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Ab initio nuclear many-body perturbation calculations in the Hartree-Fock basis
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Starting from realistic nuclear forces, the chiral N3LO and JISP16, we have applied many-body perturbation
theory (MBPT) to the structure of closed-shell nuclei, 4He and 16O. The two-body N3LO interaction is softened by
a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT
calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used,
which can reduce the computational task. Corrections up to the third order in energy and up to the second order in
radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative
result. Using the antisymmetrized Goldstone diagram expansions of the wave function, we directly correct the
one-body density for the calculation of the radius, rather than calculate corrections to the occupation probabilities
of single-particle orbits as found in other treatments. We compare our results with other methods where available
and find good agreement. This supports the conclusion that our methods produce reasonably converged results
with these interactions. We also compare our results with experimental data.
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I. INTRODUCTION

A fundamental and challenging problem in nuclear struc-
ture theory is the calculation of finite nuclei starting from
realistic nucleon-nucleon (NN) interactions. The realistic nu-
clear forces, such as CD-Bonn [1], Nijmegen [2], Argonne V18
(AV18) [3], INOY [4], and chiral potential [5,6], contain strong
short-range correlations which cause convergence problems
in the calculations of nuclear structures. To deal with the
strong short-range correlations and speed up the convergence,
realistic forces are usually processed by certain renormaliza-
tions. A traditional approach is the G-matrix renormalization
in the Brueckner-Bethe-Goldstone theory [7–9] in which all
particle ladder diagrams are summed. Recently, a new class
of renormalization methods has been developed, including
Vlow-k [10,11], similarity renormalization group (SRG) [12],
Okubo-Lee-Suzuki [13–18], and unitary correlation operator
method (UCOM) [19,20]. The renormalizations soften realis-
tic NN interactions and generate effective Hamiltonians, while
all symmetries and observables are preserved in the low-energy
domain. The renormalization process also generates effec-
tive multinucleon interactions (sometimes called “induced”
interactions) that are typically dropped for four or more
nucleons interacting simultaneously. We will neglect three-
nucleon and higher multinucleon interactions both “bare”
and “induced”. There is another class of “bare” NN forces
which are sufficiently soft that they can be used without
renormalization, e.g., the JISP interaction which is obtained
by the J -matrix inverse scattering technique [21–23]. These
interactions can often be used directly for nuclear structure
calculations.

A renormalized NN interaction should retain its description
of the experimental phase shifts up to a cutoff. At the same
time, the renormalized interaction provides better convergence
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in nuclear structure calculations without involving parameter
refitting or additional parameters. The calculations based
on realistic forces are called ab initio methods when they
retain predictive power and accurate treatment of the first
principles of quantum mechanics. There have been several
ab initio many-body methods, such as no-core shell model
(NCSM) [24–28], Green’s function Monte Carlo (GFMC) [29–
32], and coupled cluster (CC) [33–35]. However, due to
the limits of computer capability, the NCSM and GFMC
calculations are currently limited to light nuclei (e.g., �16O),
while the CC calculations are limited to nuclei near double
closed shells.

While renormalization methods typically address short-
range correlations, the Hartree-Fock (HF) approach is used to
treat long-range correlations. However, the conventional HF
method that takes only one Slater determinant describes the
motion of nucleons in the average field of other nucleons and
neglects higher-order correlations. For a phenomenological
potential, one can adjust parameters to improve the agreement
of the HF results with data. For realistic NN interactions,
one needs to go beyond the HF approach to include the
intermediate-range correlations which are missing in the
lowest order HF approach. The many-body perturbation
theory (MBPT) is a powerful tool to include the missing
correlations [36–39]. The perturbation method starts from a
solvable mean-field problem and derives a correlated perturbed
solution. The most well-known perturbation expansions are
the Brillouin-Wigner (BW) [40,41] and Rayleigh-Schrödinger
(RS) [42,43] methods. MBPT calculations are usually per-
formed with an order-by-order expansion represented in the
form of groups of diagrams [36]. The diagrams of MBPT
proliferate as one goes to higher orders but some techniques,
such as those introduced by Bruekner [44], lead to useful
cancellations of entire classes of diagrams. This leads to the
linked-diagram theorem which simplifies greatly perturbation
calculations up to high orders. Goldstone first proved the
theorem valid to all orders in the nondegenerate case [8]. Later,
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the theorem was extended to the degenerate case [45–48]. The
linked-diagram theorem in the degenerate case is often referred
to as the folded-diagram method.

Some recent works [37–39] show that the MBPT correc-
tions to HF can significantly improve calculations which were
based on realistic forces. The authors used different renormal-
ization schemes, Vlow-k , OLS, and UCOM, and obtained the
convergence of low-order MBPT calculations [37–39]. In the
present work, we perform similar MBPT calculations with
the SRG-renormalized chiral N3LO potential [5,6] and the
“bare” JISP16 interaction [21–23]. We also calculate the
MBPT corrections to the nuclear radius with the antisym-
metrized Goldstone (ASG) diagrams of the one-body density
(up to the second order). We note that, in Ref. [37], the same
ASG diagrams for the corrections to energy were used for the
corrections to the radius. In Refs. [38,39], corrections to the
radius were approximated through corrections to occupation
probabilities. In order to reduce computational task, we
calculate the diagrams in the angular momentum coupling
representation. Our MBPT corrections to energy are up to the
third order, while our MBPT corrections to the radius are up
to the second order.

II. THEORETICAL FRAMEWORK

A. The effective Hamiltonian

The intrinsic Hamiltonian of the A-nucleon system used in
this work reads

Ĥ =
A∑

i<j

( �pi − �pj )2

2mA
+

A∑
i<j

VNN,ij , (1)

where the notation is standard. The first term on the right is
the intrinsic kinetic energy, and VNN,ij is the NN interaction
including the Coulomb interaction between the protons.
We do not include a three-body interaction. In the present
work, two different NN interactions have been adopted for
comparison. One is the chiral potential N3LO developed by
Entem and Machleidt [5]. Another one is the “bare” interaction
JISP16 [21–23].

The N3LO potential is renormalized by using the SRG
technique to soften the short-range repulsion and short-range
tensor components. The SRG method is based on a continuous
unitary transformation that suppresses off-diagonal matrix
elements and drives the Hamiltonian towards a band-diagonal
form [12]. The process leads to high- and low-momentum
parts of the Hamiltonian being decoupled. This implies that the
renormalized potential becomes softer and more perturbative
than the original one. In principle, the SRG method generates
three-body, four-body, etc., effective interactions. We neglect
these induced terms for the purposes of examining the
similarities and differences of results with NN interactions
alone. After the renormalization, the Coulomb interaction
between protons is added.

The “bare” JISP16 interaction is obtained by the phase-
equivalent transformations of the J -matrix inverse scattering
potential. The parameters are determined by fitting to not
only the NN scattering data but also the binding energies and
spectra of nuclei with A � 16 [23]. In the JISP16 potential,

the off-shell freedom is exploited to improve the description of
light nuclei by phase-equivalent transformations. Polyzou and
Glockle [49] have shown that changing the off-shell properties
of the two-body potential is equivalent to adding many-body
interactions. Therefore, the phase-equivalent transformation
can minimize the need of three-body interactions. The “bare”
JISP16 interaction has been used extensively and successfully
in configuration interaction calculations of light nuclei [50,51]
and in nuclear matter [52].

B. Spherical Hartree-Fock formulation

With the effective Hamiltonian established, we first perform
the HF calculation and then calculate the MBPT corrections
to the HF result. For simplicity of computational effort, we
limit our investigations here to the spherical, closed-shell,
nuclei 4He and 16O. These systems are sufficient to gain initial
insights into the convergence rates of the ground-state energy
and radius with these realistic interactions.

The spherical symmetry preserves the quantum numbers of
the orbital angular momentum (l), the total angular momentum
(j ), and its projection (mj ) for the HF single-particle states. In
the spherical harmonic oscillator (HO) basis |nljmjmt 〉, the
HF single-particle state |α〉 can be written as

|α〉 = |νljmjmt 〉 =
∑

n

D
(νljmj mt )
n |nljmjmt 〉, (2)

where the labels are standard with n and mt for the radial
quantum number of the HO basis and isospin projection,
respectively. The HF wave function for the A-body nucleus
is then represented by an antisymmetrized Slater deter-
minant constructed with the HF single-particle states. By
varying the HF energy expectation value (with respect to
the coefficients D

(νljmj mt )
n ), we obtain the HF single-particle

eigenequations,∑
n2

h
(ljmj mt )
n1n2 D

(νljmj mt )
n2 = ενljmj mt

D
(νljmj mt )
n1 , (3)

where ενljmj mt
represents the HF single-particle eigenenergies,

and h
(ljmj mt )
n1n2 designates the matrix elements of the HF single-

particle Hamiltonian given by

h
(ljmj mt )
n1n2 =

∑
l′j ′m′

j m
′
t

∑
n′

1n
′
2

H
(ljmj mt ;l′j ′m′

j m
′
t )

n1n
′
1n2n

′
2

ρ
(l′j ′m′

j m
′
t )

n′
1n

′
2

, (4)

where H
(ljmj mt ,l

′j ′m′
j m

′
t )

n1n
′
1n2n

′
2

and ρ
(l′j ′m′

j m
′
t )

n′
1n

′
2

are the matrix elements

of the two-body effective Hamiltonian Ĥ and one-body
density, respectively. They can be written

H
(ljmj mt ;l′j ′m′

j m
′
t )

n1n
′
1n2n

′
2

= 〈n1ljmjmt ,n
′
1l

′j ′m′
jm

′
t |Ĥ |n2ljmjmt ,n

′
2l

′j ′m′
jm

′
t 〉 (5)

and

ρ
(l′j ′m′

j m
′
t )

n′
1n

′
2

=
∑

u

N (ul′j ′m′
j m

′
t )D

∗(ul′j ′m′
j m

′
t )

n′
1

D
(ul′j ′m′

j m
′
t )

n′
2

, (6)
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where N (μl′j ′m′
j m

′
t ) is the occupation number of the HF

single-particle orbit, i.e., N (μl′j ′m′
j m

′
t ) = 1 (occupied) or 0

(unoccupied).
In practice, we diagonalize the following equation to solve

the HF single-particle eigenvalue problem:

∑
n2

⎡
⎣∑

n′
1n

′
2

∑
l′j ′m′

j m
′
t

H
(ljmj mt ,l

′j ′m′
j m

′
t )

n1n
′
1,n2n

′
2

ρ
(l′j ′m′

j m
′
t )

n′
1n

′
2

⎤
⎦D

(νljmj mt )
n2

= ενljmj mt
D

(νljmj mt )
n1 . (7)

This is a nonlinear equation with respect to variational
coefficients D

(νljmj mt )
n . In the spherical closed shell, the HF

single-particle eigenvalues are independent of the magnetic
quantum number mj , which leads to a 2j + 1 degeneracy.
In this case, we can rewrite the eigenvalues by omitting
mj , i.e., D

(νljmt )
n = D

(νljmj mt )
n and ενljmt

= ενljmj mt
. Then we

can simplify Eq. (7) in the angular momentum coupled
representation as follows [39]:

∑
n2

⎡
⎣∑

n′
1n

′
2

∑
l′j ′m′

t

∑
J

2J + 1

(2j + 1)(2j ′ + 1)

√
1 + δk1k

′
1

√
1 + δk2k

′
2

× 〈n1ljmt ,n
′
1l

′j ′m′
t ; J |Ĥ|n2ljmt ,n

′
2l

′j ′m′
t ; J 〉ρ(l′j ′m′

t )
n′

1n
′
2

⎤
⎦

×D(νljmt )
n2

= ενljmt
D(νljmt )

n1
(8)

with δkk′ = δnn′δll′δjj ′δmtm
′
t

and one-body density matrix

ρ
(l′j ′m′

t )
n′

1n
′
2

=
∑

μ

O(μl′j ′m′
t )D

*(μl′j ′m′
t )

n′
1

D
(μl′j ′m′

t )
n′

2
, (9)

where O(μl′j ′m′
t ) is the number of the occupied magnetic sub-

shell, i.e., O(μl′j ′m′
t ) = 2j ′ + 1 (occupied) or 0 (unoccupied).

C. Rayleigh-Schrödinger perturbation theory

We can separate the A-nucleon Hamiltonian Eq. (1) into a
zero-order part Ĥ0 and a perturbation V̂ ,

Ĥ = Ĥ0 + (Ĥ − Ĥ0) = Ĥ0 + V̂. (10)

The exact solutions of the A-nucleon system are

Ĥ�n = En�n, n = 0,1,2, . . . . (11)

For the zero-order part, we write

Ĥ0�n = E(0)
n �n, n = 0,1,2, . . . . (12)

If we choose the HF single-particle Hamiltonian Eq. (4) as
H0, the zero-order energy E

(0)
0 is simply the summation of the

single-particle energies up to the Fermi level. In the present
work, we only investigate the ground states of closed-shell
nuclei. For simplicity, we denote the ground-state energy E0

and wave function �0 by E and �, respectively, omitting
the subscript. For the ground state (n = 0), we formulate the
Rayleigh-Schrödinger perturbation theory (RSPT), as follows:

χ = � − �0, (13)


E = E − E(0), (14)

� =
∞∑

m=0

[R̂0(E(0))(V̂ − 
E)]m�0, (15)


E =
∞∑

m=0

〈�0|V̂[R̂0(E(0))(V̂ − 
E)]m|�0〉, (16)

where R̂0 = ∑
i �=0

|�i 〉〈�i |
E

(0)
0 −E

(0)
i

is called the resolvent of Ĥ0. Here

we use intermediate normalization

〈�n|�n〉 = 1, 〈χn|�n〉 = 0,

〈�n|�n〉 = 1, 〈�n|�n〉 = 1 + 〈χn|χn〉. (17)

Arranging the above expressions according to the perturbation
orders of V̂, we have

E = E(0) + E(1) + E(2) + E(3) + · · · . (18)

The first-, second-, third-order corrections are

E(1) = 〈�0|V̂|�0〉, (19)

E(2) = 〈�0|V̂R̂0V̂|�0〉, (20)

E(3) = 〈�0|V̂R̂0(V̂ − 〈�0|V̂|�0〉)R̂0V̂|�0〉. (21)

Similarly, the wave function can be written in the perturbation
scheme

� = �0 + �(1) + �(2) + · · · (22)

with

�(1) = R̂0V̂|�0〉 (23)

and

�(2) = R̂0(V̂ − E(1))R̂0V̂|�0〉 (24)

for the first- and second-order corrections to the wave function,
respectively. We can use the diagrammatic approach to de-
scribe various terms in RSPT. The ASG diagrams are the most
commonly used method of the diagrammatic representation.

D. Diagrammatic expansion for Rayleigh-Schrödinger
perturbation theory in the Hartree-Fock basis

If we choose the HF Hamiltonian as an auxiliary zero-
order one-body Hamiltonian Ĥ0, many of the ASG diagrams
are canceled [36]. Only a small number of low-order ASG
diagrams for RSPT remain. In this subsection, we give the
remaining AGS diagrams for the energy and wave function
written in the standard perturbation theory [53]. We consider
corrections up to third order for the energy and second order
for the wave function. To evaluate other observables that can be
expressed by one-body operators, we calculate the corrections
up to second order for the one-body density. It has been shown
that the corrections up to third order for the energy in the
HF basis give well-converged results for soft interactions [54].
Spherical HF (SHF) produces degenerate single-particle states,
so we can evaluate the vacuum-to-vacuum linked diagrams
in angular momentum coupled representation [55] which is
computationally efficient.

Figure 1 displays the ASG diagrams corresponding to the
first-, second-, and third-order corrections to the energy in
RSPT. The vertices, i.e., the dashed lines, represent Ĥ in
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FIG. 1. The first-, second-, and third-order ASG diagrams of
energy corrections in the RS expansion [37].

Eq. (1). The diagrams (a) and (b) are for E(1) and E(2),
respectively, while the diagrams (c), (d), and (e) sum up for
E(3). The zero-order energy E(0) is the simple summation of the
HF single-particle energies up to the Fermi level, i.e., E(0) =∑A

i=1 εi , where εi represents the HF single-particle energy.
The summation of the E(0) and E(1) gives the HF energy, i.e.,
EHF = E(0) + E(1) = 1

2

∑A
i=1 εi , since the initial Hamiltonian

is entirely expressed in relative coordinates [38,56].

1. Corrections to the one-body density

MBPT corrections to the wave function bring configuration
mixing. The convergence can be discussed in order-by-order
perturbation calculations. Any observable that is expressed by
one-body operators can be calculated by using the one-body
density matrix (OBDM). By definition, the local one-body
density operator in an A-body Hilbert space is written as [57]

ρ̂(�r) =
A∑

k=1

δ3(�r − �rk) =
A∑

k=1

δ(r − rk)

r2

∑
lm

Y ∗
lm(r̂k)Ylm(r̂),

(25)

where r̂ is the unit vector in the direction �r , and Ylm(r̂) is the
spherical harmonic function.

We can write the density operator in the second quantization
representation in the HO basis as

ρ̂(�r) =
∑
K

∑
n1l1j1

∑
n2l2j2

∑
mj

Rn1l1 (r)Rn2l2 (r)
−Y ∗

K0(r̂)√
2K + 1

×
〈
l1

1

2
j1

∣∣∣∣|YK |
∣∣∣∣l2 1

2
j2

〉
〈j1mjj2 − mj |K0〉

×(−1)j2+mj a
†
n1l1j1mj

an2l2j2mj
(26)

with〈
l1

1

2
j1

∣∣∣∣|YK |
∣∣∣∣l2 1

2
j2

〉

= 1√
4π

ĵ1ĵ2 l̂1 l̂2(−1)j1+ 1
2 〈l10l20|K0〉

{
j1 j2 K

l2 l1
1
2

}
.

(27)

The Rnl’s are the radial components of the HO wave function.
We use the Condon-Shortley convention for the Clebsch-
Gordan coefficients. Since we are dealing with a spherically
symmetric system (K = 0), we can obtain a simple form

ρ̂(�r) =
∑
n1n2

∑
ljmj

[
Rn1l(r)Rn2l(r)

4π

]
a
†
n1ljmj

an2ljmj
. (28)

By introducing the normally ordered product relative to the
SHF ground state |�0〉, the local one-body density operator
can be written as

ρ̂(�r) = ρ0(�r) + ρ̂N = ρ0(�r) +
∑
i,j

ρij : c
†
i cj : , (29)

where ρ0(�r) = 〈�0|ρ̂(�r)|�0〉 gives the HF density, while
ρ̂N = ∑

i,j ρij : c
†
i cj : brings corrections to the density. ρij

is the density matrix elements 〈i|ρ(�r)|j 〉, and : c
†
i cj : indicates

the normally ordered product of the creation and annihilation
operators. It is required that all annihilation and creation
operators which take |�0〉 to zero when acting on it are to
the right of all other operators which do not take |�0〉 to
zero. The expectation value of the density is obtained with
the corrected wave function through Eq. (29). In the present
work, we consider the first- and second-order wave function
corrections.

The ASG diagrams for the first- and second-order correc-
tions to the wave function [36] are displayed in Fig. 2. The
first-order wave function diagram, i.e., panel (a) in Fig. 2,
produces the second-order correction to the density. While
diagrams (b) and (c) of the second-order wave function
correction produce second-order corrections to the density,
other diagrams of the second-order wave function correction
contribute to higher-order corrections to the density. The first-
and second-order wave function corrections which correct the
density up to the second order can be written as

�(1) = −1

4

∑
h1h2

∑
p1p2

〈
p1p2

∣∣Ĥ|h1h2〉(
εh1 + εh2 − εp1 − εp2

)
× (

c†p1
c†p2

ch2ch1 |�0〉
)
, (30)

�
(2)
b = 1

2

∑
h1h2

∑
p1p2p3

〈p1h2|Ĥ|p2p3〉〈p2p3|Ĥ|h1h2〉(
εh1 − εp1

)(
εh1 + εh2 − εp2 − εp3

)
× (

c†p1
ch1 |�0〉

)
, (31)

�(2)
c = −1

2

∑
h1h2h3

∑
p1p2

〈h2h3|Ĥ|h1p2〉〈p1p2|Ĥ|h2h3〉(
εh1 − εp1

)(
εh2 + εh3 − εp1 − εp2

)
× (

c†p1
ch1 |�0〉

)
. (32)
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FIG. 2. ASG diagrams for the first- and second-order corrections to the wave function [36]. (a) is for the first-order correction, while (b)–(i)
are for the second-order correction.

The total wave function that corrects the density up to the second order is

� = �0 + �(1) + �
(2)
b + �(2)

c . (33)

Then, the corrected density is written as

ρ(�r) = 〈�|ρ̂(�r)|�〉
= 〈�0|ρ̂(�r)|�0〉 + 〈�0|ρ̂(�r)|�0〉〈�(1)|�(1)〉 + 2〈�0|ρ̂N

∣∣�(2)
b

〉 + 2〈�0|ρ̂N

∣∣�(2)
c

〉 + 〈�(1)|ρ̂N |�(1)〉
= 〈�0|ρ̂(�r)|�0〉 + 〈�0|ρ̂(�r)|�0〉〈�(1)|�(1)〉 + 2ρa + 2ρb + ρc1 + ρc2 , (34)

where ρa = 〈�0|ρ̂N |�(2)
b 〉, ρb = 〈�0|ρ̂N |�(2)

c 〉, and ρc1 + ρc2 = 〈�(1)|ρ̂N |�(1)〉. They are displayed using the language of the
diagram in Fig. 3. Dashed lines with cross contribute to the reduced matrix elements 〈ν1lj‖ρ‖ν2lj 〉 = √

2j + 1〈ν1ljmj |
ρ|ν2ljmj 〉.

The detailed formulas of the density correction terms in the angular momentum coupled scheme are written as

ρa = 1

2

∑
h1,h2

∑
p1,p2,p3

(−1)jh1 +jh2

√
2jh2 + 1(

εh1 − εp1

)(
εh1 + εh2 − εp2 − εp3

) ∑
J

(−1)J (2J + 1)

{
jh1 jp1 0
jh2 jh2 J

}

×〈(h1h2)J |Ĥ|(p2p3)J 〉〈(p2p3)J |Ĥ|(p1h2)J 〉〈h1‖ρ‖p1〉, (35)

ρb = −1

2

∑
h1,h2,h3

∑
p1,p2

(−1)jh1 +jp2
√

2jp2 + 1(
εh1 − εp1

)(
εh2 + εh3 − εp1 − εp2

) ∑
J

(−1)J (2J + 1)

{
jh1 jp1 0
jp2 jp2 J

}

×〈(p1p2)J |Ĥ|(h2h3)J 〉〈(h2h3)J |Ĥ|(h1p2)J 〉〈h1‖ρ‖p1〉, (36)

ρc1 = −1

2

∑
h1,h2,h3

∑
p1,p2

(−1)jh1 +jh2

√
2jh1 + 1(

εh1 + εh2 − εp1 − εp2

)(
εh1 + εh3 − εp1 − εp2

) ∑
J

(−1)J (2J + 1)

{
jh1 jh1 0
jh2 jh3 J

}

×〈(h1h2)J |Ĥ|(p1p2)J 〉〈(p1p2)J |Ĥ|(h1h3)J 〉〈h3‖ρ‖h2〉, (37)
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ρc2 = 1

2

∑
h1,h2

∑
p1,p2,p3

(−1)jp1 +jp3
√

2jp1 + 1(
εh1 + εh2 − εp1 − εp3

)(
εh1 + εh2 − εp1 − εp2

)
×

∑
J

(−1)J (2J + 1)

{
jp1 jp1 0
jp3 jp2 J

}
〈(p1p3)J |Ĥ|(h1h2)J 〉〈(h1h2)J |Ĥ|(p1p2)J 〉〈p2‖ρ‖p3〉, (38)

where {j1 j2 j3
j4 j5 j6

} is Wigner 6-j symbol. The letters
h1,h2, . . . indicate occupied single-particle levels in |HF〉 (i.e.,
hole states), the letters p1,p2, . . . , for unoccupied levels (i.e.,
particle states). εh or εp is the energy of particle or hole state,
respectively. States h or p includes the quantum numbers of
the orbital angular momentum l, total angular momentum
j , isospin projection quantum number mt , and additional
quantum number ν, i.e., |h〉 or |p〉 = |νlj tz〉. We define an
antisymmetrized two-particle state (unnormalized) coupled to
a good angular momentum J with a projection M ,

|(j1j2)JM〉 =
∑

m1,m2

〈j1m1j2m2|JM〉|(j1m1)(j2m2)〉. (39)

2. Root-mean-square radii

The root-mean-square (rms) radius is an important global
indicator for the change of the density distribution arising
from correlations beyond HF. The squares of the rms radii for
point-like proton, neutron, and nucleon (matter) distributions
are the averaged values of the operators [58], respectively,

r̂2
pp = 1

Z

Z∑
i=1

(�ri − �r0)2, (40)

r̂2
nn = 1

N

N∑
i=1

(�ri − �r0)2, (41)

r̂2
m = 1

A

A∑
i=1

(�ri − �r0)2 = 1

A2

A∑
i<j

(�ri − �rj )2, (42)

h1

p1

p2 h2p3

(a) ρa

p1

h1

h2 p2h3

(b) ρb

p1h1

h2

p2

h3

(c) ρc1

h1p1

p2

h2

p3

(d) ρc2

FIG. 3. ASG diagrams for the second-order corrections to the
density.

with the c.m. position �r0 = 1
A

∑A
i=1 �ri . The charge radius rch

obtained from the point-proton radius rpp using the standard
expression [59]

〈
r2

ch

〉 = 〈
r2

pp

〉 + R2
p + N

Z
R2

n + 3�
2

4m2
pc

2
, (43)

where 3�
2

4m2
pc

2 ≈ 0.033 fm2, R2
n = −0.1149(27) fm2, Rp =

0.8775(51) fm. The point-proton or point-neutron rms radius
operator is a two-body operator. The squares of the rms
radii can be calculated either from the translational invariant
local density or directly using the two-body operators [i.e.,
Eqs. (40)–(42)]. Since we adopt MBPT with intermediate
normalization [i.e., Eqs. (17)], the perturbed wave function
is unnormalized. In the present work, we use the one-body
local density to calculate the radius, as

〈
R2

pp

〉 =
∫

r2ρp(�r)d3r∫
ρp(�r)d3r

. (44)

The wave function is written in the laboratory HO coor-
dinate, starting from an antisymmetrized Slater determinant
which contains the component of the center-of-mass (c.m.)
motion. Consequently, the local one-body density calculated
with the wave function includes contribution from the c.m.
motion. The c.m. correction to the radius can be approximated
as follows. Equation (42) gives

r̂2
m = 1

A2

A∑
i<j

(�ri − �rj )2

=
(

1 − 1

A

)(
A∑

i=1

�ri
2/A

)
− 2

A2

⎛
⎝ A∑

i<j

�ri · �rj

⎞
⎠. (45)

If the cross term
∑A

i<j �ri · �rj is neglected, we have

r̂2
m ≈

(
1 − 1

A

)(
A∑

i=1

�ri
2/A

)
. (46)

Similarly for the proton radius,

r̂2
pp ≈

(
1 − 1

A

)(
Z∑

i=1

�ri
2/Z

)
. (47)

This gives an approximate c.m. correction to the point-proton
rms radius,


rc.m. =
[(

1 − 1

A

)〈
R2

pp

〉]1/2

− 〈
R2

pp

〉1/2
, (48)

where 〈R2
pp〉1/2 is the point-proton rms radius calculated by

Eq. (44). Then the rms radius of the point-proton distribution
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FIG. 4. HF-MBPT calculations of 4He ground-state energy
through third order as a function of oscillator parameter �� with
the chiral N3LO potential [5,6] renormalized by SRG at different
softening parameters λ = 1.5,2.0,2.5,3.0 fm−1. The dashed line
represents the experimental ground-state energy.

is obtained by

rpp = 〈
R2

pp

〉1/2 + 
rc.m.. (49)

III. CALCULATIONS AND DISCUSSIONS

In this section, we apply the method outlined in Sec. II to
two light closed-shell nuclei, 4He and 16O. The SRG-softened
chiral N3LO and the “bare” JISP16 interactions are adopted
for the effective Hamiltonians.
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FIG. 5. Point-proton rms radius of 4He as a function of oscillator
parameter �� with different Nshell. The chiral N3LO potential [5,6]
is softened by the SRG method.

TABLE I. Ground-state energy (in MeV) of 4He, analyzed
in order-by-order HF-MBPT calculations with N3LO softened at
different SRG-softening parameter values (λ). PT2 and PT3 represent
the second- and third-order corrections to energy, respectively. We
take Nshell = 13 and �� = 35 MeV.

SRG flow parameter λ (fm−1)

1.5 2.0 2.5 3.0

Expt. [60] −28.296 −28.296 −28.296 −28.296
NCSM [61] −28.20 −28.41 −27.43 −26.80
SHF −25.754 −21.864 −15.854 −10.278
PT2 −1.788 −5.088 −9.652 −13.783
PT3 −0.391 −0.899 −1.523 −1.953
SHF+PT2+PT3 −27.933 −27.850 −27.029 −26.013

A. Calculations with chiral N3LO interaction

The SHF is carried out within the HO basis. The HO basis
is truncated by a cutoff according to the number Nshell =
max(2n + l + 1), where Nshell indicates how many major HO
shells are included in the truncation. After the SHF calculation,
the MBPT corrections are calculated in the SHF basis. In the
present calculations, the basis spaces employed take Nshell = 7,
9, 11, and 13. We verify that such a truncation is sufficient for
the converged calculations of the ground state energies for
these magic nuclei 4He and 16O.

Figure 4 shows the MBPT calculated ground-state energy
of 4He. The calculations were done with the chiral N3LO
interaction which was renormalized by SRG. We see that
good convergence of the calculated energy by virtue of
independence from the oscillator parameter �� and Nshell

is obtained at least for the truncations Nshell = 11 and 13.
We note that the dependence on the parameter �� displays
behavior similar to NCSM calculations [61,63]. The softening
parameter λ = 3.0 fm−1 seems to be insufficient to produce
an interaction soft enough for good convergence in MBPT.
Jurgenson et al. have investigated the SRG evolution with
the softening parameter λ in 4He at �� = 36 MeV [61,64].
They found that λ ≈ 2.0 fm−1 can reasonably reproduce
the experimental 4He ground-state energy with the NN-only
interaction (without requiring a three-body force).

TABLE II. Point-proton rms radius (in fm) of 4He in the HF-
MBPT calculations with N3LO softened at different SRG-softening
parameter values. PT2 designates the second-order correction to the
radius. Nshell = 13 and �� = 35 MeV are taken. The experimental
point-proton rms radius is obtained using Eq. (43) with the experi-
mental charge radius taken from [62].

SRG flow parameter λ (fm−1)

1.5 2.0 2.5 3.0

Expt. 1.477 1.477 1.477 1.477
SHF 1.677 1.652 1.714 1.816
PT2 0.007 0.001 −0.021 −0.065

rc.m. −0.226 −0.222 −0.227 −0.235
SHF+PT2+
rc.m. 1.458 1.431 1.466 1.516
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Figure 5 shows the radius calculations at different �� with
λ = 2.0 fm−1. Tables I and II give the details of the HF-
MBPT calculations with different λ values. We see that both
second- and third-order corrections to energy decrease with
decreasing λ. This is easily understood because MBPT mainly
treats intermediate-range correlations and these correlations
are weakened with decreasing λ. With sufficiently small λ,
higher-order corrections to the energy can be neglected. The
second-order correction to the radius is already small, which
decreases with decreasing λ in 4He. The c.m. correction to
the radius is larger than the MBPT correction. It may be
concluded that, at least for 4He, MBPT corrections up to third
order in energy and up to second order in radius within the
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FIG. 7. Point-proton rms radius of 16O as a function of oscillator
parameter �� with different Nshell. The chiral N3LO potential [5,6]
is softened by the SRG method.

TABLE III. Ground-state energy (in MeV) of 16O, analyzed
in order-by-order HF-MBPT calculations with N3LO softened at
different SRG-softening parameter values (λ). We take Nshell = 13
and �� = 35 MeV.

SRG flow parameter λ (fm−1)

1.5 2.0 2.5 3.0

Expt. [60] −127.619 −127.619 −127.619 −127.619
SHF −169.968 −133.169 −85.173 −44.102
PT2 −10.132 −29.497 −59.617 −88.326
PT3 −0.794 −1.931 −4.630 −7.339
SHF+PT2+PT3 −180.893 −164.597 −149.419 −139.767

HF basis should give converged results for λ below about
3.0 fm−1. It has been pointed out that the MBPT calculation
within the HO basis could be divergent even for softened
interactions [54]. The Hamiltonian (1) is written already in
the relative coordinate, and SHF can preserve the translational
invariance for the ground state energy [65] so that no c.m.
correction is needed for the ground state energy.

Figure 6 shows the energy calculations for 16O. The
convergence behavior is similar to that in 4He. The Nshell =
11 and 13 calculations appear nearly convergent. However,
calculations with small λ values (e.g., �2.0 fm−1) give
over-binding, compared with data. This phenomenon should
be more obvious for heavier nuclei. The main reason is that
the three-body and higher-order forces are omitted in these
calculations. The emergence of induced three-body forces and
beyond is related to the SRG softening parameter λ. A larger
λ value evolves a harder effective NN potential. In large λ
cases (e.g., λ > 3.0 fm−1), effects from induced three-body
and higher-order forces are small. But a large λ value may not
sufficiently soften the short-range correlations of the realistic
force, leading to demands for an excessively large model
space and increased dependence on higher-order corrections.
While a small λ value may sufficiently soften the potential,
the contribution from induced three-body force may be not
ignorable. Within SRG, λ ∼ 2.0–2.5 fm−1 seems to be an
optimal range in which the NN interaction can be softened
reasonably and the combined three-body (initial plus induced)
effects are greatly reduced [12,54,61].

TABLE IV. Point-proton rms radius (in fm) of 16O in the HF-
MBPT calculations with N3LO softened at different SRG-softening
parameter values. Nshell = 13 and �� = 35 MeV are taken. The
experimental point-proton rms radius is obtained using Eq. (43) with
the experimental charge radius taken from [62].

SRG flow parameter λ (fm−1)

1.5 2.0 2.5 3.0

Expt. 2.581 2.581 2.581 2.581
SHF 2.098 2.096 2.201 2.345
PT2 0.011 0.011 −0.006 −0.042

rc.m. −0.067 −0.067 −0.070 −0.073
SHF+PT2+
rc.m. 2.042 2.040 2.125 2.230
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The calculation of the radius for 16O is displayed in Fig. 7.
Reasonable convergence is obtained for Nshell = 11 and 13.
But the calculated radius is smaller than the experimental
value. It seems that other ab initio results yield radii that are
systematically smaller than experiment [39,59]. In Tables III
and IV, we give the order-by-order results of the HF-MBPT
16O calculations with the same parameters as those in 4He
(i.e., Nshell = 13 and �� = 35 MeV) at different λ values. The
situation is similar to that in 4He. We can see that smaller
contributions from the neglected higher-order corrections
decrease with decreasing λ, and good convergence is obtained
for the MBPT calculations within the HF basis at small λ
values. It has pointed out that in the HF basis the fourth- and
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oscillator parameter �� for different Nshell. The JISP16 potential
[21–23] is used.
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FIG. 10. Point-proton rms radius of 16O as a function of the
oscillator parameter �� for different Nshell. The JISP16 potential
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higher-order MBPT corrections are known to be negligible in
some cases [54].

B. Calculations with the “bare” JISP16 potential

As mentioned in the Introduction, the JISP16 interaction
is established by the J -matrix technique, and its parameters
were determined by fitting both NN scattering data and nuclear
structure data up to A = 16 [23]. It is called “bare” because we,
along with others, do not apply renormalization procedures
in order to use it in nuclear structure calculations. To fit
selected nuclear properties, the interaction has been tuned
with phase-equivalent transformations to minimize the role
of neglected many-body interactions. This tuning exploits
the residual freedoms in the off-shell properties of the NN
interaction [49].

Similar to the investigations with the chiral N3LO potential,
we have applied the “bare” two-body JISP16 interaction to
4He and 16O. Figure 8 shows calculated binding energies for
these two closed-shell nuclei. Figures 9 and 10 are the radii

TABLE V. Ground-state binding energy and point-proton radius
of 4He with the “bare” JISP16 interaction [21–23] at �� = 35 MeV.
The results of HF-MBPT are obtained with Nshell = 10. The NCSM
results with Nmax = 10 are taken from Refs. [66,67]. The experimen-
tal energy is from Ref. [60], and the experimental radius is obtained
as in Table II.

Proton rms radius (fm) Eg.s. (MeV)

Expt. 1.477 −28.296
NCSM 1.418 −28.222
SHF 1.562 −22.462
PT2 0.015 −4.373
PT3 − −0.803

rc.m. −0.211 −
HF-MBPT totally 1.366 −27.638
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TABLE VI. Ground-state binding energy and point-proton radius
of 16O with the “bare” JISP16 interaction [21–23] at �� = 35 MeV.
The results of HF-MBPT are obtained with Nshell = 10. The NCSM
results with Nmax = 8 are taken from Refs. [66,67]. The experimental
energy is from Ref. [60], and the experimental radius is obtained as
in Table IV.

Proton rms radius (fm) Eg.s. (MeV)

Expt. 2.581 −127.619
NCSM 1.836 −131.091
SHF 1.852 −71.638
PT2 0.052 −58.873
PT3 − −4.260

rc.m. −0.061 −
HF-MBPT totally 1.843 −134.771

calculations. Good convergence is obtained as indicated by
the improved independence of �� and Nshell with increasing
Nshell. The JISP16 potential without three-body force gives
reasonable ground state energies compared with data. Tables V
and VI give the details of the HF-MBPT calculations with
JISP16. To see how well the HF-MBPT approach does, we
have made a comparison with the benchmark given by the
NCSM calculation with the same JISP16 [66,67]. For the
NCSM calculation, we introduce the model space truncation
parameter Nmax that measures the maximal allowed HO excita-
tion energy above the unperturbed lowest zero-order reference
state. We choose to compare out results with Nmax = 10 for
4He calculations, implying that a total of 11 major HO shells
are involved. Such a model space is sufficient for 4He. For the
HF-MBPT calculation, fast convergence with increasing the
size of the model space Nshell has been shown in Fig. 8. We
use the results of HF-MBPT with Nshell = 10 to compare with
the results of NCSM with Nmax = 10 as in Table V. We see
that HF-MBPT and NCSM calculations give similar results
for the energy and radius of 4He, in good agreement with data.
For 16O, we use Nmax = 8, which corresponds to a total of
ten major HO shells involved. The results of HF-MBPT with
Nshell = 10 truncation is used to compare with the NCSM
results as in Table VI. Both HF-MBPT and the NCSM give
larger binding energies but smaller radii than experimental
data. The MBPT convergence with perturbative order in the
“bare” JISP16 calculation is similar to that in the chiral N3LO
calculation. With the calculations based on N3LO and JISP16,
we may conclude that the MBPT method can give fairly
converged results in the HF single-particle basis for these
realistic NN interactions.

IV. SUMMARY

We have performed the HF-MBPT calculations with the
realistic NN interactions chiral N3LO and “bare” JISP16. The
detailed formulation and antisymmetrized Goldstone diagram
expansions are given. While the bare N3LO potential is
softened using the SRG method, the “bare” JISP16 is employed
without softening. The MBPT corrections are performed based
on the spherical Hartree-Fock approach. The spherical symme-
try preserves the quantum numbers of angular momenta. The
angular momentum coupled scheme can significantly reduce
the model dimension and save the computational resources.
As an improvement, we correct the one-body density for the
calculation of the radius using antisymmetrized Goldstone
diagram expansions through second order.

The closed-shell nuclei, 4He and 16O, have been chosen
as examples for the present HF-MBPT calculations. Conver-
gence with respect to the SRG-softening parameter, harmonic
oscillator frequency, and model space truncation have been
discussed in detail. Our results are consistent with other works
published with MBPT or with other ab initio methods. We
discussed the MBPT convergence order by order, showing that
corrections up to the third order in energy and up to the second
order in radius appear to be reasonable when one performs
the HF-MBPT calculations within the Hartree-Fock single-
particle basis. It is demonstrated that smaller contributions
from the neglected higher orders decrease with decreasing
SRG-softening parameter λ. In the present calculations, three-
body and higher-order forces are not considered. To check
the convergence of the MBPT calculation, we have made
comparisons with benchmarks given by NCSM calculations
with the same NN potential. Consistent results have been
obtained. In general, the calculated radii are smaller than
experimental values, which is a common problem in current
ab initio calculations with these interactions.
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