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Sensitivities and correlations of nuclear structure observables emerging from chiral interactions
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Starting from a set of different two- and three-nucleon interactions from chiral effective field theory, we use
the importance-truncated no-core shell model for ab initio calculations of excitation energies as well as electric
quadrupole (E2) and magnetic dipole (M1) moments and transition strengths for selected p-shell nuclei. We
explore the sensitivity of the excitation energies to the chiral interactions as a first step towards and systematic
uncertainty propagation from chiral inputs to nuclear structure observables. The uncertainty band spanned by the
different chiral interactions is typically in agreement with experimental excitation energies, but we also identify
observables with notable discrepancies beyond the theoretical uncertainty that reveal insufficiencies in the chiral
interactions. For electromagnetic observables we identify correlations among pairs of E2 or M1 observables
based on the ab initio calculations for the different interactions. We find extremely robust correlations for E2
observables and illustrate how these correlations can be used to predict one observable based on an experimental
datum for the second observable. In this way we circumvent convergence issues and arrive at far more accurate
results than any direct ab initio calculation. A prime example for this approach is the quadrupole moment of the
first 2+ state in 12C, which is predicted with an drastically improved accuracy.
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I. INTRODUCTION

Over the past decade there has been substantial progress in
the construction of nuclear forces from chiral effective field
theory (EFT), both on the formal level and on practical aspects
[1–3]. Recently several different regularization schemes have
been implemented and are being explored in many-body
calculations. An example are coordinate-space regulators
leading to fully local two-nucleon (NN) and three-nucleon
(3N ) interactions up to N2LO that can be used in quantum
Monte Carlo calculations [4]. Using a mixed local and
nonlocal regularization scheme Epelbaum et al. have presented
a new family of improved chiral NN interactions ranging
from leading-order (LO) to next-to-next-to-next-to-next-to
leading order (N4LO) with five different cutoff values [5,6].
This family of interactions allows for a systematic study of
order-by-order convergence and cutoff dependence of nuclear
structure observables, a critical aspect that was often ignored
in previous nuclear structure applications. The LENPIC
collaboration [7] is exploring these interactions in few- and
many-body calculations [8] and is developing the consistent
chiral 3N interactions. In a complementary development, new
fitting strategies for chiral NN + 3N interactions at N2LO
are exploited to quantify the statistical uncertainties related
to the parameter fits [9]. Moreover, novel fit procedures are
utilized that improve the description of bound-state properties
for nuclei beyond the few-body domain [10,11] compared to
the previous generation of chiral interactions [12–17]. There
are also efforts to include the � resonance as an explicit degree

*calci@triumf.ca
†robert.roth@physik.tu-darmstadt.de

of freedom to accelerate the convergence of the chiral order
expansion [18].

These developments on chiral interactions enable numer-
ous applications in nuclear structure physics. To probe the
predictive power of chiral interactions without introducing
uncontrolled approximations, ab initio many-body approaches
are the methods of choice. In addition to the traditional
ab initio many-body methods such as the no-core shell
model (NCSM) [19–21] and the Green’s function Monte
Carlo (GFMC) method [22–24] there are also recent de-
velopments like the coupled-cluster (CC) methods [25–31],
the self-consistent Green’s function methods [32–34], and
the in-medium similarity renormalization group (IM-SRG)
[35–37] that extend the range of ab initio nuclear structure
calculations to medium-mass and heavy nuclei regime up to
the tin isotopes. The importance truncated no-core shell model
(IT-NCSM) [38,39] bridges the gap between the traditional and
novel many-body methods, it can include the 3N interaction
explicitly and can probe ground-state and excitation energies
as well as spectroscopic observables in p- and lower sd-shell
nuclei. These observables constitute a comprehensive test bed
for the theoretical predictions of chiral EFT.

Typically, these ab initio approaches attempt to estimate
uncertainties resulting from truncations and incomplete con-
vergence with respect to the many-body space. However, in
many applications of nuclear structure theory, such as the
p-shell spectroscopy, the uncertainties entering through the
chiral inputs have not been explored, so far. The combination
of reliable many-body approaches and new chiral interactions
will allow for a systematic propagation of theory uncertainties
to the nuclear structure observables. As a preparatory step, we
study sensitivity and correlations of different spectroscopic
observables for a set of chiral NN + 3N interactions. We
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explore the excitation spectra of 6Li, 10B, and 12C and quantify
the sensitivity of excitation energies on the choice of the
underlying chiral interactions. The variation of the underlying
interactions also provides an opportunity to detect and map-out
correlations among pairs of nuclear structure observables,
particularly electromagnetic moments and transition strengths.

This paper is structured as follows. In Sec. II we introduce
the different chiral interactions and the technical aspects of the
many-body treatment. The sensitivity analysis of the excitation
spectra for selected p-shell nuclei is presented in Sec. III. In
Sec. IV correlations in electromagnetic observables are studied
and we conclude in Sec. V.

II. FROM CHIRAL HAMILTONIANS TO OBSERVABLES

A. NN + 3N interactions from chiral EFT

In this work we investigate interactions from three different
chiral schemes that are obtained at N2LO or N3LO using
different regularization and fit procedures. The first NN
interaction we introduce is developed by Entem and Machleidt
(EM) [12] at N3LO. The nonlocal regulator function uses
a fixed cutoff of 500 MeV/c. This potential provides an
accurate description of NN phase shifts with a comparable
precision as more phenomenological high-precision potentials
like Argonne V18 [40] and CD-Bonn [41]. The EM potential
is widely used in nuclear structure physics and has been a
standard choice in the ab initio field.

The N2LOopt interaction by Ekström et al. [10] is a
recently developed chiral interaction at N2LO. The fits of
the low-energy constants (LECs) have been performed with
the practical optimization using no derivatives (for squares)
(POUNDerS) algorithm [42]. This potential also uses a cutoff
of �χ = 500 MeV/c and an additional spectral function
regularization (SFR) with a cutoff of �̃χ = 700 MeV/c.

The NN interaction by Epelbaum, Glöckle, Meißner (EGM)
[14] at N2LO uses the same nonlocal regularization with
an additional SFR cutoff. This potential is constructed for a
sequence of five cutoff combinations (�χ/�̃χ ) = {(450/500),
(600/500),(550/600),(450/700), (600/700)}MeV/c and pro-
vides a slightly less precise reproduction of the NN data than
the other two NN interactions. The pion-nucleon LECs ci are
fitted independently of the regularization to the pion-nucleon
scattering data [43] and differ from the values used for the
EM and N2LOopt interactions. With the sequence of cutoff
parameters it offers the unique opportunity to study the effect
of the regularization on nuclear structure observables and,
thus, to draw conclusions about the theoretical uncertainties
originating from the chiral inputs.

For chiral interactions with nonlocal regulators the cutoff
variation provides a legitimate diagnostic tool to estimate the
uncertainties at an individual chiral order. Nevertheless, a
variation of the chiral order is crucial to study the convergence
of the interactions and future works will combine a chiral
order and cutoff variation for a more elaborate uncertainty
analysis. Note, for chiral interactions with local regulators,
physical observables show generally a small sensitivity to
variations in the cutoff [4,5,44]. Thus, novel studies with a
semilocal regularization must include information of the chiral

order convergence to extract the uncertainties of the currently
available NN forces [8].

The above NN forces are augmented by 3N forces at N2LO.
The EM and N2LOopt NN forces are combined with the local
3N force using a cutoff of 500 MeV/c [13]. The LECs c1,3,4

of the two-pion exchange term are adopted from the NN
interaction. The parameter cD is fitted to the triton β-decay
half-life [45] and cE is fixed by the A = 3 and 4He binding
energy, for the EM and N2LOopt NN interaction, respectively.
This yields (cD,cE) = (−0.2,−0.205) for the EM interaction
and (−0.39,−0.398) for the N2LOopt interaction. Although,
the N2LOopt interactions is originally a NN force for brevity
we use this expression also to refer to the corresponding
NN + 3N interaction introduced in this work. The EGM NN
forces at N2LO are typically combined with a consistent
nonlocal 3N force at N2LO. While this NN + 3N force is
used in several applications to neutron matter [46–48], nuclear
structure physics beyond the lightest nuclei is fairly unknown.
The LECs of the 3N force are fitted to the triton ground-state
energy and the neutron-deuteron doublet scattering length
[16]. The partial-wave decomposed 3N matrix elements at
N2LO can be derived explicitly [13,16,49] or via a numerical
partial-wave decomposition [50,51]. The latter approach is
also applicable to compute the complicated 3N contributions
at N3LO for future investigations.

B. SRG evolution and basis transformations

Although nonlocal chiral NN interactions are rather soft
due to the momentum cutoff in the regularization, it is
still difficult to converge NCSM-type calculations beyond
the lightest nuclei. Also the inclusion of the relevant 3N
contributions can be problematic for ab initio methods when a
bare chiral interaction is used. The similarity renormalization
group (SRG) [52–54] is a unitary transformation that softens
the nuclear interaction and can be applied consistently in the
two- and three-body space. Therefore, this approach is used in
a variety of nuclear structure applications to soften the chiral
NN + 3N interactions [29,34,36,55–57].

The SRG flow equation for the Hamiltonian H is given by

d

dα
Hα = [ηα,Hα] (1)

with the continuous flow-parameter α, which is related to a
momentum scale λSRG = α−1/4 and the dynamic generator

ηα = (2μ)2 [Tint,Hα] , (2)

where μ is the reduced nucleon mass and Tint is the intrinsic
kinetic-energy operator. It is important to note that the SRG
evolution induces irreducible many-body contributions beyond
the particle rank of the initial interaction. With the canonical
generator (2) it has been found [55–57], that it is indispensable
to include the induced three-body contributions. Therefore, for
all results presented in this paper we use an initial NN and
NN + 3N interaction and include all contributions up to the
three-body level, which correspond to the NN + 3N -induced
and NN + 3N -full nomenclature of previous works [55,56,58].

We aim at many-body calculations performed in the
harmonic-oscillator (HO) representation. Thus the NN and 3N
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FIG. 1. Excitation spectrum of 6Li for the EM, the N2LOopt and all five cutoff combinations of the EGM NN and NN + 3N interactions.
The parameters of the IT-NCSM calculations are Nmax = 10, �	 = 16 MeV, and α = 0.08 fm4. The dashed bars correspond to Nmax = 8
calculations. Bands in the last but one column on the right indicate the cutoff dependence of the EGM potential. Experimental excitation
energies are taken from [64].

interactions that are obtained in a partial-wave momentum
representation need to be transformed to the HO space.
There are techniques to perform the evolution equation
of the SRG in the three-body momentum representation
[59], however, for applications in localized systems, such
as nuclei, the discrete HO Jacobi basis is the most efficient
scheme for the SRG evolution. Therefore, we immediately
transform the 3N momentum matrix elements to the HO
Jacobi representation, performing the SRG transformation
subsequently.

The HO machinery, comprehensively described in
Ref. [58], is utilized to perform the Moshinsky transformation
to the particle-basis representation. Eventually, the matrix
elements are stored in the so-called JT -coupled scheme
[55,58], which is the starting point for a number of ab initio
many-body methods [30,33,34,36,37,55,60–63].

III. EXCITATION SPECTRA

In a first step we study the excitation spectra of various p-
shell nuclei using the different chiral Hamiltonians introduced
in Sec. II A. The focus will be on the sensitivity of the different
excited states on the chiral inputs, giving rise to systematic
theory uncertainties that result from the various choices made
during the construction of the chiral interactions. This includes,
for instance, the different regularization schemes, chiral orders
as well as the fit procedures used for the LECs. An additional
source of uncertainty are the statistical uncertainties of the
LECs resulting from the fits. The latter uncertainties have been
exploited recently for few-body scattering and ground-state
observables [9], but remain to be investigated for p-shell
spectroscopy.

We employ the IT-NCSM with the SRG evolved Hamiltoni-
ans based on the chiral NN or NN + 3N interactions discussed
in Sec. II B. For all Hamiltonians the IT-NCSM calculation
includes explicit 3N terms of the SRG-evolved Hamiltonians.
We perform a full NCSM calculations up to Nmax = 6 for
6Li and Nmax = 4 for 12C and 10B. We efficiently proceed

to larger Nmax with an importance truncation including a
threshold extrapolation towards the full NCSM space. The
details of the IT-NCSM and the threshold extrapolation are
discussed in Refs. [38,39]. On should note that the threshold
extrapolation itself induces a theoretical uncertainty at the level
of the final observables, which is quantified systematically
through the extrapolation protocol [38]. For excitation energies
this uncertainty is of the order of 50 keV for the largest spaces.
The IT extrapolation is very robust for the discussed excitation
spectra in this work. The only exception is the first excited 0+
state in 12C for a single EGM interaction, where the degeneracy
with the first 4+ state causes inaccurate IT extrapolations,
resulting in an unreliable assessment of the angular momentum
of this state.

We start with the simple nucleus 6Li. Figure 1 shows
the excitation energies of the first four positive parity states
obtained with the different chiral NN and NN + 3N inter-
actions. To indicate the uncertainty due to the convergence
with respect to the model space we compare the results
at Nmax = 8 (dashed bars) and Nmax = 10 (solid bars). The
calculations are carried out at �	 = 16 MeV and the SRG
evolution up to α = 0.08 fm4 is performed at the three-body
level. As illustrated for the 12C spectrum in Ref. [65] once
the SRG evolution is performed consistently at the three-body
level, excitation energies show a negligible flow-parameter
dependence. This remains true even for heavier systems,
where the absolute energies show a sizable flow-parameter
dependence [31,55,58]. Since the SRG induced beyond-3N
contributions predominantly cause an overall shift of all
energies, their impact cancels out for the excitation energies. In
addition to the spectra for the individual interactions including
the initial NN and NN + 3N part, respectively, Fig. 1 also
shows a combined spectrum for all the EGM interactions,
where the bands indicate the spread of the excitation energies
obtained with the different cutoffs. We observe that the
excitation energies obtained with the EM and the N2LOopt

Hamiltonians typically fall into the bands extracted for the
EGM interactions.
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FIG. 2. Excitation spectrum of 12C. IT-NCSM calculations are performed for Nmax = 8 (solid bars) and 6 (dashed bars), remaining
parameters as in Fig. 1. Experimental excitation energies are taken from [64].

A first inspection of the spectra reveals that the sensitivity of
the different excited states to the Hamiltonian is quite different.
Whereas the excitation energy of the first 0+ state is largely
unaffected by the different choices of chiral interactions or the
inclusion of the chiral 3N force, the excitation energies of the
3+ and the 1+ states show a sizable variation. The inclusion of
the chiral 3N interaction causes a shift of the energies in the
same direction for all Hamiltonians, leading to a higher 2+ and
a lower 3+ excitation energy for the full NN + 3N interactions.
In the case of the EGM interactions, the band constructed
from the cutoff dependence of the 3+ excitation energy nicely
overlaps with the experimental energy. For the 2+ excitation
energy there is a clear discrepancy and the chiral 3N interaction
shifts the state further away from the experimental energy
in all cases. However, the first 2+ state in the experimental
spectrum is a broad resonance and there is a narrow second
2+ state about 1 MeV above. Thus the inclusion of continuum
degrees of freedom, e.g., through the NCSM with continuum
[60,66,67], will be important to understand and disentangle
these 2+ states. The slow convergence of the calculated 2+ state
might serve as a first indication for these continuum effects. For
the 0+ excitation energy, the EGM band is closer to experiment
although it does not overlap either—experimentally this state
is a narrow resonance.

Figure 2 shows a similar analysis of the excitation spectrum
of 12C. The excitation energies of the lowest positive-parity
states obtained in IT-NCSM calculations are shown for all
interactions. Obviously, the structure of excitation spectrum of
12C is richer than for 6Li. Previous investigations have shown
that some of the excitation energies, e.g., for the first 1+ and 4+
states, are very sensitive to the 3N interaction. Furthermore,
in comparison to experiment there are clear discrepancies
of the 1+ excitation energy obtained for the EM interaction
when including the 3N interaction [55,65]. The behavior of
these states for different chiral interactions is, therefore, highly
interesting. Note, the excited 0+ states are expected to have a
distinct cluster structure that cannot be described accurately
in tractable HO model spaces [68]. Therefore, it is not clear
whether the 0+ state obtained in the IT-NCSM corresponds
the first excited 0+ state (Hoyle state) or the second one (see

Ref. [65] for a more detailed discussion). For these reasons,
we will not include this 0+ state into the following discussion
on the sensitivity to the Hamiltonian.

Comparing the spectra for the different interactions con-
firms the sensitivity of the 1+ and 4+ excitation energies
to the underlying interaction, also the higher-lying 2+ state
shows a large sensitivity. For all these states the sensitivity, as
summarized by the bands for the EGM interactions, reduces
significantly with the inclusion of the chiral 3N interaction.
This might be interpreted as indication that the theoretical
uncertainties are reduced when going from an incomplete
chiral NN interaction to a complete and consistent chiral
NN + 3N Hamiltonian at N2LO. For all interactions, the
chiral 3N component shifts the 1+ states to lower excitation
energies. As a result, all interactions underestimate the 1+
excitation energy by more than 2 MeV—even considering the
uncertainty band, there is a clear discrepancy with experiment.
Since all Hamiltonians employed here use local or nonlocal
3N interactions at N2LO, it will be very interesting the see
whether next-generation chiral 3N interactions at N3LO can
resolve this discrepancy. In contrast to the 1+ and 4+ states, the
energy of the first excited 2+ state shows very little sensitivity
to the starting interaction and to the chiral 3N contribution.
The bands extracted from the EGM interactions are small and
the bands with and without the chiral 3N interaction overlap.
Interestingly, all interactions tend to underestimate the 2+
excitation energy slightly.

It is also interesting to study the absolute 12C ground-state
energies resulting from the different NN + 3N interactions.
The energies calculated with the EGM interactions span a
range of −96.8 to −80.5 MeV. This range contains the exper-
imental energy of −92.16 MeV. Also the ground-state energy
obtained with N2LOopt interaction is within the EGM range,
while the EM interactions predicts an energy of −97.8 MeV
and thus the largest binding energy. However, it is important
to note, that the energies are extrapolated from NCSM model
spaces up to Nmax = 8 causing an estimated extrapolation
uncertainty of about 1–2 MeV. What is more important is
the impact of omitted SRG-induced 4N contributions that
are sizable for the SRG flow-parameter α = 0.08 fm4 used
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FIG. 3. Excitation spectrum of 10B. IT-NCSM calculations are performed for Nmax = 8 (solid bars) and 6 (dashed bars), remaining
parameters as in Fig. 1. Experimental excitation energies are taken from [64].

here. From an analysis of the flow-parameter dependence we
find that the 4N contributions are repulsive and, thus, will
reduce the above binding energies. For instance, changing
α for the EM interaction to α = 0.04 fm4, i.e., towards the
bare interaction reduces the binding energy by about 2.3 MeV.
Based on the flow-parameter dependence we cannot reliably
estimate the binding energy expected for the bare interaction.
Nevertheless, we can conclude that the absolute binding
energies for the bare interactions will exhibit a spread of several
MeV and tend to underestimate the experimental binding
energies. This sensitivity of the absolute binding energies to
the details of the interactions is consistent with the finding in
Ref. [9] for the 16O ground-state energy.

As the final case, we discuss the excitation spectrum of
10B as shown in Fig. 3. The typical excitation energies
for this odd-odd nucleus are much smaller than in 12C,
therefore, shifts of the excitation energies of individual states
by 1 MeV can change the spectrum drastically. Furthermore,
full convergence of the excitation energies is more difficult
to reach than for the 12C spectrum. Particularly the results
with chiral 3N interactions show a residual Nmax dependence,
i.e., the excitation energies for Nmax = 8 and 6, indicated in
Fig. 3 by the solid and dashed levels, respectively, are slightly
different. This residual Nmax dependence is much smaller than
the variations due to different Hamiltonians and, therefore, do
not affect the present discussion.

Already the first ab initio calculations of 10B with 3N
interactions have shown that the ordering of the first 3+
and 1+ states depends on the 3N interaction [69]. Many
of the realistic NN interactions incorrectly predict the 1+
as ground state and only the 3N interaction restores the
correct level ordering. This is also observed in Fig. 3 for
the chiral interactions—with one exception all chiral NN
interactions predict the 1+ below or degenerate with the 3+
state. In all these cases, the chiral 3N interaction shifts the
1+ upwards relative to the 3+, thus, restoring the correct level
ordering. An exception is the EGM interaction with cutoffs
(450/500) MeV/c, which already gives the correct level
ordering with the NN interaction, the chiral 3N interaction
only leads to a slight reduction of all excitation energies. The

EGM uncertainty band for the 1+ excitation energy is reduced
by including the chiral 3N interaction and robustly indicates
the 3+ as the ground state. Within the cutoff-uncertainty bands
all excitation energies obtained with the chiral NN + 3N are
compatible with experiment.

Our uncertainty analysis for the p-shell spectra provides a
crucial verification of the predictive power of the chiral interac-
tions. Besides distinct sensitivities of excitation energies to the
3N force, also systematic deviations from experiment beyond
the theoretical uncertainty can be identified. These investiga-
tions identify the first 1+ state in 12C as an ideal benchmark
for the next generation of chiral NN + 3N interactions.

IV. ELECTROMAGNETIC TRANSITIONS AND MOMENTS

Electromagnetic observables provide another window into
structure of nuclei with different sensitivities and addressing
complementary information. Therefore, we extend the dis-
cussion of sensitivities of nuclear observables to electromag-
netic moments and transition strengths, focusing on electric
quadrupole (E2) and magnetic dipole (M1) observables.

Coming from the discussion of excitation energies, sev-
eral comments are in order. First, the convergence rate of
electromagnetic observables, particularly of E2 observables,
is significantly slower than the convergence of excitation
energies. Owing to the sensitivity of the E2 operator on the
long-range behavior of the wave function, large NCSM basis
spaces are required to obtain the correct asymptotic behavior
of the wave functions and to converge E2 observables.
Eventually, one might still rely on extrapolations, e.g., within
the novel schemes constructed in an effective field theory
framework [70], to extract a robust result.

Second, the E2 or M1 operators should be transformed
consistently with the Hamiltonian when using SRG transfor-
mations to improve the convergence behavior. The effect of this
consistent SRG transformation of electromagnetic operators
was only studied in a few selected cases. These studies
indicated that the consistent SRG transformation changes
electromagnetic observables only by a few percent [71,72],
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which is why NCSM applications have not included these
effects so far.

Finally, chiral EFT also predicts the electromagnetic two-
body current contributions consistently with the interactions.
Also these contributions should be included for a complete
treatment of electromagnetic observables. Pioneering cal-
culation in a hybrid framework using chiral EFT currents
with an Argonne interaction have indicated a significant
influence of current contribution to electromagnetic moments
and transition strengths [73].

Addressing all these effects in a comprehensive fashion will
be the aim of our future studies of electromagnetic properties
starting from consistent chiral EFT inputs. In a preparatory
step towards the complete calculations, we study the impact of
the Hamiltonian on E2 and M1 observables. As a novel aspect
in the ab initio context, we explore correlations between pairs
of E2 or M1 observables involving the same states. As we
will see in the following, the study of such correlations in
an ab initio framework can be extremely beneficial. Recently,
correlations of E1 observables in closed-shell nuclei have been
exploited for impressive predictions of observables sensitive
to the charge and neutron distribution [74,75].

We start with the discussion of E2 observables involving
the first excited 2+ state and the 0+ ground state in 12C, i.e.,
the B(E2) transition strength form the 2+ state to the ground
state and the quadrupole moment of the 2+ state. In Fig. 4 we
present these two observables for the same set of chiral NN and
NN + 3N interactions used for the study of excitation spectra.
In addition we show the results for different model-space
truncations from Nmax = 2 to 8, which is important because
of the slow convergence of these observables. Thus each
symbol in the figure corresponds to a specific Hamiltonian
at a specific value of Nmax. The grey rectangle indicates the
experimental values for the B(E2) and the quadrupole moment
including their experimental uncertainty. The uncertainty for
the quadrupole moment is particularly large [77], but new
experiments are planned to reduce this uncertainty [78].

The picture that emerges from Fig. 4 is remarkable. All data
points fall onto the same line, irrespective of the underlying
chiral NN or NN + 3N interactions and of Nmax. There is a
strong and robust correlation between the two E2 observables
emerging from our ab initio calculations. The values of the
individual observables show a sizable dependence on the
underlying interaction and Nmax, but they always stay on
the correlation line. As a general trend, with increasing Nmax

the quadrupole moment and the B(E2) continue to increase, in-
dicating the slow convergence of these long-range observables.

The robust correlation between this pair of quadrupole
observables emerging from ab initio calculations can be
interpreted in terms of the simple rotational model by Bohr
and Mottelson [79], where both observables in the laboratory
frame are connected to the intrinsic quadrupole moment Q0

via the formulas

Q(J ) = 3K2 − J (J + 1)

(J + 1)(2J + 3)
Q0,s (3)

and

B(E2,Ji → Jf ) = 5

16π
Q2

0,t

(
Ji 2
K 0

∣∣∣∣ Jf

K

)
. (4)

FIG. 4. Correlation of quadrupole observables for the first 2+

state in 12C. Plotted is the reduced quadrupole transition strength
B(E2,2+ → 0+) to the ground state versus the quadrupole mo-
ment Q(2+) obtained with different chiral NN (open symbols)
and NN + 3N interactions (solid symbols): EM (box), N2LOopt

(circle), and EGM with cutoffs (�χ/�̃χ ) = {(450/500),(600/500),
(550/600),(450/700), (600/700)} MeV/c (diamond, triangle up,
triangle down, hexagon, cross). The IT-NCSM calculations are
performed at �	 = 16 MeV and α = 0.08 fm4 using a model space
of Nmax = 2 (blue), 4 (green), 6 (violet), and 8 (red symbols). The
error bars indicate the uncertainties of the threshold extrapolations
in the IT-NCSM. The dashed curves corresponds to the correlation
obtained from formula (5) with a quotient of the intrinsic quadrupole
moment set to one (grey) or fitted to theoretical data points (black).
The grey shaded area indicates the error band of the experimental
B(E2) [76] and Q [77] value. The blue shaded area corresponds to
a prediction for Q consistent with the theoretical correlation and the
B(E2) measurement.

Here J is the angular momentum with the index i and f
referring to the initial and final state, K is the projection
of the total angular momentum on the symmetry axis of the
intrinsically deformed nucleus. For the investigated nuclei 12C
and 6Li, K corresponds to the angular momentum of their
ground states. The indices s and t of the intrinsic quadrupole
moment indicate the “static” and “transition” observable Q and
B(E2), respectively. One can combine both formulas such that
the ratio of the intrinsic quadrupole moments Q0,t /Q0,s is the
only parameter that relates the two observables

B(E2,Ji → Jf ) = 5

16π

((J + 1)(2J + 3))2

(3K2 − J (J + 1))2

(
Ji 2
K 0

∣∣∣∣ Jf

K

)

×
(

Q0,t

Q0,s

)2

Q(J )2 . (5)

In a rigid rotor model the intrinsic quadrupole moments Q0,s

and Q0,t are expected to be equal. The correlation resulting
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from this assumption is represented by the grey dashed line in
Fig. 4, which slightly misses the correlation predicted in the ab
initio calculations. Using the ratio of the intrinsic quadrupole
moments as a parameter to fit the above relations to the ab
initio results leads to Q0,t /Q0,s = 0.964 and a correlation line
that matches the ab initio results perfectly, as seen from the
black dashed line in Fig. 4.

After having established this correlation in ab initio
calculations, we can exploit it to make predictions on one of the
two observables based on experimental data for the other ob-
servable. In this particular case, the quadrupole moment of the
2+ state is poorly known, whereas the B(E2) has a much lower
relative uncertainty. Thus we can use the experimental value
and uncertainty B(E2) = 7.94 ± 0.66 e2fm4 [76] and translate
it via the ab initio correlation line into an value and uncertainty
for the quadrupole moment of Q(2+) = (5.91 ± 0.25) efm2.
The uncertainty of this value is one order of magnitude smaller
than the uncertainty of the direct measurement.

It is also much better than the theory uncertainty for a
direct calculation of the quadrupole moment. For Nmax = 8
the different chiral NN + 3N interaction predict quadrupole
moments in the range from 4.5 to 6.2 efm2 (red filled symbols
in Fig. 4) and these values still increase with increasing
Nmax. So the sensitivity to the interaction and the slow
convergence lead to a substantial theory uncertainty, which
is eliminated through the use of the correlation together with
one experimental observable. The quadrupole moment is also
consistent, but more precise than direct predictions by nuclear
lattice simulations of Q(2+) = (6 ± 2) efm2 obtained at LO
[80].

Due to the stability of the correlation in 12C one can also
address higher excited states of the yrast band, as shown in
Fig. 5. In analogy to the previous correlation analysis we plot
the B(E2,4+ → 2+) as function of the quadrupole moment
Q(2+). The correlation motivated by the rotor model is present,
but less clean. In particular, for the larger model spaces the
theoretical data points start to spread around the fitted quadratic
correlation curve. This indicates a more complicated structure
of the 4+ state in large model spaces, deviating from the simple
rotor model. Already the excitation energy of the 4+ state was
much more sensitive to the interaction than the first 2+ state
(cf. Fig. 2), indicating a different and more intricate structure
for the 4+ state.

Still, we can identify a correlation band indicated by
the black curves covering almost all ab initio results and
parametrize it through the rotor model using a range for the
ratio Q0,t /Q0,s from 0.795 to 0.905, which differs significantly
from the rigid rotor. Still, we can use this correlation band
to predict the B(E2,4+ → 2+) in the range from 7.05 to
10.82 e2fm4, based on our previous extraction for Q(2+). This
B(E2) is not known experimentally. Cluster models predict a
value around 15 e2fm4 [81] and a rigid rotor model with the
intrinsic quadrupole deformation obtained from the 3α model
applied in Ref. [82] gives 25 e2fm4 [81].

We now move to the lighter nucleus 6Li and repeat the
correlation analysis. The lowest E2 transition is between the
first excited 3+ state and the 1+ ground state. As we remarked
earlier, the 3+ state is a narrow resonance and, therefore, the
definition of the quadrupole moment is nontrivial. Since we

FIG. 5. Correlation of the B(E2,4+ → 2+) value and the
quadrupole moment Q(2+) in 12C. The parameters and definition
of the symbols are as in Fig. 4. The black dashed lines mark
the regime of the correlated theoretical data points. The blue
shaded area corresponds to a prediction for the B(E2) transition
strength consistent with the theoretical correlation and the predicted
quadrupole moment from Fig. 4.

are working in a bound-state approach, we can compute this
observable nevertheless. In Fig. 6 we show the correlation plot
for the B(E2,3+ → 1+) strength and the quadrupole moment
of the first 3+ state in 6Li. Again we find a tight correlation
between these two observables for all chiral NN and NN + 3N
interactions and model space truncations. A fit of the rotor
model with Q0,t /Q0,s = 0.961 again describes this correlation
very well.

Unlike the previous cases, all IT-NCSM calculations un-
derestimate the B(E2) value—we only get about half of the
experimental transition strengths. At the same time, there is a
systematic dependence on the model-space truncation Nmax.
For all interactions the absolute values of the quadrupole
moment and the B(E2) increase monotonically with Nmax

with no indication of convergence. This general behavior
is consistent with the findings in Ref. [84] using the CD-
Bonn potential and hints at missing continuum effects for
the description of the 3+ resonance. Still, we can use the
rotor model to extract a value of the quadrupole moment of
Q = −6.59(26) efm2 based on the measured B(E2).

We can consider the same B(E2,3+ → 1+) for 6Li in
connection with the quadrupole moment of the 1+ ground state
instead of the excited 3+ state. As shown in Fig. 7 this pair of
E2 observables does not exhibit a robust correlation. Because
the measured quadrupole moment of −0.08178(164) efm2

[85] is so close to zero, the experimental data point in the
correlation plot is incompatible with the rigid rotor model.
The very small quadrupole moment of the ground state is
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FIG. 6. Correlation of quadrupole observables for the first 3+

state in 6Li. Plotted is the reduced quadrupole transition strength
B(E2,3+ → 1+) to the ground state as function of the quadrupole
moment Q(3+). The IT-NCSM calculations are performed for Nmax =
4 (blue), 6 (green), 8 (violet), and 10 (red symbols). The remaining
parameters and definition of the symbol shapes are as in Fig. 4. The
grey shaded area indicates the error band of the experimental B(E2)
[83]. Note, there is no measurement for the spectroscopic quadrupole
moment.

governed by more subtle structural effects rather than the
robust effects from the rotor model. Note the impact of the
importance truncation also becomes noticeable, because of
the small magnitude of the quadrupole moment. Moreover,
several theoretical quadrupole moments have a positive sign,
i.e., predict a prolate deformation, but move with increasing
Nmax towards the slightly oblate deformation as experimentally
measured. This example demonstrates, that the E2 correlations
in 12C and 6Li that we identified from our ab initio calculations
and interpreted by the simple rotor model are nontrivial
findings.

Finally, we discuss an example for a different electromag-
netic operator, the magnetic dipole or M1 operator. Unlike the
E2 observables we discussed so far, the M1 operator does not
depend on the spatial distance, but only probes the spin and
orbital angular-momentum structure of the state. This leads
to a different convergence behavior of M1 observables in
NCSM-type calculations. Furthermore, from a macroscopic
model build on an intrinsic state the magnetic dipole moment
and the B(M1) transition strength show a less trivial but again
quadratic relation depending on an effective and intrinsic g
factor [79]. Therefore, it is interesting to explore the spin and
orbital structure that determines pairs of M1 observables in ab
initio calculations and to identify correlations.

In Fig. 8 we plot the B(M1,0+ → 1+) transition strength
from the excited 0+ state to the 1+ ground versus the magnetic
dipole moment μ(1+) of the ground state in 6Li. As before,

FIG. 7. Correlation of quadrupole observables for the first 1+

state in 6Li. Plotted is the reduced quadrupole transition strength
B(E2,3+ → 1+) to the ground state as function of the quadrupole
moment Q(1+). The remaining parameters and definition of the
symbol shapes are as in Fig. 6. The grey shaded area indicates the
error band of the experimental B(E2) [83] and Q(1+) [85].

we consider the full set of interactions for a range of model
space truncations Nmax = 4, 6, 8, and 10. One should note
that the range of B(M1) and μ presented in the plot, covering
around 7% relative change in both observables, is very small
compared to the typical variations of the E2 observables
discussed before. This already indicates that M1 observables
are more robust with respect to interaction and model-space
choices.

The picture regarding correlations is also different from the
E2 observables, the calculations do not collapse on a universal
correlation line. There are distinct groups of points with very
systematic trends. First, the calculations using chiral NN + 3N
interactions (full symbols) are separated from calculations
with only chiral NN forces (open symbols). The inclusion
of the chiral 3N interaction reduces the dipole moment
systematically by about 1%, simultaneously the B(M1) is
reduced by a similar amount. Second, with increasing Nmax

the B(M1) strength is systematically reduced, while the dipole
moment remains practically constant. Third, the different
input Hamiltonians for fixed Nmax give very similar results
as indicated by the groups of same-colored open or full
symbols in Fig. 8. In summary, both observables are robust
with respect to the choice of chiral NN + 3N interaction but
they are influenced by the chiral 3N force. The dipole moment
is converged while the B(M1) shows a systematic decrease
with increasing Nmax which might be related to the resonance
nature of the 0+ state.

Comparing the calculations to experiment, indicated by
the narrow grey rectangle in Fig. 8, provides an interesting
perspective. The ground-state magnetic dipole moment of 6Li
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FIG. 8. Correlation of magnetic-dipole observables for the 1+

ground state and the first 0+ excited state in 6Li. Plotted is the magnetic
dipole transition strength B(M1,0+ → 1+) to the ground state versus
the magnetic-dipole moment μ(1+). The IT-NCSM calculations are
performed for Nmax = 4 (blue), 6 (green), 8 (violet), and 10 (red
symbols). The remaining parameters and definition of the symbol
shapes are as in Fig. 4. The grey rectangle indicates the error band of
the experimental μ(1+) [86,87] and B(M1,0+ → 1+) [83] value.

is known with an excellent accuracy from atomic physics
measurements [86,87]. The calculations with chiral NN + 3N
interactions deviate from experiment by about 2%—though
this is a small deviation by our standards, it is very systematic.
The experimental uncertainty on the B(M1) are larger and
most of the calculations fall within the error bar of the
experiment. However, the systematic Nmax dependence of the
calculation suggests that the converged B(M1) will be outside
the experimental error bar for all Hamiltonians.

This is clearly a case where precision studies, both in
experiment and in ab initio theory will be very valuable.
As mentioned in the beginning of this section, our studies
of electromagnetic observables are not fully complete yet.
We have not included the consistent SRG evolution of the
electromagnetic operators and we have not included consistent
electromagnetic two-body currents from chiral EFT. Both
corrections enter as additive two-body pieces in the electro-
magnetic operators and they will affect both observables in the
pairs of E2 and M1 observables discussed here. In case of the
E2 observables, we expect the correlation line to be largely
unaffected by these corrections. However, they will play a role
for the specific values of the observables, particularly at the
precision level of the M1 observables discussed above. This
aspect will be a focus of our future studies.

V. CONCLUSIONS

We have presented ab initio IT-NCSM calculations for the
spectroscopy of p-shell nuclei using a large set of different

chiral NN + 3N interactions. In this way we addressed the sen-
sitivity of excitation spectra and electromagnetic observables
to the input interactions, which constitutes a significant and
previously unexplored contribution to the theory uncertainties
of state-of-the-art ab initio calculations. The variation of the
input interactions also provides yet unexplored insights into
the details of nuclear structure.

We discussed the sensitivities of individual excitation
energies and compared the resulting theory uncertainties to
experiment. This provides an important diagnostic for the
chiral interactions, particularly in case of a systematic dis-
agreement with experiment beyond the uncertainties obtained
from the different interactions. An example is the excitation
energy of the first 1+ state in 12C, where the sensitivity to the
different chiral NN + 3N interactions is much smaller than the
deviation from experiment. This will be an important test case
for next-generation chiral interactions.

For electromagnetic observables the variation of the under-
lying interaction and of the model-space truncation allowed us
to identify robust correlations between pairs of E2 observables
merging from ab initio calculations, which can be interpreted
in terms of a rigid rotor model. These correlations offer a new
tool to extract accurate predictions for ab initio calculations.
By combining the theoretically predicted correlations of two
observables with a single experimental datum for one observ-
able we can extract a value for the second observable that is
far more accurate and robust than any direct ab initio result.
An example is the quadrupole moment of the first excited 2+
state in 12C, that we predict to be Q(2+) = (5.91 ± 0.25) efm2

based on the experimental value of the associated B(E2).
This work is a preparatory step towards a full quantification

of theory uncertainties based on consistent inputs from chiral
EFT. For example, using the new family of chiral interactions
from LO to N4LO developed within the LENPIC collaboration
[5,6,8], we will be able to study the order-by-order systematics
of nuclear observables and thus propagate the EFT uncertain-
ties consistently to the level of nuclear structure observables.
Including two-body currents and consistent SRG-evolution
for the electromagnetic observables will be another important
milestone towards precision ab initio calculations that exploit
the full potential of chiral EFT.
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[48] T. Krüger, I. Tews, K. Hebeler, and A. Schwenk, Phys. Rev. C
88, 025802 (2013).
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