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The decimal logarithm of spontaneous fission half-life of the superheavy nucleus 286Fl experimentally
determined is log10 T

exp
f (s) = −0.632. We present a method to calculate the half-life based on the cranking

inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric
two center shell model. Spherical shapes are assumed. In the first stage we study the statics. At a given mass
asymmetry up to about η = 0.5 the potential barrier has a two hump shape, but for larger η it has only one
hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by
shell effects, corresponding to three decay modes: spontaneous fission, cluster decay, and α decay. The least
action trajectory is determined in the plane (R,η), where R is the separation distance of the fission fragments and
η is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The
parametrization with two deformation coordinates (R,η) and the radius of the light fragment, R2, exponentially
or linearly decreasing with R is compared with the simpler one, in which R2 = constant and with a linearly
decreasing or linearly increasing R2. The latter is closer to the reality and reminds us about the α or cluster
preformation at the nuclear surface.

DOI: 10.1103/PhysRevC.94.014309

I. INTRODUCTION

Superheavy (SH) nuclei, with atomic numbers Z =
104–118, are decaying mainly by α decay and spontaneous
fission. They have been produced in cold fusion or hot fusion
(48Ca projectile) reactions [1–10]. In a systematic study of
α-decay energies and half-lives of superheavy nuclei it was
shown [11] that our semFIS (semiempirical formula based
on fission theory) and UNIV (universal curve) are the best
among 18 calculations methods of α decay half-lives. For
some isotopes of even heavier SHs, with Z > 121, there is a
good chance for cluster decay modes to compete [12,13].

There are many sources of experimental values for half-
lives, Tf , of SHs against spontaneous fission, e.g., [14]. Among
them we found log10 T

exp
f (s) = −3.086, − 0.980 for 282,284Cn

and −0.632 for 286Fl. Calculations have been also performed
with different models [15–22].

Fission dynamics with Werner-Wheeler nuclear inertia
tensor [23] is not leading closer to experiment due to a too
small value of inertia; we tried to improve the agreement
between theory and experiment for 284Cn by using different
laws of variation of mass parameter with fragment separation
distance. Better results are obtained for 282Cn with cranking
inertia [24] by assuming the most effective split to be 282Cn →
130Pd +152Dy.

In the present work we continue to use the cranking inertia
[25–27] introduced by Inglis [28]. This time we try to find
out the least action trajectory in the plane of two independent
variables (R,η), where R is the separation distance of the
fragments and η = (A1 − A2)/A is the mass asymmetry
with A,A1,A2 the mass numbers of the parent and nuclear
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fragments. We assume A1 � A2 hence η � 0. Consequently
both potential energy surfaces and contour plots (figures like
Figs. 1, 3, 7), function of (R,η), will not have the mirror part
corresponding to A1 < A2.

There are two main terms in the action integral allowing
to calculate the half-life: the total deformation energy and
the cranking inertia, both functions of (R,η). We are using
the macroscopic-microscopic method [29] to estimate the
deformation energy, expressed as a sum of Yukawa-plus-
exponential (Y+EM) [30] phenomenological energy, EY+E ,
and the shell plus pairing corrections, δE = δU + δP based
on the asymmetric two center shell model (ATCSM) [31,32]:

Edef = EY+E + δE. (1)

We shall briefly outline the model and discuss the obtained
results.

II. MODEL

A. Surface parametrization. Two deformation parameters

By choosing four independent deformation parameters
R,b2,χ1,χ2 [33] during the deformation from one parent
nucleus to two fission fragments, the surface equation in
cylindrical coordinates ρ,z is given by

ρ2
s (z; b1,χ1,b2,χ2)

=
{

b2
1 − χ2

1 z2, −a1 < z < zc

b2
2 − χ2

2 (z − R)2, zc < z < R + a2
, (2)

where zc is the position of the crossing plane.
The semiaxes ratio of spheroidally deformed fragments

are denoted by χ1 = b1/a1, χ2 = b2/a2. The scalar, B(R),
is determined by the components of the nuclear inertia tensor
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FIG. 1. PES of 286Fl vs (R − Ri)/(Rt − Ri) � 0 and η = (A1 −
A2)/(A1 + A2). Y+EM (bottom), Shell + Pairing corrections (cen-
ter), and total deformation energy (top).

and the derivatives with respect to R:

B(R) = Bb2b2

(
db2

dR

)2

+ 2Bb2χ1

db2

dR

dχ1

dR
+ 2Bb2χ2

db2

dR

dχ2

dR

+ 2Bb2R

db2

dR
+ Bχ1χ1

(
dχ1

dR

)2

+ 2Bχ1χ2

dχ1

dR

dχ2

dR

+ 2Bχ1R

dχ1

dR
+ Bχ2χ2

(
dχ2

dR

)2

+ 2Bχ2R

dχ2

dR
+ BRR.

(3)

When the two fragments are spheres, b2 = R2, χ1,χ2 = 1,
meaning that dχ1

dR
= dχ2

dR
= 0 and the above equation becomes

B(R) = Bb2b2

(
db2

dR

)2

+ 2Bb2R

db2

dR
+ BRR

= B22 + B21 + B11. (4)

The derivative db2
dR

= dR2
dR

depends only on geometry. It is a
negative quantity since R2 decreases exponentially with R; its
absolute values are rather small.

For a given mass asymmetry the final value of the radius
of the light fragment R2f = r0A

1/3
2 is well determined. We

assume an exponential law for the variation with R:

R2 = R2f + (R20 − R2f )e−k2
R−Ri
Rt −Ri , (5)

where R20 = R0 = r0A
1/3 is equal to the radius of the parent,

and the initial and touching point separation distances are
Ri = R0 − R2f and Rt = R1f + R2f . The radius constant in

Y+EM is r0 = 1.16 fm and k2 = 4. We use this particular
value in order to obtain R2(x) for x = (R − Ri)/(Rt − Ri) = 1
very close to the final value R2 = R2f . When k2 = 4, we get
R2(1) = 1.018R2f , meaning an accuracy of 1.8%. An even
larger value of k2 would increase the accuracy but it will also
increase the nuclear inertia, because the shape variation will
be faster. Nuclear inertia is already too large, hence we would
not like to increase it further. Previously we took R2 = R2f

and consequently we had only one deformation parameter, R,
hence B(R) = BRR(R).

We would also like to try two other possibilities:
(1) Linearly decreasing law from R20 = R0 to R2f = Re:

R2 = R2f + (R20 − R2f )
Rt − R

Rt − Ri

. (6)

(2) Linearly increasing law from 0 to R2f = Re:

R2 = R2f

R − Ri

Rt − Ri

. (7)

For any R2 and R1, the matching condition at the intersection
plane of the two spheres, gives the solution

zc = (
R2

1 − R2
2 + R2

)
/(2R), (8)

where zc is the distance of the intersection plane from the
center of the heavy fragment.

B. Macroscopic Y+EM energy

For binary fragmentation with different charge densities,
ρ1e and ρ2e [34], of the Y+EM deformation energy we gave
the details of calculations in Refs. [35,36]:

EY+EM = (
EY − E0

Y

) + (
Ec − E0

c

)
= E0

Y [BY − 1 + 2X(Bc − 1)], (9)

where E0
Y = a2A

2/3{1 − 3x2 + (1 + 1/x)[2 + 3x(1 +
x)] exp(−2/x)}, E0

c = acZ
2A−1/3 are energies corresponding

to spherical shape and a2 = as(1 − κI 2), I = (N − Z)/A,
x = a/R0, R0 = r0A

1/3. The parameters as,κ,ac = 3e2/(5r0),
and r0 are taken from Möller et al. [37]:

BY = EY

E0
Y

= a21

a20
BY1 +

√
a21a22

a20
BY12 + a22

a20
BY2. (10)

The relative Yukawa and Coulomb energies BY = EY /E0
Y ,

Bc = Ec/E
0
c are functions of the nuclear shape; with axially

symmetric shapes they are expressed by triple integrals. In a
similar way the Coulomb relative energy is given by

Bc = Ec

E0
c

=
(

ρ1e

ρ0e

)2

Bc1 + ρ1eρ2e

ρ2
0e

Bc12 +
(

ρ2e

ρ0e

)2

Bc2, (11)

where again one can see the self-energies Bc1,Bc2 and the
interaction Bc12.

C. Shell and pairing corrections

The input is obtained from the ATCSM [31]; at every pair
of coordinates (R,η) we get a sequence of doubly degenerate
discrete energy levels εi = Ei/�ω0

0 in units of �ω0
0 = 41A−1/3,
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arranged in order of increasing energy. In units of �ω0
0 the shell

corrections are determined as

δu(n,R,η) =
n∑

i=1

2εi(R,η) − ũ(n,R,η) (12)

with n = Np/2 particles and ũ the total energy of the uniform
level distribution calculated with Strutinsky’s [29] procedure.
Then we add the contributions from protons and neutrons δu =
δup + δun.

For pairing corrections we have first to solve the BCS [38]
system of two equations with two unknowns, Fermi energy λ
and the pairing gap �,

0 =
kf∑
ki

εk − λ√
(εk − λ)2 + �2

, (13)

2

G
=

kf∑
ki

1√
(εk − λ)2 + �2

, (14)

where ki = Z/2 − n + 1, kf = Z/2 + n′ for proton levels,
and

2

G
� 2g̃(λ̃) ln

(
2�

�̃

)
(15)

assuming that for protons Z/2 levels are occupied with n levels
below and n′ above Fermi energy contributing to pairing, n =
n′ = �g̃s/2. The cutoff energy, � � 1 � �̃ = 12/

√
A�ω0

0.
Occupation probability by a quasiparticle (u2

k) or hole (v2
k )

is given by

v2
k = [1 − (εk − λ)/Ek]/2; u2

k = 1 − v2
k . (16)

The quasiparticle energy is expressed as

Eν =
√

(εν − λ)2 + �2. (17)

The pairing correction, δp = p − p̃, represents the difference
between the pairing correlation energies for the discrete level
distribution

p =
kf∑

k=ki

2v2
k εk − 2

Z/2∑
k=ki

εk − �2

G
(18)

and for the continuous level distribution

p̃ = −(g̃�̃2)/2 = −(g̃s�̃2)/4. (19)

Compared to shell correction, the pairing correction is out of
phase and smaller in amplitude, leading for η = constant to
a smoother total curve δe(R) = δu(R) + δp(R), where δp =
δpp + δpn.

D. Total deformation energy

After subtracting the values of deformation energy of the
parent we can make the final sum

Edef = EY+E + δEsh+p. (20)

Potential energy surfaces (PES) and contour plots for spon-
taneous fission of 286Fl are shown in Figs. 1 and 3. In Fig. 3
we also show with white dashed and dotted lines the minima
of deformation energy at every mass asymmetry (see also
Table I). A cut in PES at symmetry, η = 0, is plotted in
Fig. 2, where one can see not only the total energy but also
the important characteristics given in Table I: first and second
minima (Em1,Em2), first and second barrier height (B1,B2),

TABLE I. Statics. Minima and maxima of deformation energy in MeV for fission of 286Fl. xexit corresponds to Ev = 0.

η x 1st min. x 1st max. x 2nd min. x 2nd max. xexit

0.000 0.074 −3.490 0.352 1.810 0.482 −0.340 0.741 5.143 1.013
0.043 0.074 −3.347 0.352 2.260 0.519 −1.027 0.760 4.079 0.990
0.087 0.074 −3.190 0.371 2.843 0.556 −1.431 0.779 4.031 1.024
0.130 0.074 −3.025 0.390 3.573 0.576 −1.382 0.836 5.398 1.085
0.174 0.074 −2.826 0.409 4.484 0.595 −0.753 0.893 7.365 1.118
0.217 0.074 −2.600 0.429 5.518 0.634 0.434 0.950 9.282 1.143
0.261 0.075 −2.327 0.467 6.486 0.654 1.707 0.971 9.896 1.154
0.304 0.094 −2.091 0.506 7.200 0.674 3.790 0.980 11.674 1.176
0.348 0.113 −1.754 0.526 7.941 0.733 4.256 0.996 8.770 1.163
0.391 0.113 −1.408 0.566 8.526 0.831 3.323 0.982 4.700 1.134
0.435 0.133 −0.988 0.626 9.825 1.150
0.478 0.152 −0.720 0.648 10.448 1.182
0.522 0.173 −0.424 1.036 15.086 1.263
0.565 0.174 −0.186 1.044 20.224 1.301
0.609 0.195 −0.023 1.052 25.017 1.404
0.652 0.000 0.000 1.062 27.948 1.479
0.696 0.000 0.000 1.074 31.447 1.588
0.739 0.000 0.000 1.088 31.786 1.689
0.783 0.000 0.000 1.084 32.317 1.845
0.826 0.396 −0.047 1.104 33.336 2.125
0.870 0.469 −0.284 1.131 31.884 2.550
0.913 0.529 −0.630 1.146 25.720 3.130
0.956 0.649 −1.080 1.182 15.717 4.470
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FIG. 2. Deformation energy of 286Fl symmetrical fission. Im-
portant characteristics of the two humped barrier: first and second
minima, Em1,Em2, first and second barrier height, B1,B2, and the
two turning points, xi,xexit. The difference in energy from the exit
dashed line and the deepest minimum, Em1, is the zero-point vibration
energy, Ev .

and the two turning points xi,xexit, taking care to allow for
a small value of zero-point vibration energy, Ev , from the
deepest minimum Em1 to the exit line. Two deep minima
in the shell plus pairing correction energy correspond to the
doubly magic fragments 132Sn (near symmetry) and 208Pb (at
a value of η about 0.5) which are responsible for spontaneous
fission and cluster decay, respectively. If we use in graphics
x = (R − Ri)/(Rt − Ri) instead of R then for 286Fl the interval
of variation will be x = (0,1). For the initial parent nucleus
one may have either x = 0 or/and η = 1. This is the reason
why the dashed line ends up at the value of η = 0.956. In
present calculations we have used 66 values of x from 0 to 1.3
and 24 values of η from 0 to 1.

For mass asymmetry η � 0.435 we obtain a double hump
potential barrier as shown in Table I, where the position
of minima and maxima as well as the height of the two
barriers (local maximum minus the ground state minimum) and
the second minimum are also given. The deepest minimum,
which should be taken as the ground state corresponds to
x = 0.074 η = 0.00, where Edef = −3.49 MeV. Assuming
zero point vibration energy Ev = 0, the exit point from the
barrier is also given. Initially, at η = 0, the exit point is about
xexit = 0.990 (see Fig. 2). The existence of a two hump barrier
for η � 0.435 is mainly related to the importance of the two
double magic fragments 132Sn and 208Pb. The limit observed
from Table I is not far from η = (208 − 78)/286 = 0.4545.
Both from Fig. 3 and Table I we can see that at a given
mass asymmetry up to about η = 0.5 the potential barrier
has a two hump shape, but for larger η it has only one
hump. This fact is related to the presence of Businaro-Gallone
mountain [39] as well as to the level densities at a large
value of η and x = (R − Ri)/(Rt − Ri). The macroscopic part
(Y+EM) of deformation energy (heavy dashed blue line) with
a maximum at η = 0.826, and the total value, Et , including
the contribution of shell and pairing corrections, Qsh, for
SF of 286Fl, versus mass asymmetry is shown in Fig. 4.
Around the mass symmetry, η = 0.0, up to η = 0.177 we have
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FIG. 3. Contour plot of deformation energy of 286Fl shown as a
PES in the upper panel of Fig. 1. The first and second minima of
deformation energy at every value of mass asymmetry are plotted
with dashed and dotted white lines.

EY+E < 0.0. From the minima of Qsp (a), we can see the three
main regions in the order of increasing value of η around
the doubly magic daughters 132Sn and 208Pb as well as the
doubly magic emitted 4He. The corresponding valleys on the
PES are favorable to spontaneous fission, cluster decay, and α
decay.
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symmetrical spontaneous fission of 286Fl; exponential decrease of
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(R − Ri)/(Rt − Ri) and B/m are dimensionless quantities.

E. Cranking inertia

According to the cranking model, after including the BCS
pairing correlations [38], the inertia tensor [25] is given by

Bij = 2�
2
∑
νμ

〈ν|∂H/∂βi |μ〉〈μ|∂H/∂βj |ν〉
(Eν + Eμ)3

(uνvμ + uμvν)2,

(21)

where H is the single-particle Hamiltonian allowing to
determine the energy levels and the wave functions |ν〉, u2

ν , v2
ν

are the BCS occupation probabilities, Eν is the quasiparticle
energy, and βi,βj are the independent shape coordinates.

Again we follow the procedure for proton and neutron levels
and the final result is obtained by adding the two contributions.
As already mentioned above, for two independent shape
coordinates we have

B(R) = BRR(R,R2) + 2BRR2

dR2

dR
+ BR2R2

(
dR2

dR

)2

= B11 + B12 + B22, (22)

where B11 = BRR,B12 = 2BRR2
dR2
dR

,B22 = BR2R2 ( dR2
dR

)
2
. In

the lower and upper panels of Fig. 5 we plotted B/m—the
cranking inertia in units of the nucleon mass m for symmetrical
fission of 286Fl and that with the light fragment 132Sn and R2

constant, respectively. One can see that a major contribution
comes from the neutrons [heavy dashed blue line (a)]. Also,
when R2 is decreasing exponentially, the inertia is much higher
than in the case of R2 constant. In Fig. 6 we compare the three
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FIG. 6. Cranking inertia components for symmetrical fission
of 286Fl. Two independent deformation coordinates (R,R2). R2

decreases exponentially with R. Top: Three components and the total:
(a) BRR = B11; (b) |B12| (B12 is a negative quantity); (c) B22; (d)

B. B11 = BRR,B12 = 2BRR2
dR2
dR

,B22 = BR2R2 ( dR2
dR

)
2
. Bottom: Three

components and the total: (e) BRR; (f) BR2R; (g) BR2R2; (h) B.
(R − Ri)/(Rt − Ri) and B/m are dimensionless quantities.

components of nuclear inertia for symmetrical spontaneous
fission of 286Fl. The very high value of BR2R2 [B22 with
green dashed curve (g) at the bottom] becomes smaller when

multiplied by ( dR2
dR

)
2

[green dashed curve (c) at the top]. On
the other hand the value of the component BR2R [blue dashed
curve (f) at the bottom] remains practically at an intermediate
level when multiplied by dR2

dR
leading to (b), i.e., |B12|.

For minimization of the least action trajectory in the plane
(R,R2) we need not only BRR but also the values of BR2R2 ,BR2R

in every point of a grid of 66 × 24 for 66 values of (R −
Ri)/(Rt − Ri) and 24 values of η = (A1 − A2)/A or R2f .

The decimal logarithm of B/m function of (R,η) is given
in Fig. 7 as a three-dimensional plot. At the touching point and
beyond, R � Rt , one should get the reduced mass: B(R �
Rt ) = mA1A2/A. Generally speaking the values of B/m are

0
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FIG. 7. Decimal logarithm of nuclear inertia, log10(B/m), for
fission of 286Fl. B/m, x, and η are dimensionless quantities.
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FIG. 8. Three least action trajectories on the contour plot of
deformation energy of 286Fl: (a) yellow dotted-line for variable R2;
(b) black solid line for R2 = constant, and (c) cyan dashed-line for
linearly increasing R2. x and η are dimensionless quantities.

higher where the deformation energy is low. Consequently we
expect a dynamical path (Fig. 8) very different from the statical
one shown in Fig. 3 with a white dashed line.

F. Half-life

The half-life of a parent nucleus AZ against the split into a
light fragment A2Z2 and a heavy fragment A1Z1 is given by

T = [(h ln 2)/(2Ev)] exp(Kov + Ks) (23)

and is calculated by using the Wentzel-Kramers-Brillouin
(WKB) quasiclassical approximation, according to which the
action integral is expressed as

K = 2
√

2m

�

∫ Rb

Ra

{[(B(R)/m)][Edef(R) − Edef(Ra)]}1/2dR

(24)

with B = the cranking inertia, K = Kov + Ks , and the E(R) =
Edef potential energy of deformation. Ra and Rb are the
turning points of the WKB integral where Edef = Edef(Ra) =
Edef(Rb). The two terms of the action integral K , correspond
to the overlapping (Kov) and separated (Ks) fragments. We
can use the relationship

log10 T = 0.43429(0.4392158Sab) − 20.8436 − log10 Ev,

(25)

TABLE II. Dynamics. The optimum value of the parameter
zero-point vibration energy, Ev , used to reproduce the experimental
value of 286Fl spontaneous fission half-life, log10 T

exp
f (s) = −0.63.

The simplest trajectories, η = constant, are used in the plane (R,η).

η Ev (MeV) log10 Tf (s)

0.0000 5.0220 −0.63
0.0430 4.3909 −0.63
0.0870 4.2835 −0.63
0.1304 4.9450 −0.63

where

Sab =
∫ Rb

Ra

{[(B(R)/m)][Edef(R) − Edef(Ra)]}1/2dR. (26)

For 286Fl and r0 = 1.16 fm (Y+EM) we have R0 =
r0A

1/3 = 7.6427 fm, R1s = r0A
1/3
1s = 6.066 fm, R2s = r0A

1/3
2s =

6.066 fm, Ri = R0 − R2s = 1.5767 fm, Rt = R2s + R2s =
12.132 fm, where the subscript s stands for symmetry (η = 0).

III. RESULTS

We started to calculate the half-life by choosing for the
beginning the simplest trajectory in the plane (x,η), namely
η = constant. The results are shown in Table II for four
such trajectories. The zero-point vibration energy is quite
high 4.2835–5.0220, with a minimum at η = 0.0870. From
Table I the corresponding xexit should be smaller than 1.07.
We continue with least action trajectory, in which the first
guess for the exit point could be not far from this value of
η = 0.087.

In Fig. 8 we represent three fission paths, (a), (b), and
(c). The least action trajectory (a) (yellow dotted line) was
obtained when the radius of the light fragment, R2, was
exponentially decreased down to the final value. In this case,
in order to reproduce the experimental value of Tf when using
Ev = 0.5 MeV, it was necessary to diminish substantially
the two components, B12 and B22 of the cranking inertia
tensor. By taking R2 = constant (b), as in Table II, the
dynamical trajectory is simply a solid straight line. The best
results are obtained when R2 is linearly increasing leading
to the (c) cyan dashed-line and reproducing the experimental

TABLE III. Dynamics. The optimum value of the parameter zero-
point vibration energy, Ev , used to reproduce the experimental value
of 286Fl spontaneous fission half-life, for a given split, using a shape
parametrization with R2 = constant.

η A2 Z2 Ev (MeV)

0.0769 132 50 1.3612
0.0909 130 52 1.4278
0.0629 134 50 1.4762
0.0629 134 52 1.5690
0.0490 136 54 2.0916
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FIG. 9. Fission barriers for ten different combinations of fragments. The light fragments are the following: (a) 134Sn; (b) 136Xe; (c) 132Sn;
(d) 134Te; (e) 130Te; (f) 130Sn; (g) 143La; (h) 128Sn; (i) 126Sn; (j) 124Sn. Spontaneous fission of 286Fl.

fission half-life with a reasonable zero-point vibration energy
Ev = 0.685 MeV compared to Ev = 1.361 MeV for the path
(c) with R2 = constant.

Even along the least action trajectory the zero-point
vibration energy remains too high, showing that this kind of
parametrization with two deformation coordinates in which
R2 is varied exponentially from an initial value R2 = R0 to
R2 = R2f , is not suitable. The reason is that the deepest
minimum of deformation energy (Fig. 2), determining the
first turning point of the action integral, is obtained in the
deformation space where the nuclear inertia (see Fig. 5) is too
large. By trying a linearly decreasing law of R2 we have not
got any better result, as expected.

In principle by using two independent deformation param-
eters instead of only one should lead to a final solution closer
to reality. Best results are obtained for linearly increasing R2.

From our previous experience [24], it seems that by keeping
R2 = R2f = constant we can find a fission trajectory (a given
R2f or η) along which the reproduction of experimental
half-life would be possible with a reasonable value of Ev . By
comparing the optimum values of zero-point vibration energy
from Table II (two deformation parameters with exponential
decrease of R2) with those from Table III (one deformation
parameter with R2 = constant) it is clear that the simplest
parametrization is more appropriate because Ev (smallest
value 1.34 MeV) is about three times smaller than 4.27 MeV.
The detailed potential barriers for ten different light fragments
of fissioning 286Fl are shown in Fig. 9.

Perhaps besides the inappropriate shape parametrization
one should also consider another reason for this discrepancy:
the strength parameters of the spin-orbit ls and l2 terms of
the ATCSM are taken to obtain a proton magic number Z =
114—exactly the case of 286Fl.

In conclusion, with our method of calculating the spon-
taneous fission half-life including macroscopic-microscopic

method for deformation energy based on asymmetric two-
center shell model, and the cranking inertia for the dynamical
part, we may find a sequence of several trajectories one of
which gives the least action.

Assuming spherical shapes, we have tried four laws of
variation of the radius of the light fragment from the initial
value at R = Ri to the final one at the touching point R = Rt :
exponentially and linearly decreasing, linearly increasing and
R2 = constant.

The shape parametrization with linearly increasing R2

is more suitable to describe the fission process of SHs in
comparison with that of exponentially or linearly decreasing
law. It is in agreement with the microscopic finding concerning
the preformation of a cluster at the surface, which then
penetrates by quantum tunneling the potential barrier.

As far as the potential barrier shape at a given mass
asymmetry, there is a transition from a two hump at lower
values to one hump at higher values around η = 0.5. The
dominant macroscopic component at a high mass asymmetry,
comes from the presence of the Businaro-Gallone mountain.

The touching point deformation energy versus mass asym-
metry shows the three minima, produced by shell effects,
corresponding to three decay modes: spontaneous fission,
cluster decay, and α decay.

All calculations were performed for spherical fragments
(the semiaxes ratios of spheroidally deformed fragments are
equal to unity). By considering in the future the deformed
fragments we trust the method could be further improved.
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