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Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different
nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of
the E1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle
random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even
nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to
the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2-qp)
excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and
D1M, are compared. A systematic energy shift of the E1 strength is found for D1M relative to D1S, leading to
a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental
photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically
∼2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation,
some phenomenological corrections need to be included to take into account the effects beyond the standard
2-qp QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees
of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce
experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the
E1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and
Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with
previous theoretical calculations.
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I. INTRODUCTION

About half of the nuclei with A > 60 observed in nature
are formed by the rapid neutron-capture process (r-process)
occurring in explosive stellar events [1]. The r-process is
expected in environments with high neutron density (Nn >

1020 cm−3). Successive neutron captures proceed into neutron-
rich regions well off the β-stability valley forming exotic
nuclei that cannot be produced and therefore studied in the
laboratory. When the temperature or the neutron density
required for the r-process are low enough to break the
(n,γ )-(γ ,n) equilibrium, the r-abundance distribution depends
directly on the neutron capture rates of the so-produced
exotic neutron-rich nuclei [2]. The neutron capture rates are
commonly evaluated within the framework of the statistical
model of Hauser-Feshbach, although the direct capture con-
tribution plays an important role for very exotic nuclei [3].
The fundamental assumption of the Hauser-Feshbach model
is that the capture goes through the intermediary formation of
a compound nucleus in thermodynamic equilibrium. In this
approach, the Maxwellian-averaged (n,γ ) rate at temperatures
of relevance in r-process environments strongly depends on
the electromagnetic interaction, i.e., the photon de-excitation
probability. The well-known challenge of understanding the
r-process abundances thus requires reliable extrapolations of
the E1-strength function out towards the neutron-drip line.

Large-scale calculations of E1 γ -ray strength functions
are usually performed on the basis of the phenomenological

Lorentzian model [4]. The reliability of the γ -ray strength
predictions can thus be greatly improved by the use of micro-
scopic models. Indeed, provided satisfactory reproduction of
available experimental data, the more microscopic the underly-
ing theory, the greater the confidence in the extrapolations out
towards the experimentally unreachable regions. Microscopic
approaches are rarely used for practical applications. First,
the time cost is often prohibitive for large-scale calculations.
Second, the fine tuning required to reproduce accurately a
large experimental data set is very delicate, in addition to
being time consuming. A prominent exception is represented
by Refs. [5,6] where a complete set of γ -ray strength functions
was derived from mean field plus quasiparticle random-phase
approximation (QRPA) calculations. In Refs. [5,6], zero-
range Skyrme forces were considered and phenomenological
corrections applied to properly describe the splitting of the
giant dipole resonance (GDR) in deformed nuclei as well as
the damping of the collective motion.

The present study aims to go beyond the former approx-
imation providing the axially symmetric-deformed QRPA
approach based on Hartree-Fock-Bogoliubov (HFB) calcu-
lations using the finite-range Gogny interaction in a fully
consistent way. Contrary to the calculations in which radial
wave functions are discretized on a mesh, single-particle
wave functions are here expanded on an optimized harmonic
oscillator (HO) basis. The present approach is specially
suited for open-shell nuclei, where pairing correlations are
included without any additional parameters. Another asset is
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an adequate treatment of the deformation at each step of the
calculation. More precisely the intrinsic deformation of the
nucleus ground state is predicted by the HFB calculations as
the minimum of the potential energy surface. Then the QRPA
phonons are oscillations around this minimum, spherical or
not. This treatment significantly improves the description
of the nuclear structure property, hence the γ -ray strength
function predictions. It was first applied to study giant
resonances in Si and Mg isotopes [7]. Dipole excitations in Ne
isotopes and N = 16 isotones [8] as well as electromagnetic
excitations of the heavy deformed 238U [9] have been obtained
with an optimized version of the numerical code, opening
the way to large-scale calculations. This powerful tool was
generalized to treat also charge exchange excitations which
are relevant for the β decay of experimentally inaccessible
nuclei [10]. In the present paper, we test the predictive power
of the aforementioned approach by applying it to a large set
of even-even nuclei to compare with available experimental
data on photoabsorption [4], the E1 γ -strength function of
odd nuclei being obtained through an interpolation procedure
involving neighboring even-even nuclei.

The paper is organized as follows. In Sec. II, the axially
symmetric-deformed HFB+QRPA formalism is described in
its standard form and possible extensions are sketched. In the
same spirit as Ref. [11], the impact of the size of the finite
HO basis including cutoff effects are analyzed in Sec. III
adding discussion on the choice of the interaction parameter
sets. This convergence analysis sets a protocol for large-scale
calculations whose results are presented in Sec. IV. First, the
impact on deformation of the γ -strength function is illustrated.
Second, the comparison with photoabsorption data [4] is
shown. Third, models are introduced to obtain the continuous
strength functions starting from the discrete QRPA strength
distributions B(E1) using or not microscopic input. The final
E1 strength functions as well as the corresponding Hauser-
Feshbach astrophysical reaction rates are finally estimated for
a large set of exotic neutron-rich nuclei and compared with
other predictions. Conclusions are drawn in Sec. V.

II. THE THEORETICAL MODEL

A. Standard HFB+QRPA approach

We summarize here the formalism of the consistent QRPA
approach based on axially symmetric-deformed HFB equa-
tions solved in a finite HO basis. For more details we refer
the reader to Refs. [7,12]. With rotational invariance along
the Z axis and time reversal symmetry, the eigenstates of
the HO basis are fully identified by three spatial quantum
numbers m, n⊥, and nz plus the spinor σ . For each HO
state, the projection of total angular momentum onto the
symmetry axis is k = m + σz and the parity is π = (−)|m|+nz .
Imposing here a same HO pulsation in Z and perpendicular
directions, the energy quantum number of each state is given
by N = |m| + 2n⊥ + nz. The upper limit N0 � N of a finite
basis gives the number of involved major shells Nsh = N0 + 1,
namely the size of the basis. Usually in HFB N0 is chosen
according to the rule that the number of HO states is 8
times the maximum of proton or neutron occupied states.

In the present calculation the HO pulsation is adjusted for
each nucleus at each deformation and for each number of
major shells to minimize the HFB binding energy. Solving the
HFB equations in the HO basis leads to the diagonalization
of a Hamiltonian matrix: eigenvalues and eigenvectors are,
respectively, Bogoliubov quasiparticle (qp) excitation energies
and u and v components of the Bogoliubov transformation. As
a consequence the positive energy continuum is discretized.
The first-order excitations for even-even nuclei are given
by two-quasiparticle (2-qp) excitations. QRPA phonons are
linear combinations of these 2-qp excitations. According to
the symmetries imposed, the projection K of the angular
momentum J on the symmetry axis and the parity � are
good quantum numbers for the phonons. Consequently, QRPA
calculations can be performed separately for each K� set.
In this context, phonons are characterized by the excitation
operator,

θ+
n,K� =

∑
ij

X
ij

n,K�η+
i η+

j − (−)KY
ij

n,K�ηjηi, (1)

where η+ and η are the quasiparticle operators, related to the
HO particle operators c+ and c through the u and v Bogoliubov
transformation matrices:

η+
i = uiαc+

α − viαcα. (2)

Here and in the following, repeated indices are implicitly
summed over; latin and greek letters denote quasiparticle
and harmonic oscillator states, respectively. Conservation of
symmetries imposes k

πi

i = kπα
α in Eq. (2) and that the condition

K = ki + kj in Eq. (1) and � = πiπj are fulfilled. According
to the occupation probabilities, the quasiparticle creation
operator η+

i is associated with the creation operator of particle
type c+

p when u2
i � v2

i , and it corresponds to the annihilation
operator of hole type ch if u2

i � v2
i . In principle the QRPA

calculation can be performed without any cutoff in energy
of the 2-qp states neither in occupation probabilities (v2) of
single quasiparticle states. The amplitudes X and Y of Eq. (1)
are solutions of the well-known QRPA matrix equation [13],

(
A B

B A

)(
Xn,K�

Yn,K�

)
= ωn,K�

(
Xn,K�

−Yn,K�

)
, (3)

where ωn,K are the energies of the QRPA excited states. To
ensure consistency, the same interaction (parameter set of the
Gogny force) is used to calculate the A and B matrix elements
and the underlined HFB mean field [12]. We consider in the
present study the D1S and D1M forces only, whose properties
and parameters are summarized in the appendix of Ref. [12].
Once the QRPA matrix is diagonalized, the X and Y amplitudes
allow one to calculate the strength for each electromagnetic
mode. Here we focus on the dipole [multipolarity λ = 1, parity
� = (−)] mode. The isovector dipole excitation operator is

Q̂1,0 =
Z∑
i

riY1,0(θi,φi) −
N∑
i

riY1,0(θi,φi), (4)

where Y1,0(θi,φi) is a spherical harmonic. This isovector
operator does not excite too much the center-of-mass motion
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whose nature is essentially isoscalar (more information on
center-of-mass spurious states are given in Sec. III A).

The total dipole distribution B(E1) (in e2 fm2) is obtained
by summing the contributions of K� = 0− and twice that of
K� = 1−, the K� = −1− solution being equal to the K� =
1− one through the conservation of time reversal symmetry.
We remind that in the spherical symmetry case, the K = 0 and
|K| = 1 states are degenerate. In deformed nuclei, the dipole
strength splits up into two components corresponding to two
different angular momentum projections K .

B. Beyond 2-q p excitations

The well-established formalism described above takes
into account only 2-qp excitations. Two extensions of the
standard (Q)RPA approach have been developed in the past
by different groups: the so-called second RPA [14,15] and
the particle-vibration coupling [16] or quasiparticle-phonon
model [17–19]. In the second RPA calculations the centroid
energy of the response function is shifted by a few MeV to
lower energies with respect to the standard QRPA values, as
shown and discussed in Refs. [20–23]. The interaction between
the single-particle and low-lying collective phonon degrees of
freedom also shifts the E1 strength to lower energies [24–28].
A fragmentation and a broadening of the response also appears
within these approaches. To include these effects, the discrete
B(E1) distribution is usually folded by a Lorentzian function,

L(E,ω) = 1

π

E2

[E2 − (ω − �)2]2 + 2E2
, (5)

leading to a continuum result for the E1 γ -ray strength
function SE1(E) (in e2 fm2 MeV−1):

SE1(E) =
∑

n

L(E,ωn)B(E1)(ωn). (6)

In Eq. (5),  is the width at half maximum and � allows
for an energy shift. These quantities could be adjusted on
experimental data or should be obtained by the aforementioned
beyond (Q)RPA formalism. The generalization of QRPA

would include 4- and 6-qp excitations up to infinity. Increasing
the n order of n-qp excitations provides a shifted spectrum
closer and closer to the continuum one, especially in the
giant resonance region. The energy shift � is expected to
be related to the density of n-qp states, hence, in a first
approximation, to the density of 4-qp states. In the present
study this quantity was calculated for dipole excitations. Note
that for each K value, the number nK

4qp takes into account
only the configurations involved in the dipole excitation.
Quantum numbers and occupation probabilities drive the
selections of the relevant 4-qp states conserving isospin (τ ) and
particle number. Once the Wick theorem is applied to a 4-qp
excitation operator η+

i η+
j η+

k η+
l , only the fully contracted terms

η+
i

•
η+

j

•
η+

k

••
η+

l

••
, (−)η+

i

•
η+

k

•
η+

j

••
η+

l

••
and η+

i

•
η+

l

•
η+

j

••
η+

k

••

need to be considered. If at least one of the three combinations
contains an excitation of type c+

pτ
•
chτ

•c+
p′τ ′

••
ch′τ ′ ••, this 4-qp

excitation could contribute to the count of nK
4qp. Additional

constraints arise from the total parity � and K conservation,
K = ki + kj + kk + kl = kp + kp′ − kh − kh′ . These quanti-
ties should be equal to those of the QRPA calculation in
the 2-qp basis. According to angular momentum algebra the
possible k values (kp − kh,kp′ − kh′) should be (0,0), (1,−1)
or (−1,1) for K = 0, and (1,0), (0,1), (−1,2) or (2,−1) for
K = 1. The improvement of the folding procedure by the
insertion of the nK

4qp quantity will be discussed in Sec. IV C.

III. SENSITIVITY ANALYSIS

For practical large-scale calculations, choices have to
be made to limit the computational cost. As previously
mentioned, the HFB+QRPA results remain sensitive to the
choices made for the calculation. These choices include the
number of HO shells used, the energy cutoff εc accounted
for on the 2-qp state energies, and the set of parameters
of the Gogny interaction. We discuss below the impact of
these effects on the calculated E1 strength function, with an
additional view on the possibility to reduce the computational
time without reducing the predictive power of the calculations.
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FIG. 1. QRPA E1 strength SE1 calculated with the D1M Gogny interaction as a function of the excitation energy for different numbers of
HO shells without any energy cutoff on the 2-qp state energies.

014304-3
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A. Convergence with respect to the size of the basis

A key aspect to which the QRPA predictions are sensitive
is the number of HO shells, Nsh, included in the HFB+QRPA
calculation. To investigate the impact of Nsh on the γ -ray
strength function and to verify the convergence, we have
performed, using the D1M Gogny interaction [29], QRPA
calculations for several odd values of Nsh without any energy
cutoff on the 2-qp states energies. Thus, in such a situation,
whatever the size of the basis is, the center-of-mass spurious
state is decoupled to the physical excitation spectrum and
easily identified, as shown, for example, in Refs. [8,9,12].
Once the spurious state is identified, it is removed from the
QRPA spectra.

The results are plotted in Fig. 1 for two nuclei, namely
the spherical 92Zr nucleus and the well deformed actinide
238U using the broadening procedure of Eq. (5) with a width
 = 2 MeV and no shift (� = 0). As can be observed, the
QRPA strengths are shifted towards lower energies when Nsh

is increased. In Fig. 1(b), we can even observe for Nsh = 9 a
large strength below 5 MeV which disappears for larger bases.
Because the QRPA calculations without cutoff are completely
consistent, no spurious states are involved in this Nsh = 9 low
energy strength which is somewhat unphysical and illustrates
that using a too low number of HO shells is inappropriate for
heavy nuclei. Another important feature observed in this plot
is the convergence of the predictions with increasing Nsh. It
is well illustrated by the fact that for Nsh = 11 and 13, QRPA
strengths are very close to each other, as compared to Nsh = 9.

Considering the known overestimation of the order of
2 MeV of the energy position of the QRPA E1 strength
function in 238U [9], it is important to be able to disentangle
between model limitations and lack of convergence. We
therefore display in Fig. 2 a zoom of the energy peak region to
better estimate the peak position as a function of Nsh, including
also higher Nsh values than in Fig. 1, and doing so, to confirm
the convergence observed in Fig. 1. However, we now use an
energy cutoff εc = 120 MeV for 92Zr and 60 MeV for 238U,
independently of the adopted Nsh value.

TABLE I. Average computation time for a Kπ = 0− of one
nucleus for several energy cutoff and basis size combinations using
1024 cpus.

Nsh No cut εc = 100 MeV εc = 60 MeV εc = 30 MeV

9 5 min 5 min 4 min 38 s
11 2 h 2 h 1 h 5 min
13 42 h 26 h 6 h 30 min
15 21 d 8 d 30 h 2 h
17 286 d 63 d 7 d 8 h

The choice of a constant cutoff avoids unreasonable com-
putation time for Nsh = 15 and 17 and prevents interference
between the impact of energy cutoff and basis size. As can be
observed in Table I, the computation time, without any energy
cutoff is clearly unreasonable as soon as more than 15 shells are
used. For Nsh � 15, the only way to reduce the computation
time to an acceptable limit consists in introducing an energy
cutoff which, for Nsh = 17 is at most 60 MeV if we want to
remain within a feasible range. Figure 2 confirms the fact that
with Nsh = 13 for 92Zr and Nsh = 15 for 238U one is very close
to converged values as far as the peak positions are concerned.
Quantitatively speaking, the change in the peak energies is of
the order of 1 MeV, 200 keV, and 100 keV between Nsh = 9
and 11, 11 and 13, and 13 and 15 for 92Zr and of the same
magnitude for 238U between Nsh = 11 and 13, 13 and 15, and
15 and 17, respectively. Comparing Figs. 1(b) and 2(b), one
also observes that a cutoff of 60 MeV provides similar results
as a calculation without any cutoff for 238U.

B. Role of the 2-q p excitation energy cutoff

As shown in Table I and already discussed above, the energy
cutoff is a way to get a compromise between the computational
time and convergence of the calculation. This compromise
begins to be interesting for Nsh � 13 and is clearly necessary
for Nsh � 15. We have therefore studied the convergence of
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FIG. 2. QRPA E1 strength SE1 calculated with the D1M Gogny interaction for different numbers of HO shells for (a) 92Zr with an energy
cutoff on the 2-qp states energies of εc = 120 MeV and (b) for 238U with εc = 60 MeV.
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FIG. 3. QRPA E1 strength SE1 calculated with the D1M Gogny interaction for different cutoff energies for an arbitrary sample of nuclei.
The number of HO shells chosen for each nucleus ensures convergence with respect to the conclusions of Sec. III A and is summarized in
Table II.

the calculation as a function of the energy cutoff. We have
selected both spherical and deformed nuclei as well as light,
medium-mass and heavy nuclei to see if the energy cutoff

ensuring an acceptable convergence depends on the number of
shells or in other words on the nucleus mass. Typical results are
plotted in Fig. 3 for several nuclei both deformed and spherical
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FIG. 4. Energy shifts of the two main peaks of the B(E1) distribution predicted with D1M as a function of the atomic mass for two different
values of the cutoff energy (see text for details). Black (respectively, green) squares correspond to a εc = 30 MeV (respectively, 60 MeV). The
full squares indicate calculations for which Nsh values are compatible with Table II.
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TABLE II. Adopted number of HO shells as a function of the
nucleus.

max(N,Z) �20 �40 �70 �116 >116

Nsh 9 11 13 15 17

as a function of three energy cutoff values using again the
broadening procedure of Eq. (6) with a width  = 2 MeV (and
no shift, i.e., � = 0). As can be observed, independently of
the basis size (Nsh increases with the nucleus mass), an energy
cutoff εc = 60 MeV ensures a satisfactory convergence of the
E1 strength functions as far as the peak energy is concerned,
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while a εc = 30 MeV is clearly not sufficient although it
already provides the main part of the strength when compared
to a higher energy cutoff. This feature is confirmed in Fig. 4
where the energy shift of the first and second energy peaks
is plotted as a function of the nuclear mass for a large set of
nuclei covering the whole mass range of our study. This shift
is defined as the difference between the peak energies for a
given energy cutoff with respect to the peak energy without
any cutoff or with a high enough energy cutoff (80 MeV in
the actinide region, for instance) to consider that convergence
was reached. It is worth mentioning here that for some nuclei
the size of the basis is already the one which will be finally
adopted in the present study (see Table II). For these nuclei no
major impact of the basis size is observed on the peak energy
shifts.

Considering the computational price to pay to include 2-qp
states with energies higher than 60 MeV with respect to the
gain in the accuracy, it is worth performing QRPA calculations
with a cutoff of 60 MeV rather than without any energy cutoff.
In this case, the difference in the peaks positions is of the order
of 100–200 keV which is acceptable if one keeps in mind the
2-MeV difference between experiment and theory observed
in Ref. [9] (see Sec. IV). On the contrary, a 30-MeV cutoff
gives rise to unacceptable shifts in the peak positions, with
respect to the converged value, of the order of 0.5–1 MeV. The
energy shift of the first peak of the 30-MeV cutoff decreases
with the mass number following a low A−α . Recalling that
the empirical mass dependence for the excitation energy of the
isovector GDR was found [30] to lie between A−1/3 and A−1/6,
the GDR energy of light nuclei is relatively larger, hence closer
to the cutoff, in comparison with those found in heavy nuclei.
This explains the large shift between full and low energy cutoff
calculations observed in Fig. 4 for light nuclei.

C. Impact of the interaction parameters

The predictions obtained with two different parameter sets
of the Gogny interaction, namely D1S and D1M, are now
compared, using the 2-qp energy cutoff of 60 MeV as justified
above and the same basis size for each nucleus. We first
consider a reduced set of nuclei, both spherical and deformed
and plot in Fig. 5 the B(E1) distribution obtained with both
D1S and D1M interactions. Here we present the B(E1)
discrete distribution instead of the folded SE1 to investigate
possible differences in the strength fragmentation and peaks
position from the interaction itself.

As can be observed, both interactions provide comparable
results even though D1M seems to provide, systematically,
slightly lower energy peaks than D1S, independently of K�.
Focusing on deformed nuclei, one observes that for both
interactions, the energy split between K = 0− and |K| = 1−
states, related to the intrinsic deformation of the HFB ground
state, follows an opposite hierarchy for prolate (152Sm) and
oblate (196Pt) shapes, a result similar to what was already
discussed in Ref. [7] for a different set of nuclei and also
found systematically with a Skyrme interaction [31].

To further investigate the tendency of D1M to yield lower
centroid energies than D1S, we extend our study to a larger
set of nuclei. However, to limit computation time, lower Nsh
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FIG. 6. Energies of the centroid of the QRPA B(E1) distributions
calculated with D1S and D1M Gogny interactions for all the nuclei
considered in this work. The full line represents the fit of the points.

values than those of Table II are used. We plot in Fig. 6 the
centroid energies defined for each nucleus by

C =
∑

n ωnB(E1)(ωn)∑
n B(E1)(ωn)

, (7)

where ωn are the discrete energies of the QRPA states
solution of Eq. (3) and B(E1)(ωn) the corresponding B(E1)
distributions.

As can be observed, the tendency to obtain lower energy
peaks with D1M (Fig. 5) is confirmed and is a somewhat
general feature of our results. This shift is of the order of a
few hundred keV, along the whole mass range. Moreover,
we clearly observe that both interactions provide similar
qualitative behavior with respect to the mass dependence of the
energy peak positions. This behavior can be fitted, for example,
by the law E = 41A−1/6 MeV, a nuclear mass dependence
compatible with the empirical [30] and theoretical [32]
behavior of the GDR energies.

The E1 energy-weighted sum rules (EWSR) expressed in
Thomas-Reiche-Kuhn (TRK) units are plotted in Fig. 7 as a
function of the mass number. The two parameter sets D1M and
D1S of the Gogny interaction provide similar trends, also close
to the one shown in Ref. [11] obtained for a set of closed-shell
nuclei with D1. The few hundred keV shift of the centroid
energy explains the decrease of the D1M EWSR with respect
to D1S.

D. Practical choices for large-scale calculation

Both the 2-qp energy cutoff and the number of major shells
are optimized to reach convergence in the predictions. For the
study of giant resonances, the computational price to pay to
obtain full convergence using the highest Nsh value together
without any energy cutoff is clearly not worth if compared to
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in QRPA with D1S and D1M Gogny interactions for all the nuclei
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the results obtained with an appropriate energy cutoff and a
reasonable Nsh value.

This is illustrated in Fig. 8, where the energies of the
centroid of the predicted QRPA strengths are plotted as a
function of the number of shells used in the calculation for
a few nuclei with a fixed energy cutoff of 60 MeV. As can be
observed, the centroid energies converge with increasing Nsh

values, and are only significantly different from that obtained
with a highest Nsh when the number of shells is clearly
unreasonably low given the mass of the nucleus considered
(nine shells for 152Sm, 196Pt or 240Pu, for instance). We have
therefore decided to adopt for all the calculations that will be
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FIG. 9. Centroid energies of the Kπ = 0− and 1− components
for all the deformed nuclei considered in this work. The squares
correspond to prolate nuclei and the triangles to oblate ones.

discussed from now on a cutoff energy of 60 MeV and the Nsh

values, as summarized in Table II. It is worth mentioning that
Nsh = 17 have been used for a somewhat limited number of
nuclei. For more systematic studies in the heavy mass regions
it would be possible to decrease this value to Nsh = 15 without
loosing too much in terms of quality of the predictions.

IV. RESULTS AND COMPARISONS WITH DATA

A. Impact of the deformation

As already discussed in Refs. [7,33–37], for deformed
nuclei the GDR splits in two energy components because
of the split between the K = 0 and K = ±1 states. It was
noticed [7] that this split follows an opposite hierarchy for
prolate and oblate shapes. This feature which was illustrated
by few isolated prolate (76Ge, 152Sm, 240Pu) and oblate (196Pt)
nuclei in Fig. 5, is now investigated more systematically. For
this purpose, we plot in Fig. 9 the centroid energies for each K
angular momentum projection for all the deformed even-even
nuclei considered in this work. As can be observed the centroid
energies of the Kπ = 0− components are systematically lower
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FIG. 8. Energy centroid of the QRPA B(E1) distributions calculated with D1M as a function of the number of shells using a global 60-MeV
energy cutoff for a sample of oblate (198Pt), spherical (208Pb), and prolate (76Ge, 152Sm, 240Pu) nuclei.
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which a single Lorentzian is recommended. (b) and (c) Lowest (b) and highest (c) peak energies for the nuclei for which two Lorentzians are
recommended.

than those of the Kπ = 1− components for prolate nuclei and
the other way around for oblate nuclei. Above the A=150 mass
region, the large difference of energy between Kπ = 0− and
Kπ = 1− centroids is related to the large intrinsic deformation
of the rare earth nuclei (see, for example, Fig. 1 of Ref. [38]).
In contrast in the A=130 mass region, the centroid energies
of the Kπ = 0− and Kπ = 1− components are close to each
other. In such a situation, the experimental strength might not
show the typical double hump pattern usually associated with
a deformed nucleus. Let us notice that similar K hierarchy was
also obtained for quadrupole resonances [7,31].

B. Comparison with experimental photoabsorption data

The axially symmetric-deformed HFB+QRPA method is
now applied to provide γ -ray strength function for all nuclei for
which photoabsorption data have been analyzed and compiled
in the IAEA RIPL library [4]. In this compilation, a large part
of the nuclei are not even-even, so that they cannot be, strictly
speaking, compared with our theoretical predictions limited
here to even-even nuclei. For odd-mass (respectively, odd-
odd) nuclei, experimental data are associated with theoretical
calculations performed for the 2 (respectively, 4) neighboring
even-even nuclei. The analysis in the RIPL library consisted in
fitting experimental photoabsorption data with one Lorentzian
function or two if necessary. We therefore use two methods
to analyze our predictions. When a single Lorentzian is
recommended in RIPL, we compare its peak energy with
the centroid of the total strength, obtained by summing
the Kπ = 0− and |K|π = 1− components if the nucleus is
theoretically predicted to be deformed. When two Lorentzian
functions are recommended in RIPL, we compare the energy
of the lowest (respectively, highest) peak with the centroid of
the Kπ = 0− (respectively, |K|π = 1−) component for nuclei
theoretically predicted to be prolate and with the centroid
of the |K|π = 1− (respectively, Kπ = 0−) component for
nuclei theoretically predicted to be oblate, following the con-
clusions reached in Sec. IV A. (Keeping in mind that for HFB
predicted spherical nuclei the K centroids are degenerated).

The comparisons are shown in Fig. 10. As can be observed,
our predictions display a qualitatively good mass dependence

compared to experimental data, but with a systematic overes-
timate of the order of 2 MeV. As already mentioned in Sec. II,
this shift already observed in Ref. [9] is expected because
our QRPA calculations do not account for the effects related
to qp configurations involving more than 2-qp states or to
the phonon coupling. Nevertheless, the mass dependence of
the centroid energy follows particularly well the experimental
trend, a feature particularly striking in the rare earth region.
This systematic overestimation can be removed by a global
(∼2 MeV) shift of the states involved in the response.
Furthermore a systematic ∼2 MeV downward energy shift
should reduce the D1M EWSRs (around ∼1.5 TRK units) to
reach the experimental values which rarely exceed 1.3 TRK
units.

C. Models for folded strength functions

The QRPA provides a somewhat satisfactory description of
the GDR centroid and the fraction of the EWSR exhausted by
the E1 mode. However, the GDR is known experimentally to
have a relatively large width and therefore a finite lifetime and
for a proper description of experimental data, it is necessary to
go beyond the QRPA scheme. Different microscopic theories
(such as second RPA and particle-phonon coupling) explain
the location and width of the GDR. For the sake of simplicity
and applicability to a large number of nuclei of astrophysical
interest, we restrict ourselves to the semiempirical broadening
of the GDR already introduced in Sec. II B. Such a broadening
is obtained by folding the QRPA B(E1) distribution by a
normalized Lorentzian function, as given by Eqs. (5) and (6)
where both the width  and energy shift � can be adjusted on
experimental data. Because of the phenomenological character
of such an approach, three different prescriptions are adopted
to estimate � and . In the first model (hereafter referred to as
Model 0), both parameters are assumed to be independent
of the energy and identical for all nuclei. More precisely,
the values of � = 2 MeV and  = 2.5 MeV are chosen to
globally reproduce experimental photoabsorption data. For
the other two models, another strategy is adopted, the energy
shift and the width  is adjusted on each photoabsorption
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FIG. 11. Comparison for 28 nuclei between the experimental photoabsorption cross section [4] (black solid line) and the fits corresponding
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represented by one or two parametrized Lorentzian functions, as traditionally done [4].

014304-10



LARGE-SCALE DEFORMED QUASIPARTICLE RANDOM- . . . PHYSICAL REVIEW C 94, 014304 (2016)

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

35

4qp   [M
eV

]0; 
  [

M
eV

]

(a) Model 1

0

4qp

0

1

2

3

4

5

6

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150

0; 
  [

M
eV

]

N

(b) Model 2

0

4qp

4qp   [M
eV

]

FIG. 12. Values of the three parameters �0 (squares),  (circles),
and δ4qp (diamonds) adjusted on experimental photoabsorption cross
sections as a function of the neutron number of the corresponding
nucleus for Models 1 (upper panel) and 2 (lower panel).

cross section available experimentally; in addition, the energy
shift is this time taken energy dependent following the
simple relation �(ω) = �0 + �4qp(ω), where �0 is a constant
shift from the coupling between qp states and phonons and
the quantity �4qp(ω) is an extra shift which empirically
describes the effect of complex configurations and for this
reason is taken to be proportional to the number of 4-qp
states, nK

4qp(ω), as defined in Sec. II A. The latter correction
therefore varies with the excitation energy ω and obviously
depends on the nucleus considered. Two different prescriptions
are considered to estimate this extra energy shift. The first
approximation (hereafter referred to as Model 1) assumes
that �K

4qp = δ4qp × nK
4qp(ω)/nK

4qp(ω = 30 MeV) where δ4qp is
a parameter adjusted on experimental photoabsorption cross
sections. In this model, �K

4qp is arbitrarily normalized to
the nK

4qp value at ω = 30 MeV. The second approximation
(Model 2) takes into account the number of 4-qp states relative
to the number of 2-qp states at the excitation energy ω and
reads �K

4qp = δ4qp × nK
4qp(ω)/nK

2qp(ω).
In Fig. 11, QRPA photoabsorption cross sections are com-

pared with experimental data [4] for a sample of 28 even-even
nuclei. Note that experimental cross sections are represented
by parametrized Lorentzian functions in the vicinity of the
GDR, i.e., cross sections at the energies significantly lower or
larger than the GDR centroid should not be considered. As seen
in Fig. 11, constant energy shift and width (Model 0) globally
reproduce experimental data, in particular the low-energy tail
of the cross section, though the width tends to be too low for
light and medium-A nuclei. A split peak above the GDR is also
present in the QRPA strength of some spherical nuclei, though
not observed experimentally. As stressed, for example, in
Refs. [26,39] it is expected that the fragmentation is somewhat
reduced by the coupling of the RPA modes to 2p-2h states and
equivalently by the coupling of the QRPA modes to 4-qp states.
The introduction of an energy-dependent shift proportional to
the number of 4-qp states is seen to cure this deficient pattern,
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odd-A nuclei.
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FIG. 14. Comparison of the QRPA low-energy E1-strength
functions with the experimental compilation [4] including resolved-
resonance and thermal-capture measurements, as well as photonu-
clear data for nuclei from 36Cl up to 239U at energies ranging from 4
to 8 MeV.

the second peak being shifted into the low energy one. For this
reason, Models 1 and 2 much better describe experimental
data than Model 0. Because each parameter was adjusted
for each nucleus to optimize the GDR properties, excellent
agreement could be obtained for both spherical and deformed
nuclei in most cases. The corresponding parameters �0, , and
δ4qp adjusted for each photoabsorption cross section available
experimentally for even-even nuclei are plotted in Fig. 12.

In addition to the phenomenological corrections, questions
still arise (i) for experimentally unknown nuclei for which
values of the �0, , and δ4qp parameters need to be as-
signed and (ii) for the odd-A and odd-odd nuclei for which
no HFB+QRPA calculations can be consistently performed
nowadays with the same accuracy. As it appears in Fig. 12
the adjustment of the �0, , and δ4qp parameters is clearly
nucleus dependent without any evident N or A behavior.

Furthermore the choice of the normalization of the 4qp-
state densities [nK

4qp(ω)/nK
4qp(ω = 30 MeV) for Model 1 and

nK
4qp(ω)/nK

2qp(ω) for Model 2] leads to different constant shift
values �0, reflecting the limitation of the present strategy in the
introduction of ingredients going beyond QRPA formalisms.
It also allows us to test the sensitivity of our predictions with
respect to different prescriptions for this phenomenological
procedure. For experimentally unknown nuclei, the use of
a smooth function fitting globally the N or A dependencies
would inevitably give rise to somewhat larger uncertainties.
Then an interpolation procedure is followed to estimate in
Models 1 and 2 the parameter values when they cannot be
tuned on experimental GDR data. Because the GDR width is
known to be shell dependent [2], hence essentially a function
of the neutron number, the interpolation is performed as a
function of the neutron number N .

Concerning the odd-A and odd-odd nuclei, the B(E1)
distributions have not been calculated yet. To estimate their
strength SE1, we have designed an interpolation procedure
using the QRPA predictions of the even-even nuclei based on
the relative smooth variation of GDR between neighboring
nuclei [40]. The procedure consists in determining the energy
dependence of the strength of an odd nucleus from a geometri-
cal mean of the neighboring even-even nuclei and normalizing
the strength to the interpolated EWSR. For example, for
an odd neutron number N in a even Z chain: SE1(Z,N ) ∝√

SE1(Z,N − 1) × SE1(Z,N + 1). This procedure was tested
and found to give satisfactory results as shown in Fig. 13 for
three odd-A nuclei.

D. Low-lying strength

Up to now we have discussed the QRPA results focusing
on the GDR region. It is well known that the knowledge
of the low-energy part of the γ strength is crucial for the
photonuclear reaction description. This part of the energy
spectrum is also provided by our QRPA approach. In Fig. 14 the
predictions are compared with the compilation of experimental
E1 strength functions at energies ranging from 4 to 8 MeV [4]

0 5 10 15 20
0

4

8

12

16

20

24

28

E [MeV]

A=115

A=155

Model 0

S E1
 [m

b 
M

eV
-1

]

0 5 10 15 20
E [MeV]

Model 1

A=115

A=155

0 5 10 15 20 25
E [MeV]

Model 2

A=115

A=155

FIG. 15. Comparison between the E1 strength functions for Sn isotopes (from A = 115 to 155 by steps of �A = 5) obtained with the
three prescriptions used to correct the HFB+QRPA model based on the D1M force.
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calculation with the D1M Gogny force (Model 0) (right panel).

for nuclei from 36Cl up to 239U. The data set includes
resolved-resonance measurements, thermal-capture measure-
ments, and photonuclear data. In some cases the original
experimental values need to be corrected, typically for nonsta-
tistical effects, so that only values recommended in Ref. [4]
are considered in Fig. 14. The three models considered here
reproduce well the trend of the strength with respect to the
mass number and globally agree, within the error bars, with
the low-energy E1 strength.

The rms deviation on the 44 theoretical to experimental
ratios amounts to frms = 1.78,2.02, and 1.84 for Models 0,
1, and 2, respectively. This degree of accuracy is similar to
the one found with the previous Skyrme-HFB plus QRPA
calculation [5,6].

E. Application to exotic neutron-rich nuclei

The theoretical approach presented here is based on micro-
scopic QRPA calculations but it contains some phenomeno-
logical ingredients needed to reproduce reaction observables.
The question of the predictive power of such an approach
naturally arises when dealing with exotic nuclei. Figure 15
shows the E1 γ -ray strength functions for 115−155Sn isotopes
obtained with our three models (see Sec. IV C). Although
the GDR predictions could be different, the appearance of
some extra strength around 5 MeV for Sn isotopes above
the N = 82 shell closure is independent of the folding
prescriptions. This low-lying strength is, however, quite
different from the one predicted by other models, as shown
in Fig. 16 where the generalized Lorentzian (GLO) [4] and
the Skyrme-HFB+QRPA [6] results are compared to the
D1M-HFB+QRPA Model 0. For such exotic neutron-rich
nuclei, the Skyrme-HFB plus QRPA calculation [6] predicts
pygmy resonances more enhanced than the Gogny ones, while
the GLO approach cannot predict by definition any additional
strength at low energy. Nevertheless for nuclei close to the
valley of β stability the microscopic E1 strength functions
look somewhat similar to the phenomenological Lorentzian.

The differences illustrated in Figs. 15 and 16 be-
tween the various γ -ray strength predictions for nuclei far
from the valley of stability may also have a significant impact
on the predicted neutron-capture cross section of astrophysical
interest. To investigate this point, the Maxwellian-averaged
neutron capture rate are calculated with the TALYS code [45–48]
using the γ -ray strength obtained with the three prescribed
D1M+QRPA models as well as with the GLO [4] and
Skyrme-HFB+QRPA modelsl [6]. Note that, for consistency,
in the present calculation of the radiative neutron capture rates,
the D1M masses [29] and the HFB plus combinatorial nuclear
level densities based on the D1M single-particle and pairing
properties [49] are adopted. Figure 17 shows the Maxwellian-
averaged neutron capture rate of the Sn isotopes for Models 1
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FIG. 17. (Left panel) Ratio of the Maxwellian-averaged radiative
neutron capture rate (at a temperature of 109 K) for the Sn
isotopes obtained with the three present D1M+QRPA models. (Right
panel) Same where the neutron capture rate with Model 0 of the
D1M+QRPA strength is compared with the one obtained with
the GLO model (squares) [4] and to the one predicted with the
Skyrme-HFB+QRPA model based on the BSk7 force (circles) [6].
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and 2 (left panel) and GLO and Skyrme-HFB+QRPA (right
panel) with respect to the Model 0 predictions used as a
reference. As can be seen on the left panel of Fig. 17, the three
prescriptions used to fold the original D1M+QRPA strength
predict radiative neutron capture rates within a factor of 2,
even for the most exotic nuclei. Similarly, the reaction rates
obtained using the D1M+QRPA strengths agree somewhat
well with those based on the Skyrme-HFB plus QRPA along
the whole isotopic chain. This similarity can be explained by
the somewhat same strength predicted at low energies below
the GDR, although the Gogny calculation predicts a strength
spread on a much wider energy range. However, for exotic
neutron-rich Sn isotopes our present QRPA γ -ray strength is
seen to give rise to reaction rates that can be about 30 times
larger than those obtained with the GLO model.

V. CONCLUSIONS

Large-scale calculations of E1 γ -ray strength functions
for even-even nuclei have been undertaken within the axi-
ally symmetric-deformed HFB+QRPA approach in a fully
consistent way using the finite-range Gogny interaction. The
convergence of the numerical calculation was analyzed with
respect to the size of the basis (number of HO shells)
and the 2-qp excitation energy. This analysis allowed one
to establish practical choices for large-scale calculations
optimizing both the minimization of the computational cost
and the convergence. Predictions obtained for two parameter
sets of the Gogny interaction, namely D1S and D1M, have
been compared and shown to give rise to a similar global
behavior. Nevertheless, the D1M E1 strength is found to be
systematically shifted, leading to lower centroid energy and a
smaller EWSR in comparison with D1S.

The role of the intrinsic deformation was systematically
investigated. The split between K=0 and |K|=1 total angular
momentum projections for deformed nuclei as well as their
opposite hierarchy for prolate and oblate shapes was confirmed
in the whole nuclear chart. Large deformations give rise to a
double peak structure while small deformations lead to a split
too small to be disentangled.

We have calculated the E1 γ -ray strength for all even-even
nuclei for which photoabsorption data exist. The comparison
between QRPA and measured cross sections revealed a
systematic energy shift of about ∼2 MeV of the Gogny-QRPA
strength with respect to experimental data. This energy shift

(of ∼2 MeV) induces that the theoretical values of the
EWSR obtained for all the nuclei studied in the present work
are systematically larger than the experimental ones. Three
prescriptions have been proposed to cure this discrepancy.
They correspond to a folding procedure of the B(E1) discrete
distribution on the basis of a Lorentzian function, which not
only shifts the E1 strength down by more or less 2 MeV
but also widen the distribution, as experimentally observed
in photoabsorption cross sections. Such a folding is also
needed to produce SE1 strength functions as inputs in reaction
models (e.g., TALYS code). Two of these prescriptions fit the
experimental photoabsorption data by adjusting the width and
energy shift parameters of the Lorentzian, taking into account
the density of dipole 4-qp excitations. This microscopic
ingredient allows us to investigate effects beyond the standard
QRPA description involving only 2-qp excitations. The three
prescriptions are found to give a satisfactory description of
experimental data and are shown to provide globally similar
E1 strength. In particular the neutron capture rates of astro-
physical interest do not differ by more than a factor of 2 for the
three prescriptions, even far away from the valley of β stability.

Further improvements of the present approach can be
envisioned. First, the interpolation procedure for odd nuclei
can be replaced by a fully microscopic QRPA calculation of
odd systems. Second, the folding procedure can be improved
by including microscopically the particle-phonon coupling.
Third, dynamic deformations can be considered when differing
from the HFB one (see, e.g., Fig. 3 of Ref. [50]). The present
encouraging results, in parallel to those obtained for nuclear
masses [29] and nuclear level densities [49], will allow us to
include such microscopic ingredients (obtained on the basis of
one unique Gogny interaction) into cross sections calculations.
We believe that working along such a path is a way, in the
future, to improve cross-section evaluations and predictions
on the basis of reliable and accurate microscopic inputs.
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[12] S. Péru and M. Martini, Eur. Phys. J. A 50, 88 (2014).
[13] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer, New York, 1920).

014304-14

http://esnt.cea.fr
http://dx.doi.org/10.1016/j.physrep.2007.06.002
http://dx.doi.org/10.1016/j.physrep.2007.06.002
http://dx.doi.org/10.1016/j.physrep.2007.06.002
http://dx.doi.org/10.1016/j.physrep.2007.06.002
http://dx.doi.org/10.1016/S0370-2693(98)00907-1
http://dx.doi.org/10.1016/S0370-2693(98)00907-1
http://dx.doi.org/10.1016/S0370-2693(98)00907-1
http://dx.doi.org/10.1016/S0370-2693(98)00907-1
http://dx.doi.org/10.1103/PhysRevC.90.024604
http://dx.doi.org/10.1103/PhysRevC.90.024604
http://dx.doi.org/10.1103/PhysRevC.90.024604
http://dx.doi.org/10.1103/PhysRevC.90.024604
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/S0375-9474(02)00860-6
http://dx.doi.org/10.1016/S0375-9474(02)00860-6
http://dx.doi.org/10.1016/S0375-9474(02)00860-6
http://dx.doi.org/10.1016/S0375-9474(02)00860-6
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.105
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.105
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.105
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.105
http://dx.doi.org/10.1103/PhysRevC.77.044313
http://dx.doi.org/10.1103/PhysRevC.77.044313
http://dx.doi.org/10.1103/PhysRevC.77.044313
http://dx.doi.org/10.1103/PhysRevC.77.044313
http://dx.doi.org/10.1103/PhysRevC.83.034309
http://dx.doi.org/10.1103/PhysRevC.83.034309
http://dx.doi.org/10.1103/PhysRevC.83.034309
http://dx.doi.org/10.1103/PhysRevC.83.034309
http://dx.doi.org/10.1103/PhysRevC.83.014314
http://dx.doi.org/10.1103/PhysRevC.83.014314
http://dx.doi.org/10.1103/PhysRevC.83.014314
http://dx.doi.org/10.1103/PhysRevC.83.014314
http://dx.doi.org/10.1103/PhysRevC.89.044306
http://dx.doi.org/10.1103/PhysRevC.89.044306
http://dx.doi.org/10.1103/PhysRevC.89.044306
http://dx.doi.org/10.1103/PhysRevC.89.044306
http://dx.doi.org/10.1016/0375-9474(83)90305-6
http://dx.doi.org/10.1016/0375-9474(83)90305-6
http://dx.doi.org/10.1016/0375-9474(83)90305-6
http://dx.doi.org/10.1016/0375-9474(83)90305-6
http://dx.doi.org/10.1140/epja/i2014-14088-7
http://dx.doi.org/10.1140/epja/i2014-14088-7
http://dx.doi.org/10.1140/epja/i2014-14088-7
http://dx.doi.org/10.1140/epja/i2014-14088-7


LARGE-SCALE DEFORMED QUASIPARTICLE RANDOM- . . . PHYSICAL REVIEW C 94, 014304 (2016)

[14] C. Yannouleas, M. Dworzecka, and J. J. Griffin, Nucl. Phys. A
397, 239 (1983).

[15] C. Yannouleas, Phys. Rev. C 35, 1159 (1987).
[16] G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev. Mod.

Phys. 55, 287 (1983).
[17] V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press,

Oxford, 1976).
[18] V. G. Soloviev, Ch. Stoyanov, and V. V. Voronov, Nucl. Phys.

A 304, 503 (1978).
[19] N. Tsoneva and H. Lenske, Phys. Rev. C 77, 024321 (2008).
[20] P. Papakonstantinou and R. Roth, Phys. Lett. B 671, 356

(2009).
[21] D. Gambacurta, M. Grasso, and F. Catara, Phys. Rev. C 84,

034301 (2011).
[22] D. Gambacurta, M. Grasso, V. De Donno, G. Co’, and F. Catara,

Phys. Rev. C 86, 021304 (2012).
[23] D. Gambacurta, F. Catara, M. Grasso, M. Sambataro, M. V.

Andrés, and E. G. Lanza, Phys. Rev. C 93, 024309 (2016).
[24] G. Colo and P. F. Bortignon, Nucl. Phys. A 696, 427

(2001).
[25] S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1

(2004).
[26] D. Sarchi, P. F. Bortignon, and G. Colo, Phys. Lett. B 601, 27

(2004).
[27] A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald,

Phys. Rev. C 83, 064316 (2011).
[28] O. Achakovskiy, A. Avdeenkov, S. Goriely, S. Kamerdzhiev,

and S. Krewald, Phys. Rev. C 91, 034620 (2015).
[29] S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett.
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