs the
rotational frequency �ω of the calculated data (solid line) along
with the experimental data (solid circles connected by a solid

FIG. 1. The calculated angular momentum I vs the rotational
frequency �ω for the positive-parity MR band in 106Ag. Solid circles
connected with a solid line represent the experimental data.

line). The calculated bandhead is nearly one unit higher than
that of the observed one. The overall trend of the experimental
data is reproduced nicely. The following points clearly support
the MR character in this band.

(i) The observed bandhead (I is 13+) excitation energy
is greater than 2 MeV.

(ii) The calculated deformation parameter (ε2 ∼ 0.14) is
extremely small.

(iii) A major part of the total angular momentum originates
from the coupling of the angular momenta of valence
protons and neutrons through the shear mechanism.

(iv) Similar configuration, i.e.,

{π (g 9
2
) × ν[(h 11

2
)2(g 7

2
/d 5

2
)]},

based bands have already been identified as magnetic
rotation bands in the neighboring 104Ag [44] and 108Ag
[45] isotopes.

I would like to mention here that the angular momentum I
vs the rotational frequency �ω plot (Fig. 1) shows behavior
similar to that of Fig. 4 in Ref. [35]. This similarity supports
the testing limit of the self-consistent minimization procedure
adopted in the present calculations. Also, an interesting point
is that the trend of a small but rather constant moment of inertia
of the MR band is fully supported by both these calculations.

Further, the reduced transition probabilities are calculated
by using the following semiclassical expressions:

B(M1,�I = 1) = 3

8π
(μ3 sin θ − μ1 cos θ )2 (3)
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FIG. 2. (a) The calculated B(M1) values. (b) The calculated
B(E2) values. (c) The calculated ratio B(M1)/B(E2) vs the
rotational frequency �ω for the positive-parity configuration. Exper-
imental data with error bars from Ref. [47] are also plotted as solid
circles.

and

B(E2,�I = 2)= 15

128π

(
Q0

′ sin2 θ+
√

2

3
Q2

′(1+ cos2 θ
))2

.

(4)

Here, μ’s are the expectation values of the corresponding
operator of the magnetic dipole moment and Q′’s are the ex-
pectation values of the intrinsic quadrupole moment operator.
The expectation values of the proton and neutron spins are
attenuated by a factor of 0.7 for the calculations of B(M1)
values. The microscopic reason for this attenuation factor is
not fully understood. A general observation reveals that the
calculated B(M1) values reproduce the experimental data with
the standard attenuation factor of 0.6–0.7 for the spin part of the
magnetic transition moments. In a relativistic framework, this
corresponds to an attenuation of the anomalous gyromagnetic
ratio [46].

These transition probabilities vs the rotational frequency
�ω are shown in Fig. 2 and are compared with the available
experimental data [47]. The calculated B(M1) values and the
experimental data are shown in Fig. 2(a). Both the observed
and the calculated B(M1) values lie between 1 and 2 μN

2

and show a decreasing trend with an increasing rotational
frequency and hence with an increasing angular momentum
I . This decreasing behavior with an increasing rotational
frequency ensures the validity of the shear mechanism in
this positive-parity band. Further, the calculated B(E2) values
together with the observed data are shown in Fig. 2(b). Both
the observed and calculated values are of the order of ∼0.1
(eb)2. These extremely small constant values of B(E2) also
ensure its MR character. Finally, the B(M1)/B(E2) ratios
are plotted in Fig. 2(c). It may be seen that the calculated
ratio B(M1)/B(E2) lies between 19 and 9 (μN/eb)2, thus
indicating the in-band transitions are predominantly M1

FIG. 3. The normalized experimental excitation energy E-E0

(MeV) vs the angular momentum I for the negative-parity doublet
bands. The normalization E0 refers to the excitation energy of the
I = 9−

� level of the main band. Here, solid and open circles
represent, respectively, the observed main and partner bands. The
calculated excitation spectra normalized to I = 8.55−

� are shown
as a solid line.

in character. Also, this ratio decreases with an increasing
angular momentum, which is again an indication of the shear
mechanism in this band.

C. Analysis of negative-parity doublet bands

The observed structures of the negative-parity main (solid
circles connected with a solid line) and partner (open circles
connected with a dashed line) bands are shown in Fig. 3. Here,
the excitation energies plotted on the ordinate are normalized
with respect to the energy E0 of the I = 9−

� level of the
main band. This plot reveals that (i) the moments of inertia
of the two bands are quite different and (ii) these bands cross
each other at an angular momentum of I = 14�.

Before going to analyze these negative-parity doublet
bands, I would like to point out that the mass A ∼ 110 region
falls in a γ -soft domain. Such transitional nuclei may have
shallow minima at finite γ deformation in the Hartree-Fock-
Bogoliubov calculations [48]. It has been demonstrated that
such shallow minima become prominent ones when projected
onto spin I = 0� [49]. Thus, to describe these transitional
nuclei, it is important to consider the basis states |ε2,ε4,γ,θ,φ〉
(which are the eigenstates of the triaxial mean-field potential)
rather than the axial basis. Shi and co-workers [50] have
already tested the validity of self-consistent constraint in γ -soft
nuclei by considering sufficient basis states in their TAC model
space.

For the analysis of the observed negative-parity doublet
�I = 1 bands, three major harmonic shells (N = 3–6) for
each type of nucleon have been used. These shells are quite
sufficient in constructing an appropriate model space for the
mass A ∼ 110 region. I carry out the TAC calculations for
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these bands by choosing a two-quasiparticle configuration,
π (g 9

2
) ⊗ ν(h 11

2
), as suggested by Joshi et al. [9]. The self-

consistent minimization of the Routhian (2) fixes the defor-
mation parameters as ε2 = 0.172, ε4 = 0.04, and γ = 4.8◦. In
these calculations, the constant values of �p (=0.893 MeV)
and �n (=0.739 MeV) are considered throughout the band.
The nucleus (106Ag) discussed here contains an odd number
of protons and neutrons. It is well known that the pairing
effects for such nuclei get reduced by the blocked high-j
orbitals near the Fermi surface. Also, this pairing keeps on
decreasing gradually with an increase in rotational frequency.
Therefore, the variation of the pairing strength parameter (�n

and/or �p) is quite essential at each rotational frequency. In
the present formalism, I have not carried out the self-consistent
minimization of the Routhian (2) at higher rotational frequency
and, also, the variation of the pairing strength parameters has
not been carried out for the following reasons.

(i) These calculations consume a lot of computer time.
(ii) Dimitrov and co-workers [22] have made the TAC cal-

culations for the odd-odd 134Pr nucleus with constant
pairing strength parameters. Further, they have noticed
that the planar states contribute to the bandhead spin
of chiral twin bands. The present calculation also
supports a planar configuration and reproduces the
bandhead spin of negative-parity �I = 1 bands.

(iii) Oi and Walker [51] have already noticed that self-
consistent minimization does not support a stable
aplanar configuration.

(iv) In the subsequent discussion, I have considered these
negative-parity doublets as quasirotational with con-
siderable vibrational contribution.

Thus, a single �I = 1 negative parity band is supported on
a planar configuration. The calculated excitation energy E
(MeV) is normalized with respect to the energy E0 of state
I = 8.55� and is plotted in Fig. 3 as a solid line. A comparison
with the experimental plots reveals the following interesting
points.

(i) The observed bandhead of the main band is reproduced
nicely with an assigned two-quasiparticle configura-
tion, [π (g 9

2
) ⊗ ν(h 11

2
)]. Because the triaxial parameter

γ in the TAC calculation comes out to be 4.8◦, which
is much less than the triaxial value 30◦, it completely
rules out the possibility of triaxial shape for this main
band as claimed by Joshi et al. [9].

(ii) The calculated excitation spectrum, which was initially
close to the observed main band, subsequently becomes
closer to the partner band at an angular momentum of
I = 14�.

An important aspect of this plot is that the calculated spectrum
follows either the main band or the partner band, whichever
is lowest in excitation energy over a considerable range of
angular momentum. Thus, the minimum excitation spectrum
extracted out of two observed rotational bands follows closely
the calculated spectrum based on the two-quasiparticle con-
figuration π (g 9

2
) ⊗ ν(h 11

2
). Therefore, the possibility of two

different quasiparticle configurations for these bands is not

FIG. 4. The calculated angular momentum I vs the rotational
frequency �ω for the negative-parity configuration (solid line).
Experimental data for the main band (solid circles connected with
a solid line) and the partner band (open circles connected with a
dashed line) are also shown.

an appropriate option. This remarkable observation clearly
rules out the possibility that these observed bands have a MR
characterbased on two different quasiparticle configurations
that were already claimed by two different groups [18,19].
In the subsequent discussion, the absence of MR character in
these bands is also supported by the observed B(M1) transition
probability.

To confirm the above claim further, I plot in Fig. 4 the
calculated as well as the experimental data of the angular
momentum I vs the rotational frequency �ω. On comparing
the observed γ -ray energies with those of TAC calculations,
it is clear that the lower portion of the main band is better
reproduced in terms of magnitude and trend. Also, the trend
of a higher portion of the observed partner band is reproduced
reasonably well above the angular momentum I ∼ 14� by
same two-quasiparticle configuration based band.

Further, the experimental and calculated B(M1) values are
compared in the upper panel of Fig. 5. It is noticed in this
plot that the calculated B(M1) values agree reasonably well
with the observed B(M1) values of the main and partner
bands over a considerable range of angular momentum. A
remarkable point to be noticed here is that the calculated as well
as the observed B(M1) values stay nearly constant over the
considered range of angular momentum; i.e., these values do
not decrease with increasing angular momentum as expected
for the MR phenomenon. This completely rules out the
possibility of the shear mechanism prevailing in both the main
and partner bands. Also, the significantly large but constant
magnitudes of the observed B(M1) values ensure that the
strong M1 transitions are being reinforced by the contributions
from the collective rotation. Hence, the possibility of collective
rotation is still alive.
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FIG. 5. Upper panel: A solid line shows the calculated B(M1)
values vs the angular momentum I for the negative-parity configu-
ration. Experimental data for the main band (solid circles) and the
partner band (open circles) are also shown. Lower panel: B(E2)
values with the same description.

In the lower panel Fig. 5, the experimental and calculated
B(E2) values are plotted. Within the error bars, nearly the same
observed values of the main and partner bands completely rule
out the possibilities of two different configurations for these
bands. These observed B(E2) values are nearly constant and
are quite small over the observed range of angular momentum.
Therefore, these values favor small deformation for these
bands as obtained in the TAC calculation (ε2 = 0.172). The
TAC model results also show a nearly constant behavior
over the considered range of angular momentum and are
consistent with the observed trend. However, the calculated
B(E2) values are significantly larger than those of the observed
ones. It is worthwhile to pinpoint that, in these calculations,
a self-consistent minimization of the Routhian is carried out
near the bandhead rotational frequency. The self-consistent
minimization at higher rotational frequency may increase
the triaxiality parameter γ (because 106Ag nucleus is γ soft
in character). Schnare and co-workers [52] did the TAC
calculations for γ -soft nuclei in the mass A ∼ 80 region and
noticed that B(E2) values decrease by a factor of 2 with an
increase of γ from 0◦ � γ � 20◦. Hence, the self-consistent
minimization at higher rotational frequencies may improve the
agreement between the theoretical and experimental B(E2)
values. This observation clearly supports the triaxiality at
higher rotational frequencies.

Thus, both the possibilities, i.e., shape transition (from
triaxial to axially symmetric) and the MR character based on
two different quasiparticle configurations (from two to four)
for the observed main and partner bands, are not supported
by the TAC model calculations. It is worthwhile to mention
here that the experimental B(M1) values for both these bands
are nearly constant over a considerable range of angular
momentum. This constant behavior supports the collective
rotation rather than the shear mechanism for the observed
M1 transitions. This point is also supported by Fig. 6 in

FIG. 6. Variation of the tilt angle θ vs the rotational frequency
�ω both for positive- and negative-parity configurations.

which the tilt-angle θ is plotted vs the rotational frequency �ω
for both the positive-parity MR band and the negative-parity
configuration band. It is quite evident from this plot that the
MR band as usual depends weakly on the tilt angle whereas
the tilt angle varies strongly with the rotational frequency for
the negative-parity band. Similar conclusions for the MR and
high-K bands have already been drawn by Frauendorf [29].
Still the paradoxical situation prevails, so I have developed a
collective model parallel to Chen and co-workers [20] for the
analysis of negative-parity doublet bands.

D. Collective model for negative-parity doublet

The collective model Hamiltonian for the two-quasiparticle
negative-parity configuration π (g 9

2
) ⊗ ν(h 11

2
) is constructed on

the basis of the TAC model by extracting the potential energy
and the mass parameter as follows. Following Chen and co-
workers [20], the potential energy is obtained by minimizing
the total Routhian (2) with respect to θ (ω) and is given by

V (θ ) = E′(θ ) − 1

2

∑
k

kωk
2, (5)

where k varies between 1 and 3 and k = 0 sin2(γ − 2π
3 k)

with 0 = 40�
2/MeV being the moment of inertia along

the k axis. Because the potential V (θ ) has minima at finite
nonvanishing values of θ , in this case, the nucleus 106Ag can
exhibit rotations that can be described by the time-dependent
parameter θ (t) in the laboratory frame. Therefore, these
rotations have been considered as collective ones.

Following the guidelines of Chen and co-workers [20],
the quantized form of collective Hamiltonian, using the Pauli
prescription [53], can be expressed as

Hcoll = − �
2

2
√

B(θ )

∂

∂θ

[ 1√
B(θ )

∂

∂θ

]
+ V (θ ). (6)
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The mass parameter B(θ ) for the kinetic energy term is
consistently calculated by using the TAC model states in the
adiabatic cranking formula based on the BCS formalism (see
Refs. [54,55] for details). For the present calculations, the
following form of the cranking mass formula has been chosen:

B(θ ) = 2�
2

∑
μ,ν>0

〈μ| ∂H
∂θ

|ν〉〈ν| ∂H
∂θ

|μ〉
(ε̃μ + ε̃ν)3

(uμvν + uνvμ)2.

(7)

In Eq. (7), |μ〉 denotes the single-particle states of the TAC
model. I would like to mention here that a range of three har-
monic oscillator shells (N = 3–6) for an individual nucleon is
quite sufficient for calculating the self-consistent deformation
parameters ε2, ε4, and γ and it also saves computer time.
On the other hand, the mass parameter calculations require
more than three oscillator shells for an individual nucleon, so
N = 0 to 9 harmonic oscillator shells have been chosen for
these calculations. Such a large configuration space usually
does not change the equilibrium deformation parameters
obtained within three oscillator shells. The inclusion of a large
configuration space, particularly at low deformation, ensures
that cutoff levels lie very far from the Fermi level and hence
overcome the divergences. Here, uμ and vμ correspond to the
BCS occupation numbers and ε̃μ represents the quasiparticle
energy.

Thus, knowing the potential and mass parameters, the
stationary Schrödinger equation in variable θ can be expressed
as[

− �
2

2
√

B(θ )

∂

∂θ

(
1√
B(θ )

∂

∂θ

)
+ V (θ )

]
�ν(θ ) = Eν�ν(θ ).

(8)

Chen and co-workers [20] have solved the Schrödinger
equation (8) by using box boundary conditions and have
obtained the analytical expressions for both positive- and
negative-parity eigenstates. Instead of an analytical solution,
Eq. (8) is solved numerically and the probability |�ν(θ )|2 of
angular distribution is thus obtained. The normalized angular
distribution is given by

P [θ (I )] = |�ν(θ )|2
√

B(θ ), (9)

with the constraint ∫ θmax

θmin

P (θ )dθ = 1. (10)

The states �ν(θ ) are the vibrational states in the potential V (θ ),
counted by the quantum number ν = 0, 1, 2, ... Here, each
quantum number ν supports a rotational band. If only the yrast
state is permissible and there is complete adiabaticity, then only
ν = 0 contributes in Eq. (8). These states may arise mainly due
to interaction between θ (ω) and other deformation degrees of
freedom. Higher vibrational states are nearly equally spaced
(i.e., vibrational character) and are counted by higher values
of ν = 1, 2, 3, ...However, if the system (106Ag) is nonyrast,
then higher values of ν will contribute.

III. RESULTS AND DISCUSSION

A self-consistent minimization of the total Routhian
E′[θ (ω)] is used in obtaining the potential energy V (θ )
[Eq. (5)] and is shown in the upper panel of Fig. 7. This
potential varies smoothly as a function of the tilt angle θ . Using
the single-particle states corresponding to each θ (ω) value, the
cranking masses B(θ ) are obtained by using expression (7) and
are shown in the lower panel of Fig. 7. The observed structure
in the mass parameter arises mainly due to the presence of
shell effects in single-particle states. Using these potential
and cranking masses, the normalized angular distributions
[Eq. (9)] for the first two excited states and the ground state
are shown in Fig. 8. Here, the ground state corresponds to
the vibrational degree of freedom ν = 0 with energy E0 ∼ 3
MeV and the first and second excited states refer to ν = 1
(with E1 ∼ 7 MeV) and 2 (with E2 ∼ 12 MeV), respectively.
I would like to mention here that these excited states do
not correspond to different configurations, but arise mainly
due to the presence of vibrational states in potential. The
following discussion [given in point (iii)] clearly highlights
the emergence of these vibrational states and each vibrational
state supports an individual rotational spectrum.

It is remarkable to notice here that a unique crossing
between the ground state (solid circles connected with a solid
line) and the first excited state (open circles connected with a
dashed line) occurs at an angular momentum of I = 15�. On
the other hand, the second excited state (triangles connected
with a dotted line) crosses the ground state at multiple
points without any similarity in their angular momentum. The
following important points emerge from this plot.

(i) The second excited state angular distribution does not
compete (in magnitude) with that of the first excited
state or even the ground-state distribution except for
a few angular momenta. This observation completely
rules out the possibility of the existence of a second
excited negative-parity �I = 1 band based on the

FIG. 7. Upper panel: The potential energy V (θ ) in MeV vs the
tilt angle θ . Lower panel: The variation of cranking masses.
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FIG. 8. The normalized angular distribution for the ground state
(solid circles connected with a solid line), the first excited state (open
circles connected with a dashed line), and the second excited state
(triangles connected with a dotted line) vs the angular momentum I

for the negative-parity configuration. Here, the energy of the ground
state ν = 0 is ∼3 MeV and that of the first (ν = 1) and second excited
states (ν = 2) are, respectively, ∼7 and ∼12 MeV.

same two-quasiparticle configuration π (g 9
2
) ⊗ ν(h 11

2
)

in the 106Ag nucleus. More recently, Lieder and co-
workers [19] have observed negative-parity Band 3
(see Fig. 1 in Ref. [19]) and have claimed the four-
quasiparticle configuration π (g 9

2
) ⊗ ν[(d 5

2
/g 7

2
)2h 11

2
]

for this band. Thus, both theory and experimental
outcome are consistent with each other.

(ii) The probability of the first excited state distribution
is higher than that of the ground state till I � 15�.
Just after this angular momentum reverse trend (i.e.,
excited state distribution becomes lower than that
of the ground state) follows a considerable range
of angular momentum. This implies that within the
angular momentum range Ib � I < 15�, the first
excited state spectrum is more probable as compared
to that of the yrast state. The higher probability of
the first excited state spectrum ensures that the ground
states are being fed by the excited states within the
angular momentum range Ib � I < 15�. This result
is fully consistent with the observed feeding pattern
prevailing between two negative-parity bands [9].

(iii) It is worthwhile to mention here that the crossing
between the ground state (ν = 0) and first excited-state
(ν = 1) angular distributions at an angular momentum
of I = 15� has a direct relevance with that of the
observed rotational spectra of the main and partner
bands. This point is more vivid from the following
simple analysis. It has already been pointed out that in
a planar configuration, two degenerate TAC solutions
at θ and (π − θ ) have generated a negative-parity
�I = 1 band. Its potential, V (θ ), and mass parameter,

B(θ ), are shown, respectively, in the upper and lower
panels of Fig. 7. Both of these (potential and mass
parameter) can be well approximated as harmonic in
character, like

V (θ ) = 1
2kθ2, B(θ ) = 1

2pθ2, (11)

with k and p as constants. Substituting these expres-
sions for V (θ ) and B(θ ) in Eq. (8), one finds that

d2�

dθ2
− 1

θ

d�

dθ
− (aθ4 − bθ2)� = 0, (12)

with a = pk

2�2 and b = pE
�

. Equation (12) has two
linearly independent solutions for a given energy E:

�1(θ ) =
√

b − aθ2J 1
3

⎛
⎜⎝

(√
b − aθ2

)3

a

⎞
⎟⎠, (13)

�2(θ ) =
√

b − aθ2J− 1
3

⎛
⎜⎝

(√
b − aθ2

)3

a

⎞
⎟⎠. (14)

Here, Jq(θ ) is a Bessel function of order q. Each zero
of the Bessel function supports a rotational spectrum,
because the rotational spectrum varies with θ (ω).
Here, the first node supports a yrast spectrum, whereas
the excited spectra are supported by higher nodes. It is
noticed that the yrast and first excited rotational spectra
follow a parabolic character and a constant separation
prevails between two spectra. The main reason for this
constant separation is that the fluctuations in the mass
parameters due to shell effects have been ignored.
Hence, the shell effects in mass parameters play a
dominant role in diabatic crossing between the main
and partner bands.

Because the present formalism is based on the guidelines of the
collective model of Chen and co-workers [20], it is worthwhile
to highlight the significant achievements in comparison to
those of the collective model [20]. These points are more vivid
from the following analytical treatment of the Schrödinger
equation (8).

A. Comparison with the collective model of Chen
and co-workers [20]

Chen and co-workers [20] have realized for the first time the
importance of the double-well-potential (DWP) for obtaining
the energy splitting between the chiral doublet bands. In
their formalism, they have fixed the triaxiality parameter
(γ = −30◦) and have obtained the potential energy and
mass parameter of Eq. (8) for each rotational frequency. A
symmetric DWP is seen at each rotational frequency. I have
obtained a similar DWP by using an alternative procedure that
is discussed below.

By defining the modified wave function

� = 1√
B(θ )

�ν, (15)
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FIG. 9. The effective potential energy Veff (θ ) in MeV vs the tilt
angle θ is plotted. The quartic polynomial fit to the calculated potential
is made. The fitting parameters are listed also and the error in each
polynomial fit parameter is less than 10%.

corresponding to the eigenvalue � = Eν , Eq. (8) reduces to
the simplest form

− �
2

2B(θ )

∂2�(θ )

∂θ2 +
[
V (θ ) + �

2

2B
3
4 (θ )

∂2

∂θ2

√
1√
B(θ )

]
�(θ )

= ��(θ ). (16)

All the terms in the square brackets are a function of the
collective variable θ and together make up the effective
potential

Veff(θ ) = V (θ ) + �
2

2B
3
4 (θ )

∂2

∂θ2

√
1√
B(θ )

. (17)

The effective potential Veff(θ ) is plotted in Fig. 9 (solid
circles connected with a dotted line). It is quite interesting to
notice that the quartic polynomial fits this potential nicely. The
fitting parameters are listed in this figure and an error in each
parameter is less than 10%. By an appropriate transformation,
this quartic polynomial can also be expressed as

Veff(θ ) = V0 − α(θ − θ0)2 + λ(θ − θ0)4, (18)

with the constants α > 0 and λ > 0. The appearance of a
negative sign in the quadratic term ensures the double-well
character of the potential Veff(θ ) [Eq. (18)] with the central
maximum at θ = θ0. I would like to mention here that an
asymmetry in the DWP arises mainly due to the following two
reasons.

(i) The calculation of cranking masses is quite sensitive
to the pairing contribution. In the TAC model cal-
culations, a constant pairing strength parameter for
both protons and neutrons (i.e., �p and �n) is used.
Apparently, this pairing strength should vary with

FIG. 10. The symmetric double-well potential for the potential
vs the tilt angle θ .

the variation in cranking frequency. A self-consistent
minimization of the Routhian (2) with varying �p and
�n may partially remove the asymmetry in DWP.

(ii) A constant value of the moment of inertia 0

(= 40�
2/MeV) is used in obtaining the potential

energy (5). It is well known that the moment of
inertia should vary with the angular momentum [56].
Therefore, an appropriate choice of a variable moment
of inertia in lieu of 0 is required for removing the
asymmetry in DWP.

Inclusion of both these factors may help in generating the
symmetric DWP around the central maximum θ0. Symmetry
of the DWP is required just to fulfill the constraint of parity
conservation.

Considering an appropriate renormalization and shifting the
central maximum θ0 to origin, a symmetric DWP is shown in
Fig. 10. Symmetry of the DWP ensures the parity conservation.
Under these simplifications, Eq. (16) becomes

d2�

dθ2 + 2B(θ )

�2
[� − Veff(θ )]�(θ ) = 0, (19)

with Veff(θ ) = −αθ2 + λθ4.
This effective potential has two sets of extrema, θ = 0 and

θ± = ±√
α
2λ

, and stable minima are located at θ± = ±√
α
2λ

rather than at θ = 0. These two ground states do not obey
U (1) symmetry. In other words, the symmetry of the ground
states has been destroyed. The reason for this spontaneous
breakdown of symmetry arises mainly due to the presence
of the nonlinear interaction λθ4 in Hamiltonian (19) of the
system. According to Landau’s theory of phase transition [57],
the system corresponding to Hamiltonian (19) undergoes a
second-order phase transition in which a normal ground state
θ = 0 is changed to two unusual stable ground states θ± =
±√

α
2λ

. It has already been established that the second-order
phase transition is responsible for the spontaneous breakdown
of chiral symmetry [28].
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I would like to mention here that by fixing the triaxiality
parameter (γ = −30◦), Chen and co-workers [20] have gener-
ated two identical �I bands in their aplanar configuration.
These rotational bands reside in the left and right wells
separately. In the present formalism, spontaneous breakdown
of symmetry has developed the DWP. The planar configuration
has supported a negative �I = 1 band initially in the left well.
Subsequently it tunnels to the right well with an evolution of
time.

The well depth corresponding to these minima comes out
to be Veff(θ±) = − α2

4λ
. It is quite interesting to notice here

that the positions of minima θ± remain invariant whereas the
well depths Veff(θ±) vary directly with the variation of the
cranking mass parameter B(θ ). It has already been established
that the system with symmetric DWP oscillates between two
wells with frequency ω = �E

�
, with �E = 〈�L|Ĥ |�R〉 =

〈�L|Ĥ |�R〉 [28]. Here, L and R represent the left and right
sides of the well, respectively. As soon as the well depth
vanishes for a particular cranking mass, the system attains
the superbarrier state. The tunneling through the superbarrier
does not split the level and hence �E comes out to be zero.
This result is fully consistent with the plot shown in Fig. 5 of
Ref. [20], which reveals that as the barrier height increases the
splitting between the rotational spectra decreases. Further, the
well depth is mainly controlled by the potential and the mass
parameter. Please note that both pairing and shell effects in the
potential and the cranking mass parameter play a significant
role in diabatic crossing between two rotational spectra in a
system. This point more clearly shows up in the following
expression of the eigenvalue �.

First, I consider 2B(θ )/�
2 = 1 MeV−1 for the sake of

simplicity and define

� − Veff(θ ) = x±
√

2α + �

8α
. (20)

To obtain the eigenvalues, one has to fix x± and �. Within
these substitutions, Eq. (19) becomes

d2�

dθ2 +
[
x±

√
2α + �

8α
− 2αU (θ )

]
�(θ ) = 0, (21)

where

U (θ ) = 1

2α
(Veff(θ ) − Veff(θ±)). (22)

One of the solutions of the second-order differential equation
[Eq. (21)] near the origin to the right of the well is given by

�A(θ ) = |θ − θ+| 1
2 (x+−1)

|θ + θ+| 1
2 (x++1)

exp

[
− 1√

2

(√
2λ

3
θ3 − α√

2λ

)]
.

(23)

The second solution of Eq. (21) near the origin to the left side
of the well is obtained by replacing θ → −θ , i.e., �A(−θ ).
For x+ = x− = x0, both these solutions are associated with
same expansion for �, which is given by

� = −2λ
(
3x0

2 + 1
) −

√
2λ2

8α
3
2

x0
(
17x0

2 + 19
)
, (24)

with allowed values of x0 = (2n + 1), n = 0, 1, 2, ...Hence
the eigenvalue �(0) is obtained by using Eq. (20). Because
the solutions �A(θ ) and �A(−θ ) are valid around the origin
θ = 0, i.e., in the domain away from the minima θ±, their
linear superpositions generate even or odd solutions about
θ = 0, which are given by

�±(θ ) = 1
2 [�A(θ ) ± �A(−θ )]. (25)

Because the DWP differs from that of the simple harmonic
oscillator potential in having two minima instead of one and
also because it is more probable to find a particle in a region of
minimum than elsewhere, it is naturally expected that the wave
function there be similar to that of the harmonic oscillator.
These solutions are the standard parabolic cylinder functions.
These wave functions are matched with the wave functions
(25) extending to minima θ±, i.e., �±(θ±) = 1

2 [�A(θ ) ±
�A(−θ )]

θ→θ±
, just to fix arbitrary constants. Also, the wave

functions near the minima of the DWP satisfy the following
two sets of boundary conditions:

∂�+
∂θ

= 0, �+(θ±) �= 0, �−(θ±) = 0,
∂�−
∂θ

�= 0,

(26)

and

∂�+
∂θ

�= 0, �+(θ±) = 0, �−(θ±) �= 0,
∂�−
∂θ

= 0.

(27)

It is worth mentioning here that Chen and co-workers [20] have
used box boundary conditions for solving the Schrödinger
equation (8). They have opted for these conditions because
the mass parameters are significantly large at the boundary.
On the other hand, the boundary conditions (26) and (27),
which particularly fulfill the characteristics of the DWP, have
been used. One of the reasons for this choice is that the DWP
arises mainly due to the combined effect of the potential and
the mass parameter. For example, the most basic solutions
would be even with maxima at θ±. However, an even wave
function can also pass through zero at these points. The odd
wave function then follows the exactly opposite behavior at
the same time as compared to that of the even wave function.

The evaluation of these boundary conditions leads to

x − x0 = ∓4

√
1

2π

2x0
(

α
3
2

λ

) x0
2

2
x0
4
[

1
2 (x0 − 1)

]
!

exp

[
−

√
2

3

α
3
2

λ

]
, (28)

with x+=x−=x. Further, an expansion of the eigenvalue
around the integer x0 gives

� = �(0) + (x − x0)

(
∂�

∂x

)
|x=x0 = �(0) + (x − x0)

√
2α.

(29)

Using Eq. (28) in this expression, two different eigenval-
ues, namely, �±, are obtained. The splitting between these
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eigenvalues is obtained as �� = �− − �+ and is given by

�� = 2
(2n+13)

4

√
α√

πn!

(
4α

3
2

λ

)(n+ 1
2 )

exp

[
−

√
2

3

α
3
2

λ

]
. (30)

In Eq. (30), the quantum number n (=0, 1, 2, 3, ...) plays the
role of the angular momentum I . Because in this derivation,
2B(θ )/�

2 = 1 MeV−1 has been used, the separation between
the eigenvalues �±, i.e., ��, varies only with the angular
momentum I . For large angular momentum, this separation
vanishes because the factorial form of angular momentum
appears in the denominator of Eq. (30). A more realistic picture
of splitting emerges if one incorporates the effect of cranking
masses in Eq. (30). It is quite evident from Eq. (19) that both
α and λ vary linearly with the cranking mass parameter B(θ ).
The appearance of an exponential term in Eq. (30) ensures that
the splitting �� tends to zero for a large value of exponent,
which mainly arises from the combined effect of the potential
and the mass parameter. Both these ingredients depend on
pairing and shell effects. The observed spectra, shown in
Fig. 3, also support zero splitting at an angular momentum
of I = 14�.

Our earlier experience in calculating the cranking masses
[58] reveals that, for the pure independent-particle motion, the
values of the mass parameter obtained with Eq. (7) should be
abnormally small. Indeed, these mass parameters are directly
related to the derivatives of the wave functions with respect to
the tilt angle. In the pure independent particle motion, these
are known to be small. (An exceptional case occurs when
two single-particle levels cross.) Their behavior is different
when one considers residual interactions like pair correlation.
With the pair correlations, the composition of the nuclear wave
functions changes more strongly with the tilt angle. In this case,
the increased values of mass parameters emerge in comparison
with the very low values of independent particle motion. This
is because as soon as some pairing correlations are present,
the dependence of mass parameters on the strength of residual
interaction (i.e., �p and �n) is much more moderate. In some
cases in the deformed region, there is a significant shell in the

single-particle spectrum so that the pairing gap is very small.
It is then essentially the case of independent particle motion.

Thus, the calculation of cranking masses is quite sensitive
to the pairing contribution. In the TAC model calculations,
constant pairing strength parameters for both protons and
neutrons (i.e., �p and �n) have been used. Apparently, this
pairing strength should vary with the variation in cranking
frequency. A self-consistent minimization of the Routhian (2)
with varying �p and �n may reproduce the observed splitting
behavior in the negative-parity doublet bands. Thus, the
questions of (i) vanishing of splitting between the eigenvalues
�± and (ii) reappearance of splitting in a reverse order after
a critical angular momentum of I ∼ 14� point out not only
the problem of self-consistent minimization of the Routhian
with �p and �n but also that an analytical expression for
the variation of cranking masses with angular momentum is
required. This apparently calls for further refinement of the
present model.

IV. CONCLUSIONS

To conclude, I have carried out a complete analysis of both
the positive-parity MR band and the negative-parity doublet
bands observed in the 106Ag nucleus. The TAC model is found
to be quite successful in explaining the MR phenomenon
prevailing in this nucleus. On the other hand, the unusual
features of negative-parity doublet bands, for instance, (i) their
different moment of inertia and (ii) a diabatic crossing between
them, are explained by developing the collective model. The
kinetic and potential energies of the collective Hamiltonian
are extracted by using the TAC model. Instead of the triaxial
parameter γ , a second-order phase transition is responsible
for the spontaneous breakdown of chiral symmetry. Ana-
lytical solution of the Schrödinger equation has generated
a doublet nondegenerate eigenvalue spectra. The ensuing
model results based on the two-quasiparticle configuration
πg 9

2
⊗ νh 11

2
exhibit similarities with many observed features

of the negative-parity doublet bands and hence confirm their
chiral character. The cranking mass parameter in kinetic energy
plays an important role in diabatic crossing between these
emerged chiral twin bands.
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Käubler, H. Prade, A. Jungclaus, K. P. Lieb, C. Lingk, S. Skoda,
J. Eberth, G. de Angelis, A. Gadea, E. Farnea, D. R. Napoli,
C. A. Ur, and G. Lo Bianco, Phys. Rev. Lett. 82, 4408 (1999).

[53] W. Pauli, in Handbuck der Physik (Springer-Verlag, Berlin,
1933), Vol. XXIV, p.120.

[54] D. R. Inglis, Phys. Rev. 96, 1059 (1954).
[55] S. T. Balyaev, Mat.-Fys. Medd., K. Dan. Vidensk. Selsk. 31, 11

(1959).
[56] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

New York, 1975), Vol. II.
[57] See, for example, K. Huang, Statistical Mechanics, 2nd ed.

(Wiley & Sons., New York, 1987), Chap. 17.
[58] R. Aroumougame, N. Malhotra, S. S. Malik, and R. K. Gupta,

Phys. Rev. C 35, 994 (1987).

014324-12

http://dx.doi.org/10.1140/epja/i2004-10120-y
http://dx.doi.org/10.1140/epja/i2004-10120-y
http://dx.doi.org/10.1140/epja/i2004-10120-y
http://dx.doi.org/10.1140/epja/i2004-10120-y
http://dx.doi.org/10.1103/PhysRevLett.93.172502
http://dx.doi.org/10.1103/PhysRevLett.93.172502
http://dx.doi.org/10.1103/PhysRevLett.93.172502
http://dx.doi.org/10.1103/PhysRevLett.93.172502
http://dx.doi.org/10.1088/0256-307X/24/2/065
http://dx.doi.org/10.1088/0256-307X/24/2/065
http://dx.doi.org/10.1088/0256-307X/24/2/065
http://dx.doi.org/10.1088/0256-307X/24/2/065
http://dx.doi.org/10.1103/PhysRevLett.112.202503
http://dx.doi.org/10.1103/PhysRevLett.112.202503
http://dx.doi.org/10.1103/PhysRevLett.112.202503
http://dx.doi.org/10.1103/PhysRevLett.112.202503
http://dx.doi.org/10.1103/PhysRevC.88.034322
http://dx.doi.org/10.1103/PhysRevC.88.034322
http://dx.doi.org/10.1103/PhysRevC.88.034322
http://dx.doi.org/10.1103/PhysRevC.88.034322
http://dx.doi.org/10.1103/PhysRevLett.112.202502
http://dx.doi.org/10.1103/PhysRevLett.112.202502
http://dx.doi.org/10.1103/PhysRevLett.112.202502
http://dx.doi.org/10.1103/PhysRevLett.112.202502
http://dx.doi.org/10.1103/PhysRevC.87.024314
http://dx.doi.org/10.1103/PhysRevC.87.024314
http://dx.doi.org/10.1103/PhysRevC.87.024314
http://dx.doi.org/10.1103/PhysRevC.87.024314
http://dx.doi.org/10.1088/0143-0807/35/2/025007
http://dx.doi.org/10.1088/0143-0807/35/2/025007
http://dx.doi.org/10.1088/0143-0807/35/2/025007
http://dx.doi.org/10.1088/0143-0807/35/2/025007
http://dx.doi.org/10.1103/PhysRevLett.84.5732
http://dx.doi.org/10.1103/PhysRevLett.84.5732
http://dx.doi.org/10.1103/PhysRevLett.84.5732
http://dx.doi.org/10.1103/PhysRevLett.84.5732
http://dx.doi.org/10.1103/PhysRevC.73.037303
http://dx.doi.org/10.1103/PhysRevC.73.037303
http://dx.doi.org/10.1103/PhysRevC.73.037303
http://dx.doi.org/10.1103/PhysRevC.73.037303
http://dx.doi.org/10.1103/RevModPhys.73.463
http://dx.doi.org/10.1103/RevModPhys.73.463
http://dx.doi.org/10.1103/RevModPhys.73.463
http://dx.doi.org/10.1103/RevModPhys.73.463
http://dx.doi.org/10.1103/PhysRevLett.99.172501
http://dx.doi.org/10.1103/PhysRevLett.99.172501
http://dx.doi.org/10.1103/PhysRevLett.99.172501
http://dx.doi.org/10.1103/PhysRevLett.99.172501
http://dx.doi.org/10.1103/PhysRevC.83.054308
http://dx.doi.org/10.1103/PhysRevC.83.054308
http://dx.doi.org/10.1103/PhysRevC.83.054308
http://dx.doi.org/10.1103/PhysRevC.83.054308
http://dx.doi.org/10.1088/0954-3899/37/6/064025
http://dx.doi.org/10.1088/0954-3899/37/6/064025
http://dx.doi.org/10.1088/0954-3899/37/6/064025
http://dx.doi.org/10.1088/0954-3899/37/6/064025
http://dx.doi.org/10.1016/j.nuclphysa.2015.05.003
http://dx.doi.org/10.1016/j.nuclphysa.2015.05.003
http://dx.doi.org/10.1016/j.nuclphysa.2015.05.003
http://dx.doi.org/10.1016/j.nuclphysa.2015.05.003
http://dx.doi.org/10.1016/0375-9474(93)90546-A
http://dx.doi.org/10.1016/0375-9474(93)90546-A
http://dx.doi.org/10.1016/0375-9474(93)90546-A
http://dx.doi.org/10.1016/0375-9474(93)90546-A
http://dx.doi.org/10.1103/PhysRevC.61.011301
http://dx.doi.org/10.1103/PhysRevC.61.011301
http://dx.doi.org/10.1103/PhysRevC.61.011301
http://dx.doi.org/10.1103/PhysRevC.61.011301
http://dx.doi.org/10.1103/PhysRevC.61.034318
http://dx.doi.org/10.1103/PhysRevC.61.034318
http://dx.doi.org/10.1103/PhysRevC.61.034318
http://dx.doi.org/10.1103/PhysRevC.61.034318
http://dx.doi.org/10.1103/PhysRevC.64.054314
http://dx.doi.org/10.1103/PhysRevC.64.054314
http://dx.doi.org/10.1103/PhysRevC.64.054314
http://dx.doi.org/10.1103/PhysRevC.64.054314
http://dx.doi.org/10.1016/S0370-2693(98)00384-0
http://dx.doi.org/10.1016/S0370-2693(98)00384-0
http://dx.doi.org/10.1016/S0370-2693(98)00384-0
http://dx.doi.org/10.1016/S0370-2693(98)00384-0
http://dx.doi.org/10.1103/PhysRevLett.83.500
http://dx.doi.org/10.1103/PhysRevLett.83.500
http://dx.doi.org/10.1103/PhysRevLett.83.500
http://dx.doi.org/10.1103/PhysRevLett.83.500
http://dx.doi.org/10.1103/PhysRevC.81.057301
http://dx.doi.org/10.1103/PhysRevC.81.057301
http://dx.doi.org/10.1103/PhysRevC.81.057301
http://dx.doi.org/10.1103/PhysRevC.81.057301
http://dx.doi.org/10.1103/PhysRevC.62.024315
http://dx.doi.org/10.1103/PhysRevC.62.024315
http://dx.doi.org/10.1103/PhysRevC.62.024315
http://dx.doi.org/10.1103/PhysRevC.62.024315
http://dx.doi.org/10.1103/PhysRevC.66.041303
http://dx.doi.org/10.1103/PhysRevC.66.041303
http://dx.doi.org/10.1103/PhysRevC.66.041303
http://dx.doi.org/10.1103/PhysRevC.66.041303
http://dx.doi.org/10.1103/PhysRevC.69.014319
http://dx.doi.org/10.1103/PhysRevC.69.014319
http://dx.doi.org/10.1103/PhysRevC.69.014319
http://dx.doi.org/10.1103/PhysRevC.69.014319
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.058
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.058
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.058
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.058
http://dx.doi.org/10.1016/0092-640X(86)90028-8
http://dx.doi.org/10.1016/0092-640X(86)90028-8
http://dx.doi.org/10.1016/0092-640X(86)90028-8
http://dx.doi.org/10.1016/0092-640X(86)90028-8
http://dx.doi.org/10.1016/0375-9474(95)00445-9
http://dx.doi.org/10.1016/0375-9474(95)00445-9
http://dx.doi.org/10.1016/0375-9474(95)00445-9
http://dx.doi.org/10.1016/0375-9474(95)00445-9
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(81)90475-9
http://dx.doi.org/10.1016/0375-9474(81)90475-9
http://dx.doi.org/10.1016/0375-9474(81)90475-9
http://dx.doi.org/10.1016/0375-9474(81)90475-9
http://dx.doi.org/10.1103/PhysRevC.69.044317
http://dx.doi.org/10.1103/PhysRevC.69.044317
http://dx.doi.org/10.1103/PhysRevC.69.044317
http://dx.doi.org/10.1103/PhysRevC.69.044317
http://dx.doi.org/10.1103/PhysRevC.52.104
http://dx.doi.org/10.1103/PhysRevC.52.104
http://dx.doi.org/10.1103/PhysRevC.52.104
http://dx.doi.org/10.1103/PhysRevC.52.104
http://dx.doi.org/10.1103/PhysRevC.34.746
http://dx.doi.org/10.1103/PhysRevC.34.746
http://dx.doi.org/10.1103/PhysRevC.34.746
http://dx.doi.org/10.1103/PhysRevC.34.746
http://dx.doi.org/10.1007/s11433-014-5533-y
http://dx.doi.org/10.1007/s11433-014-5533-y
http://dx.doi.org/10.1007/s11433-014-5533-y
http://dx.doi.org/10.1007/s11433-014-5533-y
http://dx.doi.org/10.1016/0375-9474(68)90371-0
http://dx.doi.org/10.1016/0375-9474(68)90371-0
http://dx.doi.org/10.1016/0375-9474(68)90371-0
http://dx.doi.org/10.1016/0375-9474(68)90371-0
http://dx.doi.org/10.1016/0375-9474(82)90486-9
http://dx.doi.org/10.1016/0375-9474(82)90486-9
http://dx.doi.org/10.1016/0375-9474(82)90486-9
http://dx.doi.org/10.1016/0375-9474(82)90486-9
http://dx.doi.org/10.1103/PhysRevC.88.034311
http://dx.doi.org/10.1103/PhysRevC.88.034311
http://dx.doi.org/10.1103/PhysRevC.88.034311
http://dx.doi.org/10.1103/PhysRevC.88.034311
http://dx.doi.org/10.1016/j.physletb.2003.09.084
http://dx.doi.org/10.1016/j.physletb.2003.09.084
http://dx.doi.org/10.1016/j.physletb.2003.09.084
http://dx.doi.org/10.1016/j.physletb.2003.09.084
http://dx.doi.org/10.1103/PhysRevLett.82.4408
http://dx.doi.org/10.1103/PhysRevLett.82.4408
http://dx.doi.org/10.1103/PhysRevLett.82.4408
http://dx.doi.org/10.1103/PhysRevLett.82.4408
http://dx.doi.org/10.1103/PhysRev.96.1059
http://dx.doi.org/10.1103/PhysRev.96.1059
http://dx.doi.org/10.1103/PhysRev.96.1059
http://dx.doi.org/10.1103/PhysRev.96.1059
http://dx.doi.org/10.1103/PhysRevC.35.994
http://dx.doi.org/10.1103/PhysRevC.35.994
http://dx.doi.org/10.1103/PhysRevC.35.994
http://dx.doi.org/10.1103/PhysRevC.35.994



