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Nuclear shape transitions, level density, and underlying interactions
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Background: The configuration-interaction approach to nuclear structure uses the effective Hamiltonian in a
finite orbital space. The various parts of this Hamiltonian and their interplay are responsible for specific features
of physics including the shape of the mean field and level density. This interrelation is not sufficiently understood.
Purpose: We intend to study phase transitions between spherical and deformed shapes driven by different parts
of the nuclear Hamiltonian and to establish the presence of the collective enhancement of the nuclear level density
by varying the shell-model matrix elements.
Method: By varying the interaction matrix elements we define, for nuclei in the sd and pf shells, the sectors
with spherical and deformed shapes. By using the moments method that does not require the full diagonalization
we relate the shape transitions with the corresponding level density.
Results: Enhancement of the level density in the low-energy part of the spectrum is observed in clear correlation
with a deformation phase transition induced mainly by the matrix elements of single-particle transfer.
Conclusions: The single-particle-transfer matrix elements in the shell model nuclear Hamiltonian are indeed the
carriers of deformation, providing rotational observables and enhanced level densities.
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I. INTRODUCTION

The knowledge of the level density in a quantum many-
body system is necessary for the correct understanding of the
response of the system to external perturbations. The nuclear
level density is a vitally important element of reaction theory,
including astrophysical processes and broad applications of
nuclear physics. But it might also serve as a mirror reflecting
special features of intrinsic structure, and this will be the main
subject of our consideration.

In a Fermi-system environment, the level density exponen-
tially grows with energy due to the combinatorics of particle-
hole excitations from the defrosted Fermi surface. This occurs
even in the simplest picture of a Fermi gas without residual
interaction [1,2]. The Fermi-gas model does not, however,
account for the effects on the level density due to the shell
structure, pairing correlations [3,4] or coherent excitations
of collective nature [5,6]. Various semiphenomenological
approaches have been developed which account for such
effects [7,8] considered as additions to the skeleton of the
Fermi gas, or of a more elaborate self-consistent mean field
with pairing.

Low-lying collective modes, mainly of isoscalar nature,
lead to the reconfiguration of the nuclear spectra. In an even-
even non-magic nucleus, pairing correlations create an energy
gap in the excitation spectrum. Inside the gap, vibrational
collective modes start the sequence of phonon states which
gradually mix with unpaired particles appearing above the
pair breaking threshold. Away from the magic nuclei, the
accumulating valence particles frequently lead to broken
internal symmetry and static deformation of the core. Then
nuclear rotation appears as a new branch of the excitation
spectrum. The rotational bands, with a small distortion of the
nuclear field along the band, appear at low energy. All these
effects should noticeably change the low-lying nuclear level
density [9–11].

In the framework of the shell model, pairing and collective
effects are fully taken into account through the two-body-
interaction matrix elements. Since the shell model is formu-
lated in a truncated orbital space and therefore has the fixed
total number of quantum states, the collective enhancement can
appear as enrichment of the level density at the low-energy part
of the spectrum, accompanied by a corresponding suppression
of the level density at higher excitation energy. The shell-model
experience shows that the effects of deformation and related
rotational motion appear naturally for a sufficiently rich space
and appropriate set of two-body-interaction matrix elements
as a result of the diagonalization in a spherical basis. This
is an important advantage of the shell-model approach since
one does not need to take special care of the strict fulfillment
of conservation laws (particle number, angular momentum,
parity, and isospin). On the other hand, the computational
problems impose the limitation on the total dimension of the
orbital space.

The moments method based on statistical properties of large
Hamiltonian matrices [12,13] was recently formulated [14,15]
as a practical tool for calculating the level density for a given
Hamiltonian, avoiding the diagonalization of large matrices. It
was shown how the first two moments of the Hamiltonian
define the full level density that coincides with the result
of the exact diagonalization if the latter is feasible. Some
latest results and first comparisons with the phenomenology,
thermodynamics, and mean-field combinatorics can be found
in Ref. [16]. One important conclusion is that, in realistic cases,
the level density in a finite Hilbert space is a smooth bell-shape
curve. The contributions of individual shells, which are clearly
pronounced in the mean-field combinatorics, are smeared by
the multitude of incoherent collision-like interactions which
are always present in realistic Hamiltonians in addition to
the collective parts like pairing and multipole forces. In this
article, our problem is rather different. We are going to explore
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the landscape of nuclear Hamiltonians varying the parameters
in order to establish the existence and dynamic sources of
the collective enhancement of the level density. We use the
moments method to extract the cases with collective behavior
and study the corresponding level densities. This method was
used earlier [17] for understanding the predominance of prolate
deformation among nonspherical nuclei. With the variation of
parameters of the shell-model Hamiltonian, we are able to
localize and study the phase transitions between spherical and
deformed shapes.

In Sec. II we give a brief description of the moments
method, in Sec. III we describe the division of the full shell-
model Hamiltonian into different subsets of matrix elements
which can be varied independently. Section IV presents the
effects of those subsets on the low-lying spectrum of different
nuclear systems and on the level densities. In Sec. V we discuss
a quantum phase transition between spherical and deformed
shapes by varying the strength of the matrix elements. The
concluding discussion is given in Sec. IV.

II. MOMENTS METHOD

Here we very briefly recall the formalism of the moments
method. We use the shell-model Hamiltonian H that contains
the mean-field and residual two-body effective interactions.
The level density is found as a superposition of modified (finite
range) Gaussians,

ρ(E; α) =
∑

p

DαpGαp(E). (1)

Here, α stands for the exact quantum numbers of spin and
parity, while p runs over partitions (distributions of particles
among available single-particle orbitals); Dαp is the dimension
of a given partition, and Gαp is the finite-range Gaussian
determined by the ground-state energy, the centroid (the first
moment of the Hamiltonian), and the width (the second
moment). The second moment includes all interactions mixing
the partitions. Both moments can be computed directly by the
Hamiltonian matrix avoiding its diagonalization. As we have
already mentioned, the result (1) is, in all cases studied, in
good agreement with the product of the full diagonalization if
the latter is practically possible.

Technical details related to finding the ground-state energy,
M scheme against J scheme, fit of the spin cutoff parameter,
removal of unphysical center-of-mass excitations in the cases
of cross-shell transitions, etc. are discussed in previous
publications [14–16].

III. SEARCHING FOR COLLECTIVE EFFECTS

In the simplest (but still rich in physics and numerous
applications) case of the sd shell model we have only
three single-particle levels, 1s1/2, 0d5/2, 0d3/2. The angular
momentum and isospin conservation allow 63 matrix elements
of the residual two-body interactions. Keeping intact all
symmetry requirements, we can vary numerical values of
the two-body matrix elements of the effective interaction. As
a result, we come to different versions of the shell model
which can cover the whole spectral variety allowed by the

given Hilbert space. In this way we can select the parts of
the interaction responsible for specific observable physical
phenomena.

In a recent study [17], where in the same spirit the pf orbital
space was used, it was found that certain interaction matrix
elements are responsible for the transition from a spherical
shape to a deformed one. First of all, they were the matrix
elements (pf matrix elements in that specific model) changing
the occupation numbers of the subshells by one unit, i.e., the
matrix elements 〈jk,jl|V |jm,jn〉 with jk = jm, or jk = jn, or
jl = jm, or jl = jn. This drives the mixing of spherical orbitals
in the process of deformation. A complementary version of a
similar approach was applied in Ref. [16] to demonstrate that
the incoherent parts of the residual interaction are essential for
producing chaotic wave functions and resulting smooth level
density.

Borrowing this approach, we divide the set of interaction
matrix elements into two parts. The part V1 includes the
“particle-hole” matrix elements, which change the occupation
number of the subshells by one unit with the change of orbital
momentum �� = 0 or 2, whereas the part V2 includes the
remaining matrix elements, which either do not change the
occupation number of the subshells (jk = jm and jl = jn), or
change it by two units (jk �= jm and jk �= jn),

H = h + k1V1 + k2V2; (2)

here the part h contains the single-particle energies. From this
point on we will be calling the matrix elements of the V1 part,
“one-unit-change” matrix elements. The numerical parameters
k1 and k2 allow us to explore regions of the Hilbert space
where the nuclear structure undergoes significant changes. The
original shell-model case emerges for k1 = k2 = 1. By probing
various combinations of the parameters k1 and k2, one can
see how these two parts affect the level density and other
observable quantities of interest. We study the evolution of
the level density as a function of these particular interaction
modes, paying special attention to the low-lying parts of the
spectrum as indicators of characteristic underlying structures.
In even-even nuclei we characterize the low-lying spectrum by
the levels (2+, 4+, 6+), quadrupole transitions between them,
and shape multipoles, as well as by the resulting level density.

IV. EXPLORING THE NUCLEAR LANDSCAPE

This section presents a quantitative study of how the V1

and V2 parts of the shell-model Hamiltonian (2) change the
collective observables. We find whether these interactions
are capable of producing typical deformed or spherical
characteristics of the nuclear field in the low-energy part of
the nuclear spectrum.

Two shell-model spaces, the sd and pf , have been studied.
As already mentioned, the interaction of the sd shell-model
space has 63 nonzero matrix elements, among which 22
elements induce one-body transitions between the partitions
[these are included in the V1 part of Eq. (2)], while the
remaining 41 matrix elements [those included in the part V2

of Eq. (2)] either couple states within the same partition or
transfer two particles between partitions, including the usual
pairing.
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TABLE I. Results for k1 = 1.0 and changing k2 for yrast energies
(MeV) of 2+ and 4+ levels, ratios R4/2, quadrupole moments Q(2+

1 )
(e fm2) and reduced transition probabilities B(E2; 2+

1 → 0+
1 ) (e2 fm4)

for 28Si, 24Mg, and 52Fe.

28Si, k1 = 1.0
k2 E(2+

1 ) E(4+
1 ) R4/2 Q(2+

1 ) B(E2; 2+
1 → 0+

1 )

0.0 0.964 3.197 3.32 −11.50 30.75
0.1 0.866 2.797 3.23 −12.21 35.54
0.2 0.775 1.881 2.42 20.12 9.75
0.3 0.628 1.966 3.13 21.06 109.4
0.4 0.685 2.266 3.31 21.46 112.7
0.5 0.781 2.603 3.33 21.62 113.9
0.6 0.925 2.975 3.21 21.61 113.0
0.7 1.122 3.377 3.01 21.52 110.5
0.8 1.369 3.801 2.78 21.33 107.2
0.9 1.659 4.233 2.55 21.27 103.6
1.0 1.987 4.658 2.34 18.79 81.93

24Mg, k1 = 1.0
0.0 0.596 1.667 2.80 −16.32 78.09
0.1 0.636 1.795 2.82 −18.04 83.40
0.2 0.661 1.931 2.92 −18.80 86.61
0.3 0.689 2.095 3.04 −19.28 89.04
0.4 0.731 2.297 3.14 −19.59 90.99
0.5 0.794 2.541 3.20 −19.77 92.54
0.6 0.882 2.828 3.21 −19.84 93.83
0.7 0.998 3.158 3.16 −19.81 94.87
0.8 1.142 3.529 3.09 −19.70 95.75
0.9 1.313 3.937 3.00 −19.51 96.27
1.0 1.509 4.378 2.90 −17.44 79.12

52Fe, k1 = 1.0
0.0 0.296 0.771 2.60 −20.68 92.28
0.1 0.312 0.854 2.74 −25.76 152.60
0.2 0.319 0.951 2.98 −27.16 168.80
0.3 0.353 1.081 3.06 −27.92 176.70
0.4 0.401 1.232 3.07 −28.48 182.40
0.5 0.461 1.397 3.03 −28.92 187.50
0.6 0.528 1.576 2.98 −29.32 192.60
0.7 0.604 1.768 2.93 −29.70 198.20
0.8 0.688 1.975 2.87 −30.07 204.70
0.9 0.781 2.197 2.81 −30.42 212.20
1.0 0.883 2.434 2.76 −30.76 221.10

In the same spirit, the interaction in the pf shell has 195
nonzero matrix elements, 79 of which are included in the V1

part of Eq. (2), while 116 remaining matrix elements, which
either do not change the occupation number of the subshells or
induce two-body transitions between the partitions, make up
the V2 part of Eq. (2). We consider the cases with four valence
protons + four valence neutrons and six valence protons + six
valence neutrons for the sd shell (these correspond to the
24Mg and 28Si nuclei, respectively) and the case of six valence
protons + six valence neutrons for the pf shell model (the
52Fe nucleus).

The observables used for studying the effects of various
parts of the interaction are the low-lying 2+

1 and 4+
1 energy

levels, the ratio of these energies, R4/2 = E(4+
1 )/E(2+

1 ), the
expectation value of the quadrupole moment in the first-

TABLE II. Results for k2 = 1.0 and changing k1 for yrast energies
(MeV) of 2+ and 4+ levels, ratios R4/2, quadrupole moments Q(2+

1 )
(e fm2) and reduced transition probabilities B(E2; 2+

1 → 0+
1 ) (e2 fm4)

for 28Si, 24Mg, and 52Fe.

28Si, k2 = 1.0
k1 E(2+

1 ) E(4+
1 ) R4/2 Q(2+

1 ) B(E2; 2+
1 → 0+

1 )

0.0 4.886 6.039 1.24 4.52 44.58
0.1 4.798 6.019 1.25 6.07 48.05
0.2 4.654 5.979 1.28 7.79 51.52
0.3 4.452 5.918 1.33 9.66 55.05
0.4 4.192 5.833 1.39 11.60 58.69
0.5 3.875 5.721 1.47 13.52 62.73
0.6 3.510 5.576 1.59 15.35 67.49
0.7 3.112 5.392 1.73 17.02 73.42
0.8 2.705 5.165 1.91 18.49 80.88
0.9 2.320 4.909 2.12 19.74 90.06
1.0 1.987 4.658 2.34 18.79 81.93

24Mg, k2 = 1.0
0.0 2.404 4.337 1.80 −7.29 27.61
0.1 2.380 4.372 1.84 −9.56 37.65
0.2 2.308 4.421 1.92 −11.81 48.48
0.3 2.198 4.472 2.03 −13.76 58.82
0.4 2.067 4.504 2.18 −15.32 67.86
0.5 1.932 4.499 2.33 −16.51 75.50
0.6 1.808 4.465 2.47 −17.40 81.77
0.7 1.702 4.423 2.60 −18.08 86.86
0.8 1.618 4.391 2.71 −18.58 90.91
0.9 1.554 4.375 2.82 −18.97 94.09
1.0 1.509 4.378 2.90 −17.44 79.12

52Fe, k2 = 1.0
0.0 1.020 2.295 2.25 −14.79 71.06
0.1 1.020 2.299 2.25 −16.42 82.66
0.2 1.015 2.306 2.27 −18.08 94.96
0.3 1.006 2.316 2.30 −19.75 107.90
0.4 0.993 2.327 2.34 −21.40 121.40
0.5 0.978 2.342 2.39 −23.02 135.40
0.6 0.960 2.359 2.46 −24.59 149.80
0.7 0.941 2.378 2.53 −26.13 165.10
0.8 0.923 2.399 2.60 −27.65 181.30
0.9 0.903 2.420 2.68 −29.18 199.60
1.0 0.883 2.434 2.76 −30.76 221.10

excited state, Q(2+
1 ), and the reduced quadrupole transition

probability, B(E2; 2+
1 → 0+

1 ). In order to distinguish between
spherical and deformed cases, we use as an indicator the ratio
R4/2, which should be close to 2 for spherical shapes and
close to 3.3 for deformed shapes. Selected results of the exact
shell-model analysis are shown in Tables I and II.

Tables I and II display a pattern of correspondence between
the tabulated nuclear observables and the evolution of one
of the Hamiltonian parameters, either k1 or k2, while the
other one is kept constant. In the first case, when k1 = 1 is
constant whereas k2 evolves, the behavior of the ratio R4/2 is
very similar for the cases of 24Mg and 52Fe: this ratio first
increases, reaching a maximum above 3 around k2 = 0.5 and
then decreases for larger values of k2. The behavior is slightly
different for 28Si, having first a minimum at k2 = 0.2 but
evolving after that in the same way as in the two previous
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TABLE III. Cumulative number of levels (NoL) of J = 0 up to
energy 10 MeV for different (k1,k2) combinations for 28Si, 24Mg, and
52Fe found with the moments method. The column NoL corresponds
to the calculation of the moments method, while the column Renorm
corresponds to the renormalized level density (NoL up to 0.4).

Shape Case Nucleus R4/2 NoL Renorm

Deformed k1 = 1.0, k2 = 0.4 28Si 3.31 22 60
Deformed k1 = 1.0, k2 = 0.5 28Si 3.33 17 54
Deformed k1 = 1.0, k2 = 0.6 28Si 3.21 13 49
Spherical k2 = 1.0, k1 = 0.9 28Si 2.12 5 34

Deformed k1 = 1.0, k2 = 0.5 24Mg 3.20 10 24
Deformed k1 = 1.0, k2 = 0.6 24Mg 3.21 8 21
Spherical k2 = 1.0, k1 = 0.3 24Mg 2.03 6 18

Deformed k1 = 1.0, k2 = 0.4 52Fe 3.07 236 6516
Spherical k2 = 1.0, k1 = 0.0 52Fe 2.25 30 2617

cases. The absolute energies of the 2+
1 and 4+

1 states increase
slowly up to the maximum point of R4/2, while after that
the increase of the 2+

1 and 4+
1 energies is more pronounced.

For the majority of the k2 values, the ratio R4/2 is closer
to the rotational limit. The reduced transition probabilities
B(E2; 2+

1 → 0+
1 ) are quite strong for different values of k2 of

the first case, their values being close to or over 100e2 fm2. As
expected, the one-unit-change matrix elements are to a large
extent responsible for the rotational characteristics, but they
still need certain cooperation of other matrix elements to create
typical characteristics of deformation, while an excessively
large value of other matrix elements destroys the rotational
features. The discontinuity observed for 28Si at small values
of k2 is accompanied by a sudden change of the quadrupole
moment.

The effects of the V2 part of the interaction with respect to
various observables can be studied by using Table II, where
the parameter k2 is fixed at the realistic level of 1.0 while
k1 evolves. The dynamics generated by only the two-body
matrix elements which do not change the occupation number
of the subshells or induce two-body transitions between the
partitions is not capable of creating noticeable characteristics
of deformation. The increase of k1 drives a regular decrease

of the 2+
1 level and a steady growth of the R4/2 ratio, a sign

that the deformation trend is under way, although without
ever reaching a pure rotational pattern. A steady increase
is also observed for the B(E2; 2+

1 → 0+
1 ) reduced transition

probabilities, whose values are however lower than 100e2 fm2

in the majority of cases, except for 52Fe, whose transition
rates B(E2; 2+

1 → 0+
1 ) are still less strong compared to the

corresponding cases with k1 = 1.0 and k2 evolving.
It is expected that the occurrence of rotational motion will

increase the low-lying level density relative to spherical nuclei
because of the contribution of emerging rotational bands.
Among the different cases of Tables I and II we selected those
that display values of R4/2 close to rotational and spherical
limits. As can be seen in Table III, the cases with rotational
values present an enhancement of the level density of the J = 0
states in the lowest part of the energy spectrum compared
with their spherical counterparts. These results are almost
independent of angular momentum and apply even for low
energies (i.e., the calculation of level density up to 3 MeV
would give qualitatively the same results). The cumulative
number of levels (NoL) was calculated using the moments
method. It is convenient for comparison to renormalize the
level density of the moments method, making all level densities
centered at unity. The normalization is achieved by dividing
the width of the bin of the original Gaussian distribution, which
is one, by the mean of the Gaussian found using

∑
i Nixi∑
i Ni

,

where Ni is the number of levels in the energy bin, and xi is the
mean of the energy bin. In this way all Gaussians get centered
at unity.

This part of the study clarifies the role of the one-unit-
change matrix elements. The strong presence of the V1 part
of the shell-model interaction (responsible for mixing of
orbitals of the same parity) is associated with deformational
characteristics of the low-lying part of the spectrum. The strong
presence of the V2 part of the interaction drives the values of
all observables away from the rotational limit. This situation
extends also to the level densities. Not only all rotational
cases have a larger number of low-energy levels compared to

TABLE IV. Yrast energies of 2+, 4+, and 6+ (MeV), ratios R4/2, quadrupole moments Q(2+
1 ) (e fm2) and reduced transition probabilities

B(E2; 2+
1 → 0+

1 ), B(E2; 4+
1 → 2+

1 ), B(E2; 6+
1 → 4+

1 ) (e2 fm2) for 28Si.

λ 2+
1 4+

1 6+
1 R4/2 Q(2+

1 ) B(E2; 2+
1 → 0+

1 ) B(E2; 4+
1 → 2+

1 ) B(E2; 6+
1 → 4+

1 )

0.0 0.964 3.197 4.110 3.32 −11.5 30.75 34.61 9.70
0.1 0.702 2.314 2.938 3.30 −12.14 34.80 6.22 3.46
0.2 0.469 1.410 2.447 3.01 18.74 89.30 109.60 0.10
0.3 0.521 1.771 3.257 3.40 18.63 83.56 105.80 0.06
0.4 1.041 2.699 4.624 2.59 17.36 64.08 100.40 0.16
0.5 1.793 3.857 6.252 2.15 15.42 54.32 94.61 7.77
0.6 2.529 4.777 7.739 1.89 13.1 50.94 72.65 52.32
0.7 3.203 5.280 8.973 1.65 10.7 49.24 45.16 38.08
0.8 3.815 5.587 9.959 1.46 8.41 47.74 32.07 30.52
0.9 4.373 5.826 10.492 1.33 6.35 46.21 25.30 11.96
1.0 4.886 6.039 10.842 1.24 4.52 44.58 21.07 6.97
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TABLE V. Yrast energies of 2+, 4+, and 6+ (MeV), ratios R4/2, quadrupole moments Q(2+
1 ) (e fm2) and reduced transition probabilities

B(E2; 2+
1 → 0+

1 ), B(E2; 4+
1 → 2+

1 ), B(E2; 6+
1 → 4+

1 ) (e2 fm2) for 24Mg.

λ 2+
1 4+

1 6+
1 R4/2 Q(2+

1 ) B(E2; 2+
1 → 0+

1 ) B(E2; 4+
1 → 2+

1 ) B(E2; 6+
1 → 4+

1 )

0.0 0.596 1.667 3.507 2.80 −16.32 78.09 79.09 65.32
0.1 0.590 1.649 3.512 2.79 −18.02 82.34 93.06 79.36
0.2 0.548 1.620 3.504 2.96 −18.65 83.89 99.93 86.48
0.3 0.515 1.640 3.533 3.18 −18.87 83.64 102.70 88.61
0.4 0.547 1.766 3.642 3.23 −18.68 81.37 101.50 84.58
0.5 0.688 2.036 3.860 2.96 −17.97 76.60 95.45 73.21
0.6 0.951 2.433 4.201 2.56 −16.65 69.12 81.00 57.41
0.7 1.300 2.881 4.672 2.22 −14.71 59.51 58.57 42.26
0.8 1.683 3.339 5.267 1.98 −12.28 48.55 39.82 31.08
0.9 2.058 3.821 5.970 1.86 −9.68 37.37 28.94 23.99
1.0 2.404 4.337 6.761 1.80 −7.29 27.61 22.63 19.30

their spherical counterparts, but also they are all observed for
k1 = 1.0, while all spherical cases are observed for k2 = 1.0.

V. SIGNATURES OF A QUANTUM PHASE TRANSITION

In the previous section we studied the behavior of the two
different parts of the Hamiltonian by keeping one part constant
and dominant and changing the other. In this way we saw that
the dominant part gave either rotational (k1 = 1.0) or spherical
(k2 = 1.0) characteristics to the spectrum. In this section we
concentrate on a quantum phase transition that takes place
when we change simultaneously the strength of the two parts
of the Hamiltonian.

Nuclear models have long provided a fertile ground for
studying phase transitions in mesoscopic quantum systems.
Quantum phase transitions [18–23] occur when the special
observables of a system, called order parameters, reveal
structural, often geometrical, changes as a function of control
quantities. It is convenient to study a quantum phase transition
by using a Hamiltonian of the form

H = h + (1 − λ)V1 + λV2, (3)

where the single-particle energies part h is fixed, and λ is the
control parameter. In our case V1 contains the one-unit-change
matrix elements and V2 the rest of matrix elements. By varying
λ from 0 to 1 in steps of 0.1, we study the phase-transitional
patterns in the same three nuclei. The results can be found
in Tables IV–VI and Figs. 1–3. We have restricted our study
to the yrast states, which exhibit well the effects of a phase
transition.

The λ dependence of the low-energy levels presents a
minimum at λ around 0.2–0.3 for all nuclei and for almost
all values of nuclear spin (for 24Mg, the minimum of the 2+

1

state is displaced to λ = 0.3, while for 52Fe the minimum of the
4+

1 state is displaced to λ = 0.1). At the same time, the energy
ratio R4/2 reaches a maximum, which is always close to a
deformed value just after, or at, the minimum in the energies
of the yrast states. For example, for 24Mg the maximum of R4/2

appears at λ = 0.4, while for 52Fe the maximum of R4/2 and
the minimum of the yrast energies coincide. The case of 28Si
is distinct from the other two, since its quadrupole moment
changes abruptly from negative to positive values and the
R4/2 ratio has two maxima for different types of deformation.
The second maximal R4/2 value appears for λ = 0.3. Another
quantity that reflects the effects of the phase transition is the

TABLE VI. Yrast energies of 2+, 4+, and 6+ (MeV) states, ratios R4/2, quadrupole moments Q(2+
1 ) (e fm2) and reduced transition

probabilities B(E2; 2+
1 → 0+

1 ), B(E2; 4+
1 → 2+

1 ), B(E2; 6+
1 → 4+

1 ) (e2 fm2) for 52Fe.

λ 2+
1 4+

1 6+
1 R4/2 Q(2+

1 ) B(E2; 2+
1 → 0+

1 ) B(E2; 4+
1 → 2+

1 ) B(E2; 6+
1 → 4+

1 )

0.0 0.296 0.771 0.960 2.61 −20.68 92.28 81.66 31.76
0.1 0.264 0.748 1.154 2.83 −25.27 149.20 173.90 58.55
0.2 0.246 0.763 1.340 3.10 −25.60 154.10 184.90 64.16
0.3 0.281 0.847 1.479 3.01 −25.02 148.00 181.30 88.09
0.4 0.347 0.975 1.649 2.81 −24.00 138.50 171.80 100.30
0.5 0.434 1.137 1.860 2.62 −22.70 127.90 159.50 100.10
0.6 0.535 1.327 2.111 2.48 −21.24 116.60 145.80 93.69
0.7 0.647 1.540 2.397 2.38 −19.68 105.10 131.40 86.89
0.8 0.766 1.773 2.717 2.32 −18.06 93.48 117.10 77.49
0.9 0.890 2.025 3.067 2.28 −16.42 82.01 103.20 68.40
1.0 1.020 2.295 3.444 2.25 −14.79 71.06 89.81 59.53
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FIG. 1. (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J )/J (J + 1) for J = 0,2,4, (c) ratios R4/2, and (d) electromagnetic transition rates
between them as a function of λ for 28Si.

quadrupole moment of the 2+ state that has a minimum close
to the values of λ where other observables have their extremal
values.

We note that the ratio E(J )/J (J + 1) (effective inverse
moment of inertia) is almost independent of J for all nuclei,
from λ = 0.0 up to the value of λ where the energy ratio R4/2

has its maximum for each particular nucleus. The reduced
transition probabilities are also sensitive to the phase transition,

showing a maximum close to the point of minimum energy of
the yrast states. The probabilities B(E2; 6+

1 → 4+
1 ) for 28Si

and 52Fe have a maximum for slightly greater values of λ.
The ground-state wave function also displays the signs of

a quantum phase transition. Figure 4 shows the amplitudes of
this function expanded in terms of single-particle orbitals for
protons and neutrons coupled to angular momenta (Jn,Jp) =
(0,0), (2,2), (3,3), (4,4), (6,6) as a function of λ. The
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FIG. 2. (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J )/J (J + 1) for J = 0,2,4, (c) ratios R4/2, and (d) electromagnetic transition rates
between them as a function of λ for 24Mg.
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FIG. 3. (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J )/J (J + 1) for J = 0,2,4, (c) ratios R4/2 and, (d) electromagnetic transition rates
between them as a function of λ for 52Fe.

results for the amplitudes of the couplings (0,0), (2,2), and
(4,4) are quite similar for 24Mg and 52Fe. The (0,0) coupled
pairs have their minimum amplitudes for small values of
λ, while the (2,2) coupled pairs are stronger for the same
values of λ. Basically, up until the point of the quantum
phase transition, the (2,2) coupled pairs are the strongest

components of the ground-state wave function, a behavior
consistent with deformation characteristics. After the critical
point, their amplitudes fall down and the amplitudes of the
(0,0) coupled pairs rise, becoming eventually the strongest
components of the wave function, a typical feature of the
vibrational limit. The amplitudes of the (4,4) coupled pairs
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FIG. 4. Amplitudes of the ground-state wave function expanded in terms of the proton and neutron components coupled to angular momenta
(0,0), (2,2), (3,3), (4,4), (6,6) as a function of λ for (a) 28Si, (b) 24Mg, and (c) 52Fe.
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have their largest values for the smallest λ and then they
slowly decrease, taking an almost steady value after the point
of the phase transition. The behavior of the amplitudes of
28Si for λ = 0.0 and 0.1 differs from other nuclei, because
the amplitudes have a steady but still coherent behavior with
the (2,2) component being stronger than the (0,0) component,
but with a clear predominance of the (3,3) component over all
others. This steady behavior suddenly breaks for λ = 0.2, with
the components moving abruptly to the values they would have
if the quadrupole moments had had a steady sign following the
behavior of the amplitudes in other nuclei. For 52Fe, up to the
transitional point, the (6,6) component seems to be also of
some importance.

These results suggest that a nuclear system governed by the
Hamiltonian (3) undergoes a phase transition at λ = 0.2, with
the rotational characteristics being more evident for λ � 0.2
and declining for λ > 0.2. One might expect that, close to
the transition point, where the excitation energies have their
minimum values, an enhancement of the level density would
be observed, at least at relatively low energy. Previous studies
in the framework of the interacting boson model for large
boson numbers have confirmed this enhancement [24] in the
spectrum of 0+ states. Enhancement in the number of low-
lying 0+ states has also been observed experimentally [25] in
the rare-earth region for the transitional nucleus 154Gd.

In order to search for signs of the collective enhancement,
we calculate the number of 0+ states up to 10 MeV for
selected three nuclei at different values of the parameter λ, as
shown in Table VII and Fig. 5. These results are qualitatively
independent of the angular momentum used—different spins
show the same behavior of the level density. The number of
levels was calculated by using the moments method as well as
its renormalized version when all level densities are centered
at unity.

No signs of collective enhancement are observed just at
the transitional point. In all cases there is a sharp drop at the
number of levels as a function of λ. This result does not change

TABLE VII. Cumulative number of levels (NoL) with J = 0 up
to energy 10 MeV for different values of λ for 28Si, 24Mg, and 52Fe.
The column NoL corresponds to the calculation of the moments
method, while the column Renorm corresponds to the renormalized
level density (NoL up to 0.4 MeV).

28Si 24Mg 52Fe

λ NoL Renorm λ NoL Renorm λ NoL Renorm

0.0 32 67 0.0 38 44 0.0 1034 12 853
0.1 42 75 0.1 35 40 0.1 673 10 435
0.2 45 75 0.2 31 36 0.2 412 8278
0.3 35 63 0.3 28 33 0.3 249 6581
0.4 23 49 0.4 24 31 0.4 154 5284
0.5 15 38 0.5 20 28 0.5 99 4354
0.6 10 31 0.6 16 26 0.6 68 3746
0.7 7 27 0.7 13 24 0.7 50 3248
0.8 6 24 0.8 11 22 0.8 40 2942
0.9 5 23 0.9 9 20 0.9 34 2731
1.0 4 22 1.0 7 19 1.0 30 2617

0

10

20

30

40

50

N
oL

 u
p 

to
 1

0 
M

eV 28Si          (a)

0

10

20

30

40

50

N
oL

 u
p 

to
 1

0 
M

eV 24Mg         (b)

0 0.2 0.4 0.6 0.8 1
λ

0

500

1000

1500

N
oL

 u
p 

to
 1

0 
M

eV 52Fe         (c)

FIG. 5. Number of levels up to 10 MeV as a function of λ for (a)
28Si, (b) 24Mg, and (c) 52Fe.

even if we use a smaller energy interval to calculate the number
of levels; for instance up to 3 MeV. For 28Si, a peak appears for
λ = 0.2, i.e., at the point of the transition; however, this peak
has to be attributed to the sudden change of the quadrupole
moment at λ = 0.2, since there is no similar effect in other
two nuclei, whose quadrupole moment has a steady sign. The
vicinity of the phase-transition point that in a finite system is
always smeared as a crossover can be studied in more detail
by means of the invariant correlational entropy [26].

Last, among the different level densities calculated, we
selected those few that indicate a spherical or a deformed
shape, according to their R4/2 value. According to Table VIII
where we collected the results, deformed cases always have
enhanced level density compared with the spherical cases. This

TABLE VIII. Cumulative number of levels (NoL) up to 10 MeV
energy for spherical or deformed cases which appear for various
values of λ for 28Si, 24Mg, and 52Fe nuclei.

Shape Case Nucleus R4/2 NoL

Deformed λ = 0.0 28Si 3.32 32
Spherical λ = 0.5 28Si 2.15 15

Deformed λ = 0.4 24Mg 3.23 24
Spherical λ = 0.8 24Mg 1.98 11

Deformed λ = 0.2 52Fe 3.10 412
Spherical λ = 1.0 52Fe 2.25 30
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FIG. 6. Nuclear level densities for J = 0, for 24Mg and for the
points given in Table VIII. The upper panel (a) corresponds to the level
density as given by the moments method. The lower panel (b) shows
the level density that corresponds to the spherical case, normalized to
the width of the deformed level density.

seems to be a general result consistently observed among all
the cases studied.

The level density curves for 24Mg corresponding to the
deformed and spherical cases can be seen in Figs. 6(a) and
6(b). Figure 6(a) shows the level density calculated using
the moments method, whose cumulative level number up to
10 MeV is tabulated in Table VIII. In Fig. 6(b) the spherical
case (λ = 0.8) is renormalized by multiplying the matrix
elements with a suitable number, so that its energy spectrum
has the same range as in the deformed case. While in Fig. 6(a)
the collective enhancement persists up to the peak of the
Gaussian, in Fig. 6(b) it fades out after ∼15 MeV.

VI. DISCUSSION

In this study, the fixed Hilbert space of the shell model
has been probed by varying the numerical parameters of
the Hamiltonian while keeping intact all exact conservation
laws. This allows us to study the evolution of physical
observables and the corresponding level density. Technically,
the shell-model Hamiltonian was divided into two parts. The
part V1 included the two-body matrix elements which induce

the transfer of one nucleon between the partitions, whereas the
part V2 contained the remaining matrix elements. By varying
the strength of the two parts of the Hamiltonian, we followed
the changes of the energy spectrum, quadrupole moments, and
transition probabilities for selected nuclei in the sd and pf
shells. The results confirm that the one-unit-change matrix
elements are responsible for the appearance of rotational
characteristics, lowering energy of the 2+

1 and 4+
1 levels,

inducing the R4/2 values typical for a rotor and large reduced
transition probabilities between rotational states. On the other
hand, the V2 part of the interaction breaks the rotational
characteristics and induces a vibrational behavior.

Collective modes in nuclei strongly influence the level
density at the low-energy part of the spectrum, the phe-
nomenologically known effect called collective enhancement.
By selecting the rotational and vibrational cases resulting
from the variation of the shell-model Hamiltonian, one can
clearly see that the deformed nuclear spectra are richer in
low-lying levels compared with the spherical ones, a clear
indication of collective enhancement. The enhancement has to
be compensated at higher energy unless we extend our orbital
space; for the fixed space, the compensation occurs beyond the
borderline of applicability of the used shell-model version.

The role of the one-unit-change matrix elements as the
carriers of deformation is so pronounced that one can even see
a quantum phase transition between deformed and spherical
(often with soft vibrations as predecessors of the shape insta-
bility) phases of the system, by simultaneously varying the V1

and V2 parts of the Hamiltonian. The phase transition reveals
itself in the ground-state wave function of the system, the
energy spectrum, and transition probabilities. No similar phase
transition has been observed by dividing the Hamiltonian in
other combinations. The phase transition reveals itself by the
cooperative dynamical action of many components of the
interaction present in the shell-model Hamiltonian.

Our preliminary results have shown that in the case in
odd-odd nuclei the one-unit-change matrix elements affect
noticeably the whole energy spectrum. For odd-odd nuclei we
would expect to see signs of collective enhancement even at
the transitional point.
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