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The spin cutoff parameter determining the nuclear level density spin distribution ρ(J ) is defined through the
spin projection as 〈J 2

z 〉1/2 or equivalently for spherical nuclei, ( 〈J (J+1)〉
3 )1/2. It is needed to divide the total level

density into levels as a function of J . To obtain the total level density at the neutron binding energy from the
s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated
as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been
compared with two commonly used semiempirical formulas. A need for further measurements is also observed.
Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from
isomeric ratio measurement is examined.
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I. INTRODUCTION

Nuclear level density plays an important role in calculations
of reaction cross sections and it is essential input in different
reaction codes. The most uncertain parameter in level density
calculations is the spin cutoff parameter σ determining the
level density spin distribution. Bethe [1] introduced the spin
cutoff parameter into the expansion for nuclear level density.
He assumed that the distribution of nuclear states as a function
of Jz at a given energy for a spherical nucleus had a Gaussian
form:

ρs(U,Jz) = ρst (U )√
2πσ

exp

(−J 2
z

2σ 2

)
. (1)

ρst (U ) is the total density of states of the nucleus at an energy
U . σ is 〈J 2

z 〉1/2 and is also a function of energy. For a spherical
nucleus, each level consists of (2J + 1) degenerate states with
−J <= Jz <= J :

ρL(U,J ) = ρs(U,J ) − ρs(U,J + 1)

� −dρs

dJ
|J=J+1/2

= ρst (U )√
2π

J + 1/2

σ 3
exp

(−(J + 1/2)2

2σ 2

)
, (2)

where ρL(U,J ) is the level density at excitation energy U
and spin J . There are a number of ways that the value of
σ and its energy dependence play a role in nuclear physics.
Many level density compilations are based on level counting of
s-wave resonances for neutron beams of low energy. S-wave
neutrons populate compound nuclei of spin 1/2 if the target
has spin 0 and (J ± 1/2) if the target has spin J . To convert this
partial level density to the total level density, knowledge of σ is
required. Changes in σ can also affect both cross sections and
angular distributions calculated with Hauser-Feshbach (HF)
codes [2]. The effects on angle-integrated cross sections are
small, but the angular distribution effects are large. Finally,
isomeric ratio measurements are quite sensitive to σ . As will be
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discussed later, they also have a sensitivity to other parameters
as well.

There are two approaches to calculation of σ . The semi-
classical procedure is to introduce the moment of inertia of the
nucleus I . For the sphere of mass M and radius R, this would
be I = (2/5)MR2. In the semiclassical model, the energy of
rotation would be the square of the angular momentum divided
by twice the moment of inertia:

(J + 1/2)2

2σ 2
= J (J + 1)�2

2Iθ
, (3)

where θ is the nuclear temperature. θ = √
U/a in the Fermi-

gas model. In an approximation of (J + 1/2)2 � J (J + 1)
(these two expressions differ by 1/4) the spin cutoff parameter
can be expressed as

σ 2 = Iθ

�2
= 2

5

MR2
0A

2/3

�2

√
U

a

= 2

5

mpR2
0A

5/3

�2

√
U

a
. (4)

M is the mass of the nucleus, mp is the mass of the proton,
and the radius of the nucleus is R and is assumed to be

R = R0A
1/3. (5)

a is the Fermi-gas level density parameter. This form assumes
that the nucleus behaves like a classical “rigid body”.

An alternative expansion which is quantum mechanical can
also be obtained. Ericson [3] has shown that

n = gθ = 6

π2
a

√
U

a
, (6)

where g is the single particle state density at the Fermi level
and a = π2g/6, n is the number of excited nucleons and holes.
The spin cutoff factor will be

σ 2 = n〈m2〉 = 6

π2

√
Ua〈m2〉. (7)

Here 〈m2〉 is the average angular momentum projection
squared on the Z axis for single particle states at the Fermi
level. It is interesting to note that Eq. (4) varies with a−1/2 while
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TABLE I. 〈m2〉 values for individual orbits.

Orbit s1/2 p3/2 p1/2 d5/2 s1/2 d3/2 f7/2 p3/2 f5/2 p1/2 g9/2

〈m2〉 0.25 1.25 0.25 2.917 0.25 1.25 5.25 1.25 2.917 0.25 8.25

Eq. (7) varies with a1/2. This appears paradoxical, since the
first form will show an increase in σ 2 at a closed nuclear shell
where a is reduced relative to neighboring nuclei. On the other
hand the second form Eq. (7) would tend to decrease at a closed
shell, although if 〈m2〉 should show a significant increase at a
closed shell this drop may be reduced or eliminated. A recent
paper has been based on the assumption that the nucleus has
“half rigid body” moment of inertia [4]. The result of this
assumption is that the predicted behavior of σ 2 shows increases
near A = 90, 140, 208.

Since a normally increases roughly as A except near closed
shells, it might be thought that the forms Eqs. (4) and (7) might
show a very different A dependence. This is not the case. If
we assume that a equals αA then Eq. (4) becomes

σ 2 = 2

5

mpR2
0A

5/3

�2

√
U

αA
= 2

5

mpR2
0A

7/6

�2

√
U

α
. (8)

Similarly, Eq. (7) would become

σ 2 = 6

π2

√
UAα〈m2〉. (9)

If 〈m2〉 increases with A2/3, the dependence on A and U is
the same for Eqs. (8) and (9). This is essentially a question of
whether a nucleus behaves like a rigid body. Clearly, quantum
mechanical effects causing a dependence of 〈m2〉 which is not
proportional to A2/3 will destroy the rigid body behavior, but
deviation of a from αA will also make Eqs. (8) and (9) behave
differently.

Table I shows 〈m2〉 values for the lowest-lying orbits in
the nucleus. Note very substantial fluctuations between the
individual 〈m2〉 values for neighboring orbitals. In Table II, the
〈m2〉 values are averaged over major shells. These averages do
increase as the number of shells increases, but note that these
averages when divided by A2/3 do show a tendency to approach
a constant.

In Ref. [4], an alternative derivation including an estimate
for 〈m2〉 based on a Fermi-gas average and an empirical form
for a is presented in Eq. (58). We will compare this result with
our microscopical calculations in the following section.

The purpose of this paper is to present calculations of
σ 2 based on a superconducting Hamiltonian as a function of

TABLE II. 〈m2〉 values averaged over major shells.

Shell Orbits 〈m2〉 〈m2〉/A2/3

I s1/2 1/4
II p3/2p1/2 0.9167 0.1444
III d5/2s1/2d3/2 1.9167 0.1639
IV f7/2p3/2p1/2f5/2 3.25 0.1750
V g9/2d5/2s1/2d3/2g9/2 4.9167 0.1824
VI h11/2f7/2p3/2p1/2f5/2h9/2 6.7167 0.1875

excitation energy and mass number. These will be compared
with rigid body predictions, formulas derived from fits to
low-energy σ values and with measured values at somewhat
higher energies.

II. CALCULATIONS

A. Semiempirical models

It was pointed out in Sec. I that two alternative forms exist
for σ 2 which have a different dependence on the level density
parameter a. The two have been compared in Refs. [4,5]. If the
nuclear radius is assumed to have a value R = R0A

1/3, where
R0 = 1.25 fm, then Eq. (8) becomes

σ 2 = 0.0151A7/6
√

Uα−1/2. (10)

Similarly, Eq. (9) can be shown to be

σ 2 = 0.6085
√

UAα〈m2〉. (11)

If the nucleus is assumed to have a rigid-body moment of
inertia, then equating Eqs. (10) and (11) gives

〈m2〉 = 0.0151

0.6085α
A2/3 = 0.1985A2/3. (12)

If we assume α = 1/8, this turns out to be between the
estimates for 〈m2〉 quoted in Refs. [6] and [7]. In Ref. [7] it is
proposed that the constant in Eq. (12) should be 0.146, while
in Ref. [6] it is concluded that the early estimate included all
levels and that focusing on those near the Fermi-level yielded
a value of 0.24. This indicates that the value in Eq. (12) is in
a proper range, showing rough consistency with a rigid-body
moment of inertia. The values tabulated in Table II are also
consistent with the value in Eq. (12) and with early estimates.

This leaves open the question of whether deviations from
this rigid body limit are important below energies of 10 MeV.
Two recent references in which a simple form for σ 2 is derived
from data [4,8] show a general fit to σ values over a range of
A but the experimental values show some dispersion about
the smooth line. This is no doubt due in part to the fact that
the values have been obtained from tabulated levels at low
energy. This technique may only be used at low energy where
the level scheme is complete and may thus show fluctuations
because of the small number of levels included. Another study
[9] produced a fit to the spin-cutoff parameter (also based
on information at low excitation energy) which has energy
and A dependence which does not agree with energy and A
dependance of rigid-body model.

In the fits in Refs. [8,9], there are energy shifts in the
excitation energy making the σ 2 values largest for odd-odd
nuclei in a given mass region, slightly lower for odd-A nuclei
at the same energy in the same A range and smaller still for
even-even nuclei.
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FIG. 1. Comparison of experimental spin cutoff parameters from Refs. [2,23] with calculations based on different models: Rigid-body,
Al-Quarishi [8], Egidy2009 [9], microscopical calculations from this work. Error bars for experimental points are typically 15% in σ 2.

Figure 1 presents σ 2 values as a function of U and A for the
rigid body model. These have been evaluated for a radius of
R = R0A

1/3, where R0 = 1.25 fm. Further, the a is assumed
to be a = A/8. If shell effects are included in a, there will be
enhancements of 30–40 % in σ 2 at shell closures. Also, Fig. 1
presents predictions of the forms from Refs. [8] and [9]. For
both Refs. [8] and [9], there is an energy shift based on the
ground state masses. In each case, the shift is close to zero
for odd-A targets, a reduction in excitation energy is found for
even-even A nuclei and an enhancement in effective energy
for odd-odd nuclei. Thus, the σ 2 values are typically reduced
by 35% at 2 MeV for A = 20 and 15% for A = 100 at 2 MeV
for the results of Ref. [7]. At 10 MeV the drop is 15% and 8%,
respectively. The parametrizations of Ref. [9] have changes
which are about 3/4 as large. In each case results for odd-odd
nuclei are enhanced by the same factor.

The authors of Ref. [4] propose a half-rigid body value
for σ 2. This would correspond to half magnitude shown in
Fig. 1 although the modulations in A near closed shells produce
additional peaks in these regions.

The predictions of Refs. [4,8,9] do not provide tight
constraints on predicted values for σ 2 at low energies. None of
the three fits was constrained to approach the rigid body value
at higher excitation energy. This is because the level density at

low excitation energies is small enough that oscillations make
it difficult to determine systematic changes in σ as a function
of A.

B. Microscopical model

Calculated spin cutoff parameters were obtained using a
formalism proposed by Sano and Yamasaki [10] and Morretto
[11]. The nucleus is assumed to have a BCS (superconductor)
Hamiltonian:

H =
∑

k

ek(a+
k ak + a+

−ka−k) − G
∑
kk′

a+
k a+

−k′aka−k′ , (13)

where ek is the energy of the kth doubly degenerate single
particle level and a+

k and ak are the creation and annihilation
operators for the kth particle state. Ek = [(ek − λ)2 + �2]1/2,
where Ek is the quasiparticle energy and � is the pairing gap.
The following equations must be satisfied at each β value,
where the β is a reciprocal of the temperature:

2

G
=

∑
k

tanh
(

1
2βEk

)
Ek

, (14)

N =
∑

k

(
1 − ek − λ

Ek

)
tanh

(
1

2
pEk

)
. (15)

014308-3



S. M. GRIMES, A. V. VOINOV, AND T. N. MASSEY PHYSICAL REVIEW C 94, 014308 (2016)

Each of these equations is separately solved for protons and
neutrons. Finally

σ 2 = 1

2

∑
k

m2k

cosh2(βEk/2)
. (16)

This equation is separately summed for protons and neutrons
and two sums are combined.

Finally, the energy E is

E =
∑

k

ek

[
1 − ek − λ

Ek

tanh(βEk/2)

]
. (17)

This equation also consists of a proton and neutron sum. G
is a constant which is determined at zero temperature to give
a solution to Eq. (14) of � = 12/

√
A. As the temperature is

increased, solution of Eq. (14) with the fixed value of G gives
a value for � which decreases until at and above the critical
temperature the only solution to Eq. (14) is for � = 0.

Single particle energies were taken from Refs. [12–14].
Calculations were done for A = 20, . . . ,100 in steps of ten
and A = 100, . . . ,240 in steps of 20. For each A the Z and N
were chosen to be even and such that they are in the valley of
stability. In general, the σ 2 values were about 30% higher for
adjacent odd-A at low energy (about 2 MeV) and 15% higher at
10 MeV for A about 30. At A = 200, the differences are 15%
and 8%, respectively. In each case, the σ 2 for odd-odd nuclei
was higher by about twice these amounts than for even-even
nuclei of similar mass.

σ values are shown in Fig. 1 under calculated points. For
each A the σ 2 values were calculated for each single particle
set and then averaged. The dispersion for low-A was about
25% but more typically 15% for large A. As the energy is
increased, the dispersion dropped to about half of these values.
Exceptional cases were A = 160,180,220, and 240. In these
cases the single particle energies of Ref. [12] were used with
the appropriate deformation parameters.

Note that the values tend to oscillate as a function of U and
A relative to the rigid body values. As the energy approached
20 MeV, the values tended to converge to the rigid body values.
At this energy the differences between even-even, odd-A, and
odd-odd nuclei in a given mass region were about 5–10 %.

The behavior shown in Fig. 1 is consistent with the
following conclusions:

(i) There is a tendency for σ 2 values at energies of
10 MeV and below to reflect the shell structure of nu-
clei. In some regions of the A range, the σ 2 values are
low relative to the rigid body value while in other re-
gions the spin cutoff parameter is above the rigid body.

(ii) Particularly at low energy (U < 6 MeV), even-even
nuclei have the lowest spin cut-off factors, with odd-A
somewhat above them and odd-odd nuclei are highest
of all. As A and U increase, these differences diminish.

(iii) There is a general tendency for the spin cut off
parameter to approach the rigid body value at 20 MeV.

(iv) There is no clear tendency for σ to be larger for
closed shell nuclei then for neighboring nuclei. At
low energies, σ values tend to have minima at A = 30,
60,90,140, and 200. Of these minima, A = 30 is not a

100
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 50  100  150  200  250

σ2

Excitation energy 6 MeV

Microscopic calculations
Eq. (58) from Ref.[4
 

]

Mass number

FIG. 2. Comparison of present (microscopic) calculations of σ 2

with those of Ref. [4] [Eq. (58)] at 6 MeV of excitation energy.

near closed shell but is where the s1/2 orbital is at the
Fermi level. The other values for A listed for minima
are at or near closed shells but one closed shell at A
of about 120 has a broad maximum. The microscopic
model predicts a drop in σ 2 at magic numbers because
of the a1/2 factor, but if 〈m2〉 increases at this point,
the σ 2 could show only slight modulation or could
increase.

In Fig. 2, we present a comparison of our calculated
microscopic σ values with those obtained from Eq. (58) of
Ref. [4]. Generally good agreement is seen, but the present
results show sharper structure where minima are predicted
(A ∼ 30, 60, and 200). This difference reflects the fact that the
present calculations include shell model values for 〈m〉2 while
those of Ref. [4] are based on Fermi-gas averages for 〈m〉2 as
a function of A.

Other techniques have also been used to calculate the spin
cutoff parameter. Authors have used [5,15–20] techniques
which use the full two-body interaction to calculate both
level densities and spin cutoff parameters. These have been
concentrated in a mass region below A = 65 but at least one
paper presents calculations near A = 160 [20].

References [5] and [15] focus on spin cutoff parameters for
nuclei near A = 30. Both the measurements [15] and two-body
model calculations in Refs. [5–15] show a tendency for σ not
to increase at given U as fast with A near A = 30 as the rigid
body prediction (A7/6). This agrees with the predictions in
this mass region from calculations presented in Fig. 1. Also,
the calculations for 20Ne [16], 24Mg [17], and 28Si [21] show a
slower rise with A at low U than the rigid body model predicts.
Spinella and Johnson [18] present two-body calculations of
level densities and spin cutoff parameters between mass 22
and 47 which show magnitudes for spin cutoff parameters
similar to those in Fig. 1. In Ref. [19], spin cutoff parameters
for Fe isotopes are presented, while in Ref. [20], deformed
nuclei are calculated. These studies will show how important
two-body forces are in determining the spin distribution of the
nuclear level density.
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The present calculations use single particle states in a
deformed bases for nuclei which are deformed. This modifies
the σ 2 values from what would be obtained if spherical levels
had been used. There is an additional change in σ 2 caused
by the addition of rotational bands. This correction was about
15% but was not included in the quoted values. As has been
shown in Ref. [22], for deformed nuclei a modified equation
expressing the relative spin distribution rather than Eq. (2)
must be used to calculate the J distribution. The revised
formula produces changes larger than the above σ 2 correction
for deformed nuclei.

Other work [4] has included level density enhancement
factors for both vibrational and rotational levels. While both
of these factors produce a significant enhancement in the
level density, the forms traditionally used [4] only evaluate
the enhancement factors as a function of excitation energy.
Since they do not vary with J , they leave σ 2 unchanged. A
more recent treatment of the rotational enhancement [22] not
only modifies σ 2 somewhat with the inclusion of the rotational
levels but also changes the basic formula relating σ 2 to the J
distribution of the levels.

III. EXPERIMENTAL DATA

A. Angular distributions

In addition to the values obtained from resolved levels,
spin cutoff parameters can be obtained from the angular
distributions of compound nuclear reactions.

Four papers which report values for σ 2 from reaction angu-
lar distributions are based on α-induced reactions [2,15,23,24].

References [2,15,23] present σ values deduced from (α,n)
angular distribution measurements while Ref. [24] focused
on (α,α′), (α,p), and (p,α). In principle, there is no reason
why more targets could not be studied with these reactions.
Compound nuclear reactions of the types (p,p′), (n,n′), and
(p,n) show small anisotropy and are not useful for obtaining
σ values. As A increases beyond 100, the anisotropy for α-
particle reactions is reduced. It may be necessary to study
reactions induced by 6Li, 7Li or 12C projectiles to obtain more
information about σ values beyond A = 100.

Examination of the σ values in Fig. 1. shows general
consistency between the various measurements. Near A = 50,
the σ values are somewhat above the rigid body estimate, while
for A between 50 and 65 the σ values fall below the rigid body
estimate at excitation energy of 8 MeV. It is also found that the
one value near A = 118 (near Z = 50 closed shell) the σ value
tends to be lower than the rigid body value. This contradicts
the rigid body model predictions that closed shell nuclei will
have σ s which are above the rigid body values. The same
conclusion may be drawn from the data at Z = 28, where the
σ values tend not to be above the rigid body estimates.

The values of σ 2 presented in [2,15,23,24] are subject to an
error of 15–20 %. Of this, a substantial part comes from the
fitting of the angular distributions. Not only statistics but also
possible noncompound reactions contribute to the error. More
subtle effects come from the fact that each study only looked
at one reaction channel for each compound nucleus. There is
some coupling between the σ values inferred for the (a,a′)

reaction and σ values assumed for final nuclei populated by
neutrons and protons. There is an advantage to using the (a,n)
reaction for these studies. Because the neutron decay channel
is usually dominant, the σ values derived from (a,n) studies
are less affected by assumptions made about the σ values in
the other channels than is the case for (a,a′), (a,p), and (p,a)
reactions. There seems to be a general consistency between the
values obtained in four studies. Clearly, additional data would
be valuable.

The results from Monte Carlo shell model calculations
presented in [19] for 55Fe are compared with the data of
Ref. [2] (shown in Fig. 1). The agreement is generally good,
but the data show a slightly lower slope in the 4 � U � 8 MeV
region. The present microscopic calculations are also close to
the measurements but also show a slightly steeper slope than
the measurements. There appears to be some sensitivity in the
microscopic results to the f7/2-p3/2 single particle energies
splitting. This could also affect the calculations of Ref. [19],
although the uncertainties on the measurements of Ref. [2] do
not rule out the slightly steeper slope of the two calculations.

B. Isomeric ratios

Experimental values of σ have also been deduced from
isomeric ratios. These are ratios between the cross sections for
the populations of an isomeric states to the populations of the
ground state. The isomeric state has a long lifetime because it
has a J value which differs substantially from low-lying states
which requires a γ transition of high multipolarity. Changing
σ causes there to be more large J states if σ is increased,
while the opposite is true if the σ is reduced. One of the
early compilations of σ values deduced by calculating isomeric
ratios which fit measurements was provided by Ref. [25]. A
more recent study which includes references to many other
recent papers on isomeric ratios has been provided by Ref. [26].
Although the calculations are quite sensitive to the spin cutoff
parameter, there are other parameters which influence the
calculated ratios significantly. It is clearly important to include
M1 and E2 γ strength in addition to E1 strength in calculating
the γ -decays. Both the integral and the energy dependence of
each γ -strength function influenced calculations. Similarly,
there is often a propensity for the levels at low excitation
energy to be predominantly of one parity [8]. This will
tend to reduce the contribution of E1 decays and make M1
and E2 decays more important. Calculations of isomeric
ratios have not always included this parity ratio effect. There
also is a need to determine wether the reaction mechanism
is compound nuclear or includes an important contribution
from pre-equilibrium processes [27]. Finally, many isomeric
ratio measurements have been made for deformed nuclei. It
has recently been shown [22] that for deformed nuclei a
modified HF formula is needed and that the previous formalism
substantially overestimates the population of large J levels
relative to small J levels. It should also be noted that for
deformed nuclei Ref. [22] proposes that use of the traditional
spin distribution Eq. (2) causes errors.

The values for σ 2 in Ref. [25] show a reasonable con-
sistency with the present calculations for A < 100. Above
this value they are consistently smaller than the present
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calculations. Because nuclear temperature drops at a given
energy as A increases, measurements reported in Ref. [25]
(at 12 � En � 16 MeV) were probably more affected by
pre-equilibrium components for large A than for small A.
Analyzing the ratios which have contributions from pre-
equilibrium reactions as if there are entirely compound gives
a σ which is too small. Similarly, some of the ratios at large A
were for deformed nuclei. If these are analyzed with a spherical
Hauser-Feshbach code, the results of Ref. [22] indicates the σ
values will be too small.

C. Applications

As has previously been pointed out, a very important use
of the spin cutoff parameter is in the conversion of the neutron
s-wave resonance count at the binding energy to the total
level density. If we calculate the ρ(U,1/2+) from Eq. (2) and
separately sum Eq. (2) over J and parity, we obtain the ratio of
2σ 2, where the 2 comes from the parity sum and the σ 2 term
from the J sum.

There are three special concerns in the use of this equation.
At low energies the parity distribution is typically asymmetric.
A fit to the parity ratio [8] at low energy shows that this
asymmetry vanishes as the energy increases but could still be
a concern at the binding energy if A is less than 90. A further
more subtle concern should also be examined. Calculations
of the nuclear level density made by Goriely, Hilaire, and
Koning [28] indicate that even when the total number of levels
of each parity are equal at a given energy, there may still
be a spin fractionation, for a few MeV, i.e., the σ 2 values
may not be the same for positive and negative parity levels.
Finally, the formula in Eq. (2) was derived specifically for
a spherical nucleus. It has been shown [22] that the spin
distribution for a deformed nucleus does not have the same
functional form as for the spherical nucleus. This is different
than has normally been assumed [29], which has the number
of levels of each J for a deformed nucleus multiplied by the
same factor σ 2

⊥ relative to the spherical results. The corrected
formulas show a rotational enhancement which is larger for
large J but decreases with K for the given J (Eq. (20)
in [22]). It also depends on both σ 2

⊥ and σ 2
‖ . The overall

effect is to reduce enhancement somewhat below σ 2
⊥ for the

sum. On the other hand, since the measured densities are
for low J , the total level density derived from resonance
measurements will be increased. Finally, the new form does
not have 〈J 2

z 〉 = 1
3J (J + 1) unlike the previous results. This

relation is only valid for spherical nuclei.

Some recent measurements [30,31] have deduced the level
density for a specific spin and parity at a given excitation
energy for specific nuclei. These measurements are analogous
to neutron s-wave resonance measurements. If values of σ are
available, they can give the total level density. Until another
measurement can give the density of levels of a different J for
that nucleus, they do not yield values for σ .

The recent study of Koehler et al. [32] finds levels with
a range of spins and both parities for 96Mo. In this case, the
focus of the work was γ -strength distributions and the authors
do not give a summary of the number of levels for each J and
π , precluding of calculations of σ .

These measurements [30–32] are obviously of great value
in comparing with microscopic level density calculations even
without the σ values.

IV. SUMMARY

An examination of the predictions of the rigid body model
and the microscopic model shows that the conditions for
convergence of the two are met at higher energies. For energies
near the neutron binding energy, it appears that quantum effects
reflecting the spins of the individual single particle orbits have
not yet been averaged out. This leads to spin cutoff factor
values which in specific A regions are above or below rigid
body values. Comparison with measured values shows that,
despite the limited number of measurements, some indication
of the oscillation of sigma values about the rigid body value
at the binding energy is seen. Some nuclei have been studied
using a two-body Hamiltonian. Again, these cases are limited
but there seems to be good general agreement with data and
with microscopic model calculations.

It is noted that more data are needed. Further, reanalysis
of neutron resonance data for deformed nuclei should be un-
dertaken using a corrected factor to convert s-wave resonance
level density to the total level density.

Finally, values for σ obtained from isomeric ratios should
be re-examined. Some earlier publications do not include M1
and E2 γ decays, parity ratio differences in level densities,
pre-equilibrium reactions or were analyzed with a spherical
Hauser-Feshbach code even though the nucleus was deformed.
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