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An effective field theory of α-cluster condensation is formulated as a spontaneously broken symmetry in
quantum field theory to understand the raison d’être and the nature of the Hoyle and α-cluster states in 12C.
The Nambu-Goldstone and Higgs mode operators in infinite systems are replaced with a pair of canonical
operators whose Hamiltonian gives rise to discrete energy states in addition to the Bogoliubov–de Gennes
excited states. The calculations reproduce well the experimental spectrum of the α-cluster states. The existence
of the Nambu-Goldstone-Higgs states is demonstrated and crucial. The γ -decay transitions are also obtained.
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I. INTRODUCTION

Alpha-cluster condensation in nuclei has attracted much
attention since the observation of Bose-Einstein condensation
(BEC) of trapped cold atoms [1]. In 12C, the three-α structure
was most thoroughly investigated by Uegaki et al. [2], who
showed that the 0+

2 state at an excitation energy Ex of
7.654 MeV, the Hoyle state, which is crucial for nucleosyn-
thesis, the evolution of stars, and the emergence of life, has
a dilute structure in a new “α-boson gas phase” and clarified
the systematic existence of a “new phase” of three α clusters
above the α threshold. The Hoyle state has been extensively
studied theoretically [3–13] and experimentally [14–21] and
has been considered widely as an α-cluster condensate. It has
a gaslike structure with a dilute matter distribution of three-α
clusters, 70% of which are in the 0s state [6]. However, no
firm evidence of BEC, such as superfluidity, has been found.

In 12C, all the excited states except the 2+
1 state at

4.44 MeV appear above the α-particle threshold (7.367 MeV).
Recently, α-cluster states above the Hoyle state, which are also
candidates for an α-cluster condensate, that is, the 0+

3 state at
9.04 MeV, the 0+

4 state at 10.56 MeV, the 2+
2 state (∼9.75 MeV)

[14–18], and the 4+
1 state (∼13.3 MeV) [19,20], have been

observed. To date, studies using α-cluster models [6–8] and
ab initio calculations [9–13] explain the Hoyle state and
the excited gaslike states as collective states of α clusters
or nucleons in configuration space. Collective motions arise
owing mostly to spontaneously broken symmetries (SBSs) in
the configuration space, such as rotational and translational
ones, or in the gauge space [22,23]. The BEC of α clusters is
a manifestation of the SBS of the global phase. It would be
difficult from the standpoint of traditional α-cluster models or
ab initio calculations to conclude that BEC is truly realized,
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because it is not clear then what type of symmetry is broken
for the Hoyle state and the α-condensate states above it.

In the study of α - condensation, it is important to treat the
SBS of the global phase on the basis of quantum field theory
because of its unifying view and underlying principle. SBS
is ubiquitous [24]; when it occurs, a Nambu-Goldstone (NG)
mode (phason) appears according to the NG theorem [25,26],
and a Higgs (amplitude) mode (amplitudon) usually accom-
panies it. For example, in infinite superconducting systems,
the NG mode [27], which is eaten by the plasmon, and the
Higgs mode [28,29] have been observed. For systems with a
finite particle number, both the NG and Higgs modes have
been confirmed in superfluid nuclei as a pairing rotation and
a pairing vibration, respectively [30]. The observation of the
Higgs boson in particle physics [31] has stimulated a search
for Higgs modes in other phenomena, including a recent
experiment on Higgs mode excitation in a superconductor
using a terahertz pulse [32]. It is intriguing to reveal the
emergence of the NG and Higgs modes theoretically in an
α-cluster condensate and to observe them experimentally.
Because the system is finite in size and particle number,
they would manifest themselves not as particle excitations
but as resonant states with discrete energy levels. From this
viewpoint, Ref. [33] discussed a possible emergence of such
states for an α-cluster condensate in 12C and 16O qualitatively.

The purpose of this paper is to show for the first time that
the dilute excited α-cluster states, the Hoyle state and those
above it, can be understood as new discrete states that follow
naturally in the formulation of quantum field theory [34], called
the interacting zero mode formulation (IZMF in short), for
BEC of α clusters in terms of the field equation, canonical
commutation relations (CCRs), and global gauge invariance.

This paper is organized as follows. In Sec. II, the IZMF
for BEC of trapped cold atoms is extended to BEC of
α clusters. In Sec. III, we introduce a phenomenological
model of α clusters, in which α particles are trapped by a
harmonic potential and the α-α interaction is described by
a phenomenological Ali-Bodmer potential [35]. Then, the
strengths of the harmonic potential and the repulsive potential
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in the Ali-Bodmer potential are the key parameters in our
analysis. We calculate the energy levels, adjusting the two
parameters, and compare them with the observed α-cluster
states. The γ -decay transition probabilities are calculated in
Sec. V. Section VI is devoted to the summary.

II. FORMULATION OF QUANTUM FIELD THEORY OF
BOSE-EINSTEIN CONDENSATION FOR α CLUSTERS

First, we clarify from quantum field theory for the α-cluster
condensate that the canonical operators [34], which replace the
NG and Higgs mode operators in infinite systems with SBS,
emerge and that the spectrum of their quantum mechanical
system is discrete.

We start with the following Hamiltonian for the α-cluster
system described by the field operator ψ̂ :

Ĥ =
∫

d3x ψ̂†(x)

(
− ∇2

2m
+ Vex(x) − μ

)
ψ̂(x)

+ 1

2

∫
d3x d3x ′ ψ̂†(x)ψ̂†(x ′)U (|x − x′|)ψ̂(x ′)ψ̂(x),

(1)

where m and μ denote the mass of the α particle and the chem-
ical potential, respectively. The external isotropic confinement
potential Vex(x) is introduced in a phenomenological manner
that is discussed later. The interaction potential U (r) is the
sum of the nuclear α-α potential, V Nucl

α−α (r), and the Coulomb
potential, V Coul

α−α (r). We set � = c = 1 throughout this paper.
Assuming α condensation, namely, the broken phase, we

divide ψ̂ into a condensate c-number component ξ and an
excitation component ϕ̂ using the criterion 〈0|ψ̂ |0〉 = ξ . The
order parameter ξ is taken to be stationary, isotropic, and
real and is normalized to the condensed particle number as∫
d3x ξ 2(x) = N0, where we fix N0 = 3 for 12C below. The

Hamiltonian (1) is rewritten in terms of ϕ̂ as Ĥ = Ĥ2 + Ĥ3,4,
where

Ĥ2 = 1

2

∫
d3x d3x ′ (ϕ̂†(x) −ϕ̂(x))

×
( L(x,x′) M(x,x′)

−M(x,x′) −L(x,x′)

)(
ϕ̂(x ′)
ϕ̂†(x ′)

)
, (2)

Ĥ3,4 = 1

2

∫
d3x d3x ′ U (|x − x′|)

×{[2ξ (x′) + ϕ̂†(x ′)]ϕ̂†(x)ϕ̂(x)ϕ̂(x ′) + H.c.}, (3)

with

VH (x) =
∫

d3x ′ U (|x − x′|)ξ 2(x′), (4)

M(x,x′) = U (|x − x′|)ξ (x)ξ (x′), (5)

L(x,x′) = δ(x − x′)[−∇2/2m + Vex(x)

−μ + VH (x)] + M(x,x′). (6)

The requirement that the ϕ̂-linear term in Ĥ must vanish leads
to the Gross-Pitaevskii equation [36]:

[−∇2/2m + Vex(x) − μ + VH (x)]ξ (x) = 0. (7)

According to the method developed in cold atomic physics, ϕ̂
is expanded as [37,38]

ϕ̂(x) = ϕ̂ex(x) − iQ̂(t)ξ (x) + P̂ (t)η(x). (8)

The field ϕ̂ex(x) is expanded as ϕ̂ex(x) = ∑
n[ân(t)un(x) +

â
†
n(t)v∗

n(x)], where un and vn are the elements of the
Bogoliubov-de Gennes (BdG) eigenfunction [39,40],∫

d3x ′
( L M

−M −L
)(

un

vn

)
= ωn

(
un

vn

)
, (9)

with the normalization condition
∫
d3x [|un|2 − |vn|2] = 1 .

The isotropic ξ implies n = (n, 
,m), a triad of the main,
azimuthal, and magnetic quantum numbers. In Eq. (8), ξ
is the element of the BdG eigenfunction belonging to zero
eigenvalue, and η is its adjoint function, calculated as

η(x) = ∂

∂N0
ξ (x), (10)

with the normalization condition
∫
d3x [ξ ∗η + η∗ξ ] = 1 .

The CCR of ψ̂ and ψ̂† yields [ân,â
†
n′] = δnn′ , [Q̂,P̂ ] = i,

(otherwise) = 0. The pair of canonical operators Q̂ and
P̂ , which are associated with the eigenfunctions with zero
eigenvalue and stem from the SBS of the global phase, are
counterparts of the NG and Higgs mode operators in general
infinite systems. The use of the mode operators in our finite
system does not diagonalize the unperturbed Hamiltonian and
also causes singular behavior, whereas that of Q̂ and P̂ is free
from these difficulties. We call (Q̂ , P̂ ) and the subspace of
states operated by them the Nambu-Goldstone-Higgs (NGH)
operators and NGH subspace (or simply zero mode operators
and zero mode subspace), respectively. The excitation mode
created by â

†
n is referred to as the BdG mode. We note that

the NGH operators exist in our finite model of superfluid
type irrespective of the fact that the Higgs mode is absent
in nonrelativistic infinite models of this type [29].

Let us seek the vacuum |0〉, with which we identify the
Hoyle state. A naive choice of the unperturbed Hamiltonian
would be Ĥ2, because the system is a dilute, weakly interacting
gaslike one, so the higher powers of ϕ̂, Ĥ3,4 could be ignored
in the leading order. Substituting Eq. (8) into Eq. (2), we
obtain Ĥ2 = I P̂ 2/2 + ∑

n ωnâ
†
nân , with I = ∂μ/∂N0. The

Hamiltonian of the NGH operators, which has the free-particle
form and therefore a continuous spectrum, causes serious
defects, that is, the nonexistence of a stationary normalized
vacuum and the diffusing phase of ξ [37].

In the traditional formulations such as in Refs. [37] and [41],
the linear expansion is replaced with the approximate nonlinear
expansion,

ψ̂(x) � e−iQ̂(t){ξ (x) + P̂ (t)η(x) + ϕ̂ex(x)}, (11)

under the assumption of small Q̂. The authors of Ref. [41]
specified the global properties of Q̂ and P̂ , identifying
them as the azimuth angle and angular momentum operators,
respectively, on the grounds of Eq. (11), although its validity
is restricted to small Q̂. As a result, the spectrum of P̂ and
consequently that of the Hamiltonian become discrete, so one
does not encounter the defects in the preceding paragraph.
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However, we cannot accept the nonlinear expansion (11) from
the standpoint of quantum field theory because it violates the
CCR of ψ̂ and ψ̂†. As is given just below, we insist on the linear
expansion (8), that is, the CCR, but introduce the nonlinear
unperturbed Hamiltonian instead of the bilinear one.

To avoid the defects mentioned above, a modified unper-
turbed Hamiltonian [34], which retains the nonlinear terms of
Q̂ and P̂ in Ĥ3,4, has been proposed, because it is unfounded
to neglect them, unlike the higher powers of the BdG modes.
Concretely, we replace the term I P̂ 2/2 above with

ĤQP
u = −(δμ + 2C2002 + 2C1111)P̂ + I − 4C1102

2
P̂ 2

+ 2C2011Q̂P̂ Q̂ + 2C1102P̂
3 + 1

2
C2020Q̂

4

− 2C2011Q̂
2 + C2002Q̂P̂ 2Q̂ + 1

2
C0202P̂

4, (12)

where Ciji ′j ′ = ∫
d3xd3x ′U (r)ξ i(x)ηj (x)ξ i ′(x′)ηj ′

(x′), with
r = |x − x′|, and δμ is to be determined self-consistently to
satisfy the criterion 〈0|ψ̂ |0〉 = ξ . The fact that the spectrum
of ĤQP

u is discrete is especially significant. It is implicitly
postulated in the introduction of Eq. (12) that the unperturbed
state of the total system is factorized as |�〉|·〉ex, where |�〉
and |·〉ex are a wave function in the NGH subspace and
a Fock state associated with ân, respectively. Accordingly,
all the cross terms such as ânQ̂P̂ are included in the
interaction Hamiltonian and should be treated perturbatively.
The unperturbed vacuum |0〉 , which is identified with the
Hoyle state, is now given by |�0〉|0〉ex, where |�0〉 is the
ground state in the NGH (zero mode) eigenequation

ĤQP
u |�ν〉 = Eν |�ν〉 (ν = 0,1, . . .). (13)

The excitation in the NGH subspace is a new and original
concept, for which the adoption of the nonquadratic Hamilto-
nian in Eq. (12) is crucial [34]. Note that this excitation does
not change the value of the angular momentum J because the
NGH operators carry no quantum number in configuration
space. The states |�ν〉|0〉ex (ν = 1,2, . . .), which have gap
energies from the Hoyle state Eν − E0, are referred to as the
NGH states below. The BdG excitation energy ωn is measured
from the energy of the Hoyle state, and the state |�0〉(â†

n|0〉ex)
is termed the BdG state. Its experimental J is given by the
azimuthal quantum number 
 of n. Solving the coupled system
of the GP Eq. (7), BdG Eq. (9) with Eq. (10), and NGH (zero
mode) Eq. (13), we obtain theoretical predictions that can be
compared with experimental data, as shown below.

III. PARAMETERS AND NUMERICAL CALCULATIONS

In the calculations, we take a phenomenological Ali-
Bodmer potential for V Nucl

α−α (r), which is characterized by the
four parameters [35],

V Nucl
α−α (r) = Vr e−μ2

r r
2 − Va e−μ2

ar
2
, (14)

where Vr and Va are the strengths of the repulsive and attractive
parts, respectively, and μr and μa are the corresponding inverse
ranges. This potential was obtained by fitting the s-wave phase
shifts of α-α scattering and has been used in three-α-cluster

FIG. 1. Calculated r̄ as a function of � and the radial density
distribution for � = 2.14 MeV (inset) of the Hoyle state. The upper
horizontal axis indicates the rms radius s = √

3/2m� of the 0s orbit
of the external harmonic oscillator potential.

structure studies of 12C [4]. It has been a well-known fact
that the Ali-Bodmer local potential does not reproduce the
binding energy of the ground state and the Hoyle state.
The attraction of the Ali-Bodmer potential is too weak for
the three-α system. One way to reproduce the correct binding
of these states is to introduce a strong three-body attracting
force [4,42,43]. Alternatively, in this paper, we introduce an
external harmonic potential Vex(r) = m�2r2/2 that mimics
the three-body attracting force to bind the Hoyle state. Here,
� is a fit parameter that corresponds to the strength of the three-
body force. The introduction of the external potential makes
the theoretical analysis simpler without losing the self-binding
essence. If we took only the interaction among the α particles,
the original translational symmetry would be spontaneously
broken in the formation of the nucleus. Then we would
have an additional NG mode associated with the translational
symmetry in addition to the one of the phase symmetry. To
avoid this complexity, we explicitly break the translational
symmetry by introducing the external potential. The Coulomb
potential, V Coul

α−α (r), is taken as (4e2/r)erf(
√

3r/2b), where the
size parameter of the α particle b is 1.44 fm.

We attempt to calculate the rms radius, denoted by r̄ =√
〈r2〉, and the density profile of the Hoyle state from ξ (x)

taking the parameter set d0 in Ref. [35] with the proviso that
the parameter Vr decreases slightly from 500 to 422 MeV,
which is consistent with the finding in Ref. [44] that the α-α
interaction in the three-α system is more attractive than that
determined in free α-α scattering. The results are shown in
Fig. 1. The Hoyle state is found to be dilute for all the �
values. The peak position of the radial density distribution,
located around 4 to ∼5 fm, and r̄ are not very sensitive
to �.

The coexistence of concentration by the trapping potential
and repulsion by the self-interaction is crucial for a stable
BEC of trapped cold atoms. As a typical counterexample,
the trapped BEC of attractively interacting atoms collapses.
We therefore regard � and Vr as the key parameters in
our study and fit them below with fixed Va = 130 MeV,
μa = 0.475 fm−1, and μr = 0.7 fm−1 in the parameter
set d0 [35].

014314-3



Y. NAKAMURA, J. TAKAHASHI, Y. YAMANAKA, AND S. OHKUBO PHYSICAL REVIEW C 94, 014314 (2016)

FIG. 2. NGH (dotted lines) and BdG (solid or dashed lines)
excitation energies with 
 = 0 (red), 2 (green), and 4 (blue) as a
function of � when Vr = 422 MeV is fixed. The horizontal lines
indicate the excitation energies of the observed α-cluster states in
12C [14–19], and the vertical line is a guide to the eye.

IV. ENERGY SPECTRUM

First we use only the existing experimental energy levels to
determine the two fit parameters � and Vr . The � dependence
of the calculated energy levels is given in Fig. 2. Figure 3 shows
the calculated energy levels for the best-fitting parameters
� = 2.14 MeV and Vr = 422 MeV, which are referred to as
the parameter set A, in comparison with the observed α-cluster
states. The calculated r̄ of 0+

2 is 4.21 fm, which is comparable
with the calculations in Refs. [2,3,6,8]. The agreement between
the calculated and experimental energy levels is good, and the
order of the levels is correctly reproduced. Our calculation
reproduces the two 0+ NGH states (ν = 1 and 2), which
correspond well to 0+

3 at 9.04 MeV and 0+
4 at 10.56 MeV,

respectively. The existence of the NGH states is critical for the

FIG. 3. The calculated energy levels for parameter set A (� =
2.14 MeV, Vr = 422 MeV), compared with the observed α-cluster
states in 12C [14–19].

FIG. 4. Vr -� plot for r̄ = 3.8 fm.

assignments, because there is no BdG state with 
 = 0 near the
energies of 0+

3 and 0+
4 . Then, quite naturally, the excitations 2+

2
and 4+

1 are identified as the BdG states with 
 = 2 and 4. All
the observed positive-parity states are well reproduced as BEC
states of α clusters. This shows that the present field theory is
useful even for a few-body system.

In Figs. 2 and 3, the calculation shows two 0+ states
around 12.5 MeV, where no corresponding excitation has
been established experimentally yet. These are the NGH state
with ν = 3, |�3〉|0〉ex, and the BdG state |�0〉(â†

100|0〉ex),
denoted simply as |h〉 and |BdG〉, respectively. Because the
energy difference between the two states is small and the
interaction Hamiltonian allows mutual transitions, they mix
with each other to make new two energy eigenstates. A rough
estimation of diagonalizing Ĥ in the subspace of |h〉 and |BdG〉
gives the eigenstates, 0.98|BdG〉 − 0.18|h〉 with an energy of
12.60 MeV and 0.98|h〉 + 0.18|BdG〉 with 12.20 MeV. The
mixing is not remarkable here, but is generally sensitive to the
energy difference. We also note that doubly excited states, e.g.,
|�1〉(â†

02m|0〉ex), are possible.
Next, we try to determine the parameters � and Vr in

another way. First of all, because the observed energy levels
have large widths, their fitting is not very useful. We add the
rms radius of the Hoyle state, depending on the wave function,
as an object to be fitted. The value of r̄ = 4.21 fm, calculated
for the parameter set A, is rather large, compared with the
typical range of 3.3 to ∼3.8 fm obtained in other α-cluster
model calculations [2,3,9,45,46] and the values around 2.9 fm
estimated from inelastic scattering from the Hoyle state [47].
We seek values of the parameters that give energy levels
consistent with the observed energy levels, fixing r̄ . The plot in
Fig. 4 represents a constraint when r̄ is fixed to be 3.8 fm. We
point out the following two facts in this parameter search. First,
we have negative Eν for Vr < 370 MeV and complex ω120 for
Vr < 330 MeV, implying that BEC is unstable for smaller
Vr (consequently smaller �). The former is caused by the
negative “mass” 1/(I − 4C1102) < 0 in Eq. (12). The latter is
the dynamical instability [48–54] and occurs because the weak
repulsive interaction cannot prevent BEC from collapsing.
Second, � is the most significant parameter to determine
the energy level spacing, and large � (>3 MeV) cannot
reproduce the observed energy levels. After all, no solution
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FIG. 5. NGH (dotted lines) and BdG (solid or dashed lines)
excitation energies with 
 = 0 (red), 2 (green), and 4 (blue) as a
function of Vr for fixed r̄ = 3.8 fm.

is found for the small r̄ that requires large �. We therefore
advance our calculations, taking the maximum r̄ = 3.8 fm.
Figure 5 indicates the Vr dependence of calculated energy
levels. Choosing the best-fitting parameters � = 2.58 MeV
and Vr = 400 MeV, called parameter set B, we give the results
of calculated energy levels in Fig. 6. The zero energy spacing
is narrower due to the smaller Vr and the BdG energy spacing
is wider due to the larger � than those in Fig. 3. As a result,
the NGH state with ν = 4 is located near 4+

1 , while the energy
level of the NGH state with ν = 3 falls down to the midpoint
between 0+

4 and 4+
1 , and the calculated BdG excitation levels

tend to be above the observed levels.
Our interpretation of the α-cluster states as phase locking

due to BEC is quite different from the traditional α-cluster

FIG. 6. The calculated energy levels for parameter set B (� =
2.58 MeV, Vr = 400 MeV).

model, ab initio calculations, and other approaches that try to
explain them as collective modes in configuration space, e.g.,
the rotational band or vibrational states caused by breakdown
of rotational or translational symmetries.

In the traditional models, there has been a long-standing
question about which excited states are the rotational band
members built on the Hoyle state [21]. In other words, which
of the 0+

2 and 0+
3 states is the bandhead of the observed 2+

2
and 4+

1 states? The first and traditional α-cluster model picture
regards the Hoyle state as the bandhead state [20,55,56]. In the
α-condensate model [6], the 2+

2 state is interpreted as a state
in which an α cluster is lifted from the Hoyle state to the D
state in configuration space, and both states have essentially
the same weakly coupled [8Be(0+) × α]J cluster configuration
revealed in Refs. [2,8]. In these cluster model pictures, because
the Hoyle and 2+

2 states have a gaslike spherical structure, it is
difficult to consider logically that a rotational band is built. In
ab initio lattice [13] and no-core shell model [12] calculations,
the Hoyle, 2+

2 , and 4+
1 states are understood to be rotational

band states. The second interpretation is that the 0+
3 state is a

bandhead state on which the rotational 2+
2 and 4+

1 states are
built [55]. Reference [8] suggests that the 0+

3 state is a higher
nodal state with the [8Be(0+) × α(L = 0)]J=0 structure. A
calculated large B(E2) value of the 2+

2 → 0+
3 transition [9] is

reported, although no experimental data are available. In the
next section, we calculate the transition probability and also
obtain a large value in our approach.

The reason that these two different interpretations have been
presented is entirely due to the appearance of the Hoyle and 0+

3
states so closely above the α threshold. If rotational invariance
of the 0+

2 and 0+
3 states in configuration space is broken, a

rotational band should appear individually on both the 0+
2

and 0+
3 states, in contradiction with the experimental data. It

seems difficult to determine which interpretation is correct
as long as these are considered as collective modes with an
α-cluster structure in configuration space. In our picture above,
the question does not arise in principle. Our calculations show
that the 2+

2 and 4+
1 states are the BdG states and need not be

rotational member states on either the Hoyle state or the 0+
3

state. In fact, the J (J + 1) plot of the excitation energy of the
observed states of the band based on the above two pictures
deviates from a straight line.

Why and how does nature allow in principle the emergence
of the 0+

4 state, which is interpreted as a linear chainlike
α-cluster state in Refs. [8–10,57], so close to the 0+

3 and
0+

2 states? In our picture, the close 0+
3 and 0+

4 states emerge
naturally and fundamentally as the NGH states, which is a
logical consequence of BEC of the Hoyle state, and the three
are closely interrelated.

V. γ DECAY

We can calculate the γ -decay transitions, using the wave
functions that have already been obtained. Below the transi-
tions 2+

2 → 0+
2 and 2+

2 → 0+
3 are considered.

The interaction of an α particle, treated as a pointlike
particle with a charge 2e, with the photon field Â, is
introduced from the gauge principle ∇ → ∇ − 2ie Â in
the Hamiltonian (1), and the interaction Hamiltonian is
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TABLE I. Calculated reduced transition probabilities B(E2 :
2 → 0) in units of e2 fm4: Ref. [9], Ref. [59], and our results for
parameter sets A and B.

Transition Ref. [9] Ref. [59] Ours (A) Ours (B)

2+
2 → 0+

2 100 295–340 290 204
2+

2 → 0+
3 310 88–220 342 187

given by

ĤA � −
∫

d3x ĵ (x) · Â(x), (15)

ĵ (x) = ψ̂†(x)
2e

im
∇ψ̂(x). (16)

We make a multipole expansion of Â. The transitions 2+
2 → 0+

2
and 2+

2 → 0+
3 are electric quadrupole transitions, and the decay

rate for a general electric transition with a photon angular
momentum J is

�f i(E : k,J,M)

= 8π (J + 1)

J [(2J + 1)!!]2
k2J+1|〈f |M̂(E : kJM)|i〉|2, (17)

where |i〉 and |f 〉 represent the initial and final states of the
nucleus with respective energies, Ei and Ef , and k = Ei − Ef

is the photon energy. The multipole moment M̂ [58] is

M̂(E : kJM) = (2J + 1)!!

kJ+1

√
J

J + 1

×
∫

d3x ĵ (x) · ∇ × {jJ (kr)Y JJM (θ,ϕ)},
(18)

where j
 and Y JJM are the spherical Bessel function and the
vector spherical harmonics, respectively. When the initial nu-
clear state is unpolarized and a sum over the final polarization
states is taken, the decay rate is

�̄f i(E : k,J ) = 8π (J + 1)

J [(2J + 1)!!]2
k2J+1B(EJ : Ji → Jf ),

B(EJ : Ji → Jf ) = 1

2Ji + 1
|〈f (Jf )||M̂(E : kJ )||i(Ji)〉|2,

(19)

where Ji and Jf are the initial and final nuclear
spins, respectively, and B is the reduced transition
probability [58].

We calculate �̄f i and B for the transitions 2+
2 → 0+

2 and
2+

2 → 0+
3 . The states 0+

2 , 0+
3 , and 2+

2 are identified as the
vacuum |�0〉|0〉ex, the NGH state |�1〉|0〉ex, and the BdG
state |�0〉(â†

02m|0〉ex), respectively. Substituting ψ̂ = ξ + ϕ̂ in
Eq. (8) into ĵ in Eq. (16), we have the following matrix
elements:

〈f (Jf = 0,Mf = 0)|M̂(E : k20)|i(Ji = 2,Mi = 0)〉

= 30e

imk3

√
2

3

∫
d3x

〈{
�0

�1

}∣∣∣∣{(1 + iQ̂)ξ (x) + P̂ η(x)}∇u120(x) + v120(x)∇{(1 − iQ̂)ξ (x) + P̂ η(x)}|�0〉 · ∇{j2(kr)Y 220(θ,ϕ)},
(20)

which are further simplified for 2+
2 → 0+

2 as

〈f (0,0)|M̂(E : k20)|N (2,0)〉 = 60e

mk3

∫
dr r

[
ξ (r)

{
d

dr
U12(r)j2(kr) + U12(r)

(
j2(kr)

r
+ kj ′

2(kr)

)}
+ d

dr
ξ (r)V12(r)j2(kr)

]

(21)

and for 2+
2 → 0+

3 as

〈f (0,0)|M̂(E : k20)|i(2,0)〉

= 60e

mk3

∫
dr r

[{
i〈�1|Q̂|�0〉ξ (r) + 〈�1|P̂ |�0〉η(r)

}{ d

dr
U12(r)j2(kr) + U12(r)

(
j2(kr)

r
+ kj ′

2(kr)

)}

+
{
i〈�1|Q̂|�0〉 d

dr
ξ (r) + 〈�1|P̂ |�0〉 d

dr
η(r)

}
V12(r)j2(kr)

]
. (22)

FIG. 7. Numerical solutions of (a) ξ (r), (b) η(r), (c) U12(r) and V12(r), and (d) U14(r) and V14(r) for parameter sets A and B.
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FIG. 8. Calculated |�ν(q)|2 for parameter sets A and B.

Here note that 〈�0|Q̂|�0〉 = 〈�0|P̂ |�0〉 = 0 but in general
〈�1|Q̂|�0〉 �= 0 and 〈�1|P̂ |�0〉 �= 0 and that the radial
functions are defined as{

ξ (x)

η(x)

}
=

{
ξ (r)

η(r)

}
Y00(θ,ϕ),

{
unJM (x)

vnJM (x)

}
=

{UnJ (r)

VnJ (r)

}
YJM (θ,ϕ). (23)

Using the numerical solutions, ξ (r), η(r), U12(r), V12(r), and
�ν(q) = 〈q|�ν〉 (ν = 0 and 1) for each of the parameter sets
A and B, we obtain the reduced transition probabilities that
are summarized in Table I. The solutions for each parameter
set are shown in Figs. 7 and 8.

It is remarked that the process 2+
2 → 0+

3 is the transition
between the NGH states, whereas the process 2+

2 → 0+
2 is

the transition between the BdG states. The physical picture of
condensation in our approach implies that the widths of the
wave functions, especially η(r) and U12(r), are large. But the
final results of B(E2 : 2 → 0) are comparable with those in
the other calculations, as in Table I.

VI. SUMMARY

To summarize, we have studied the α-cluster structure
above the α-condensate Hoyle state in 12C by formulating an
effective field theory of α-cluster condensation that properly
treats spontaneous symmetry breaking of the global phase.
The observed well-developed α-cluster states, i.e., the 0+

3
(9.04 MeV), 2+

2 (9.75 MeV), 0+
4 (10.56 MeV), and 4+

1 (13.3
MeV) states, are well reproduced. Then, the emergence of the
NGH states just above the Hoyle state is essential. The fact that
excitation energies of the BdG and NGH states are the almost
same order of magnitude in our calculation is also important
for the energy spectrum of 12C. We adopted the two parameter
sets, and both are consistent with the observed spectrum that
has large widths of the energy levels.

We also calculated the γ transitions, using the obtained
wave functions. Our results of the reduced transition probabil-
ities are compared with those of the other model calculations
and are consistent with the latter.

Although the α-cluster condensation involves a small
number of α particles, it is stable in our study. This is not
true in general, and actually, when the repulsive interaction is
weak, we have negative energy of the NGH state and complex
energy of the BdG state that indicate an instability of the
condensation. It also would be intriguing to study the NGH
states in other nuclei such as 16O, 20Ne, and 40Ca.
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