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Dipole oscillation modes in light α-clustering nuclei
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The α cluster states are discussed in a model frame of extended quantum molecular dynamics. Different
α cluster structures are studied in detail, such as 8Be two-α cluster structure, 12C triangle structure, 12C chain
structure, 16O chain structure, 16O kite structure, and 16O square structure. The properties studied include the width
of wave packets for different α clusters, momentum distribution, and the binding energy among α clusters. We
also discuss how the α cluster degree of freedom affects nuclear collective vibrations. The cluster configurations
in 12C and 16O are found to have corresponding characteristic spectra of giant dipole resonance (GDR), and the
coherences of different α clusters’ dipole oscillations are described in detail. The geometrical and dynamical
symmetries of α-clustering configurations are responsible for the number and centroid energies of peaks of GDR
spectra. Therefore, the GDR can be regarded as an effective probe to diagnose different α cluster configurations
in light nuclei.
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I. INTRODUCTION

Clustering is a fundamental physics aspect in lighter nuclei
(Z � 16), where the mean field effect is not strong enough
to break cluster formation at low temperatures. It is typically
observed as excited states of those nuclei and also in the ground
states of nuclei far from the β stability line, where nuclei can
behave like molecules composed of nucleonic clusters. Many
authors have focused on clustering in recent decades [1,2].
Near the threshold of decay into the subunit, nuclei can be
assumed to change into molecule-like structures [3]. Due to
the high stability of the α particle, the 2n-2p correlation plays
a critical role in light nuclei clustering. The self-conjugate
light nuclei are expected to have a phase change in which
nucleons condense into α particles as the density becomes
lower than one third of the normal nuclear matter density [4].
As the density falls to one fifth of normal nuclear matter, the
self-conjugate light nuclei are expected to be in an α-gas or a
Bose condensed state [5]. In neutron rich light nuclei, nuclear
molecules with clusters bound via neutrons can show up, at
low density [2]. As the density decreases, α clustering will
dramatically change the nuclear equation of state [6–10]. The
famous Hoyle state in 12C at 7.65 MeV, which is considered a
key point of the 12C synthesis in the Universe, is believed
to be formed out of a weakly interacting gas of α parti-
cles [11]. However, many issues are not yet well understood,
such as how α clustering determines the configurations and
shapes of the many-body system, what are the underlying
mechanism and collective dynamics of α-clustering systems,
etc. [12–16].

Since its discovery, giant dipole resonances (GDR) has
been revealed in nuclei as light as 4He [17] and as heavy
as 232Th [18]. Therefore, GDR is a good tool for systematical
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investigation of collective properties throughout the nuclear
chart. As the most pronounced feature of excited nuclei, GDR
can give crucial clues to understand nuclear structure and
collective dynamics. The centroid energy of GDR can provide
direct information about nuclear size and the nuclear equation
of state [19]. Meanwhile, the GDR width can be used as a direct
experimental probe to measure the nuclear deformation at
finite temperature and angular momentum over the entire mass
region [20,21]. The GDR strength has a single peak distribution
for spherical nuclei with mass number >60. However, the
GDR strength usually shows configuration splitting in light
nuclei [19,22–24]. In light nuclei with molecule-like struc-
tures, the deformation is huge enough to cause big splitting
of GDR. In addition, the degree of freedom of clusters in
nuclei affects the GDR spectra. Multifragmented peaks can
be expected for self-conjugate (α) nuclei with a prominently
developed α cluster structure in excited states. A recent study
by Chiba et al. found that asymmetric cluster configurations in
α conjugate nuclei contribute to resonances by isoscalar dipole
transition at relatively small excitation energy [25]. Therefore,
it is interesting to study how an α cluster component manifests
itself in GDRs. The GDR spectra will provide important and
direct information to reveal the geometrical configurations and
dynamical interactions among α clusters.

Configurations of α clusters are a key problem to understand
the clustering in light nuclei. Theoretical predictions made
recently on α cluster configuration in light nuclei revealed
the following aspects. 8Be composed of two α particles has a
scarcely greater value than the threshold energy for the decay
into two α particles [3]. For 12C, a triangular-like configuration
is predicted around the ground state by Fermionic molecular
dynamics [26], antisymmetrized molecular dynamics [27,28],
and covariant density functional theory [29], which is sup-
ported by a recent experimental result [30]. A three-α linear-
chain configuration was predicted as an excited state in
time-dependent Hartree-Fock theory [12], and other different
approaches [31]. In the framework of the cranking covariant

2469-9985/2016/94(1)/014301(12) 014301-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.94.014301


HE, MA, CAO, CAI, AND ZHANG PHYSICAL REVIEW C 94, 014301 (2016)

density functional theory, the mechanisms to stabilize a linear-
chain configuration were discussed in detail [32]. The intrinsic
density of 12C and 16O may display a localized linear-chain
density profile as an excitation of the condensed gas-like states
described with the Brink wave function and the Tohsaki-
Horiuchi-Schuck-Röpke (THSR) wave function [5,33,34].
For 16O, the linear-chain structure with four α clusters was
supported by the α cluster model [35] and the cranked Skyrme
Hartree-Fock method [13]. A tetrahedral structure of 16O,
made out of four α clusters, is found above the ground state
with the constrained Hartree-Fock-Bogoliubov approach [6].
However, recent calculations with nuclear chiral effective
field theory [36] and covariant density functional theory [29]
support the tetrahedral α configuration located at the ground
states. An algebraic model [37] shows that the ground-
state rotational band supporting the nucleus has tetrahedral
symmetry. Orthogonality condition model calculations show a
duality of the mean-field-type as well as α-clustering character
in the 16O ground state [38]. There are different configuration
descriptions implying the α cluster structure in 20Ne and
24Mg, such as three-dimensional shuttle shape [6,14] or chain
states [39,40] and nonlocalized cluster states [41]. Therefore,
it is important to look for new experimental probes to diagnose
different configurations of α conjugate nuclei around the
cluster decay threshold [42].

In this work, we report our results of GDRs of α cluster
states of 8Be, 12C, and 16O within a microscopic dynamical
many-body approach. First, we discuss the method of GDR
calculations within QMD models. Then by demonstrating the
results of 12C and 16O in the ground states, we show the
reliability of GDR calculations in our model, and propose
the coexistence of triangle shape and spherical shape in 12C
ground states. Finally, we investigate how the different α
configurations lead to multifragmented peaks of GDR and the
underlying mechanism which is responsible for the collective
motion of α-clustering light nuclei reported in our previous
publication [24].

II. MODEL AND METHODOLOGY

A. Model introduction

Quantum molecular dynamics (QMD), a powerful tool for
studying intermediate energy nuclear reactions and nuclear
fragmentation [43], has been successfully applied in studies
of giant dipole resonance (GDR), pygmy dipole resonance
(PDR), and giant monopole resonance (GMR) due to its micro-
scopic basis and high flexibility [28,44–47]. In the following
calculations of GDRs, the nuclear system is described within
the QMD model framework. To apply this approach to light
nuclei such as 8Be, 12C, and 16O, some requirements for the
model are necessary. For example, the energy and radius of
ground states must be well described, and the ground states
must be stable enough. Nevertheless, standard QMD shows
insufficient stability because the initialized nuclei are not in
their real ground states. In this paper, we use an extended QMD
(EQMD) with some new features [48,49]. It is introduced
briefly as follows.

In EQMD, nucleons are treated as Gaussian wave packets
ϕi , which are written as

ϕi(ri) =
(

vi + v∗
i

2π

)3/4

exp

[
−vi

2
(ri − Ri)

2 + i

�
Pi · ri

]
,

(1)

where vi = 1/λi + iδi is width of the complex Gaussian
wave packets. λ and δ are dynamic variables. The vi of
Gaussian wave packets for each nucleon is dynamic and
independent. This is an important improvement compared
with standard QMD, in which a uniform and static width
is applied for all nucleons. Dynamical wave-packet width
not only improves the capability of describing the ground
state, but also helps to describe nuclear exotic structures,
such as nuclear halo structure. Furthermore, the kinetic-energy
term arising from the momentum variance of wave packets
is taken into account by subtracting the spurious zero-point
center-of-mass (c.m.) kinetic energy from the Hamiltonian.
This procedure is important for QMD models to describe
nuclear cluster states and fragmentation. In standard QMD,
the kinetic-energy term arising from the momentum variance
of wave packets is constant. Thus, the constituent nucleons
having finite momenta are not in energy-minimum states,
hence the source of insufficient stability. So, the Hamiltonian
can be written as

H = 〈�|
∑

i

− �
2

2m
∇2

i − T̂c.m. + Ĥint|�〉

=
∑

i

[
P2

i

2m
+ 3�

2
(
1 + λ2

i δ
2
i

)
4mλi

]
− Tc.m. + Hint, (2)

where Tc.m. is the term of zero-point center-of-mass (c.m.)
kinetic energy, the form of which can be found in detail in
Ref. [48]. For the effective interaction, Skyrme and Coulomb
forces, the symmetry energy, and the Pauli potential are used:

Hint = HSkyrme + HCoulomb + HSymmetry + HPauli. (3)

The form of Skyrme interaction use in EQMD model is the
simplest, written as

HSkyrme = α

2ρ0

∫
ρ2(r)d3r + β

(γ + 1)ργ
0

∫
ργ+1(r)d3r,

(4)

where α = −124.3 MeV, β = 70.5 MeV, and γ = 2. The
symmetry potential is written as

HSymmetry = CS

2ρ0

∑
i,j �=i

∫
[2δ(Ti,Tj ) − 1]ρi(r)ρj (r)d3r, (5)

where CS is the symmetry energy coefficient and here CS =
25 MeV. Specifically, the Pauli potential is written as

HPauli = cP

2

∑
i

(fi − f0)μθ (fi − f0), (6)

fi ≡
∑

j

δ(Si,Sj )δ(Ti,Tj )|〈φi |φj 〉|2, (7)
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where fi is the overlap of a nucleon i with nucleons having
the same spin and isospin; θ is the unit step function; cP

is a coefficient related to strength of the Pauli potential.
This potential inhibits the system from collapsing into the
Pauli-blocked state at low energy and gives the model the
capability to describe α clustering. This capability is crucial
to our calculation because it enables the GDR study on α
cluster configurations. Since the clustering configurations and
the profiles of GDR spectra are not sensitive to different forms
of potential, the relation between clustering configurations and
GDR spectra is independent of EQMD model. The phase space
of nucleons is obtained initially from a random configuration.
To get the energy-minimum state as a ground state, a frictional
cooling method is used for the initialization process. The model
can describe quite well the ground state properties, such as
binding energy, rms radius, deformation, etc., over a wide
mass range [50].

B. GDR algorithm

The macroscopic description of GDR by the Goldhaber-
Teller model [51] assumes that protons and neutrons collec-
tively oscillate with opposite phases in an excited nucleus.
In the EQMD model, the location and momentum of all
nucleons are explicit variables. Based on the Goldhaber-Teller
assumption, we can calculate the oscillation energy spectra.
The dipole moments of the system in coordinate space DG(t)
and momentum space KG(t) are defined as follows [45,46,52]:

DG(t) = NZ

A
[RZ(t) − RN (t)], (8)

KG(t) = NZ

A�

[
PZ(t)

Z
− PN (t)

N

]
, (9)

where, RZ(t) and RN (t), and PZ(t) and PN (t), are the centers of
mass of the protons and neutrons in coordinate and momentum
space, respectively. N is the neutron number and A is the
mass number. KG(t) is the canonically conjugate momentum
of DG(t). The evolution of the excited wave function to the
final state is obtained by the EQMD model. From the Fourier
transform of the second derivative of DG(t) with respect to
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FIG. 1. Dependence of 16O GDR energy peaks on excitation
energy.
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FIG. 2. Comparison of the GDR calculation for 16O against
experimental data (nuclear photoabsorption cross section on the
oxygen target) in Ref. [54] (Ahrens 1975, empty triangles, scaled
by the right y axis). Solid blue line: tetrahedral α cluster state.
Long-dashed red line: noncluster state.

time, i.e.,

D′′(ω) =
∫ tmax

t0

D′′
G(t)eiωtdt, (10)

the dipole resonance strength of the system at excitation energy
E = �ω can be obtained by Eq. (11),

dP

dE
= 2e2

3π�c3E
|D′′(ω)|2, (11)

where dP/dE can be interpreted as the nuclear photo-
absorption cross section.

Also, the GDR cross section can be obtained by calculating
the nuclear response to external excitation. To describe an
excitation of an external dipole field, the dipole operator can
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FIG. 3. Comparison of the GDR calculation for 12C against
experimental data in Ref. [18] (Berman 1975, black dots, scaled by
the right y axis). Solid blue line: triangle α cluster state. Long-dashed
red line: noncluster state.
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FIG. 4. Average binding energy for different α cluster structures
around the threshold of nα breakup.

be written as

R =
∑

i

(
N

A
Pri − Z

A
Nei

)
r, (12)

where i indexes all nucleons in the nucleus, N is the neutron
number, P is the proton number, and A is the mass number.
Pr and Ne are the projection operators for protons and
neutrons, respectively. The dipole excitation can be written
as an additional perturbative component to the Hamiltonian,

H ′ = Rεδ(t), (13)

where ε is an arbitrary small value, and δP is the variation of
momentum. The system wave function can be written as

|�(t = 0)〉

= exp

[
−i

∫
H ′dt

]
|�(0)〉

= exp

[
−i

r

�

∑
i

�P

(√
N

AZ
P̂ri −

√
Z

AN
N̂ei

)]
|�(0)〉,

(14)
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FIG. 6. Time evolutions of binding energy among α clusters for
different configurations.

with ε being calculated by

ε = �P

�

√
A

NZ
. (15)

From linear response theory, the response of the dipole
operator can be written as

S(R̂) = 〈R̂〉 �

�P
√

A/(NZ)
, (16)

−ImS(R̂) =
∑

n

|〈n|R̂|0〉|2δ(ω − ωn), (17)

where n indexes different excited states. Since evolution of the
excited wave function to the final state can be obtained by the
EQMD model, Eq. (18) shows the sum rule,∑

n

[〈n|R̂|0〉2 δ(ω − ωn)]

= − Im
�

π�P
√

A/(NZ)

∫ ∞

0
〈ψ(t)|R̂|ψ(t)〉 eiωtdt. (18)
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FIG. 5. Width of Gaussian wave packets in different clustering states. Blue and red bubbles above the horizontal axis are different
configurations of 8Be, 12C, and 16O. Blue square marks are λ’s of wave packets for different clusters, scaled by the vertical axis.
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FIG. 7. Momentum distributions of different nuclei in the EQMD
model and standard isospin-dependent quantum molecular dynamics
(IQMD) model. Black lines show momentum distributions in a
standard IQMD model and the red line with marks represents the
EQMD model’s results.

For E1 excitation, the cross section can be expressed as

σ (ω) = 4πα
�ω

�P
√

A/(NZ)

×
(

−Im
∫ ∞

0
〈ψ(t)|R̂|ψ(t)〉eiωtdt

)
, (19)

where ω is excitation energy and α is the fine structure constant.
It is confirmed that the two ways of calculating GDR

spectra come to the same result. The following calculations
are obtained by the response function method. In EQMD

calculations for dipole oscillations of light nuclei, the system’s
response is not of perfect linearity. The positions of peaks of
GDR spectra are dependent on oscillation energy (Fig. 1):
the higher the excitation energy, the lower the peak of GDR.
Since the excitation energy of GDR is usually in the range of
10 to 40 MeV, the width of GDR spectrum shifting is about
2 MeV. Because of the nonlinearity of response, which should
be considered, we introduce a new normalization method
[Eq. (20)] to take the width into account:

dP

dE norm
= dP/dE∫ ∞

0 (dP/dE)dE
. (20)

In realistic calculations, the normalized dP/dE is calculated
in the excitation energy region of 8–35 MeV, which includes
almost all the physically relevant GDR peaks.

In our calculations, no boundary of grids is used, so
the Fourier transform, Eq. (10), does not induce spurious
effects [53]. Because of the absence of decay channels, the
damping of collective motions is not reasonable. In this
context, the integration time of the Fourier transform should
be cut according to experiments, and here 600 fm/c is a
reasonable selection. The finite integration time will bring
additional spreading to the GDR spectrum; however, the
spreading is less than 1 MeV, which is less than the width
of GDR spectrum.

To get an accurate cross section of giant modes, the high
order effect beyond mean-field pairing correlations and a more
accurate description of continuum states are needed. However,
in our result, dP/dE is an arbitrary unit. A smoothing
parameter � = 2 MeV is applied, when the dP/dE spectrum
is displayed.
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III. RESULTS AND DISCUSSION

A. α cluster in ground states

In the EQMD model, the 16O ground state is obtained
at a binding energy of 7.82A MeV, which is close to the
experimental binding energy, 7.98A MeV, and consists of four
α’s with a tetrahedral configuration. The tetrahedral four-α
configuration in the 16O ground state is also supported by an ab
initio calculation by Epelbaum et al. [36] using nuclear chiral
effective field theory. A recent covariant density functional
theory calculation also shows a regular tetrahedral four-α
configuration in the 16O ground state [29]. The noncluster 16O
ground state in EQMD can be obtained with a wave packet
width of 4.2–4.3 fm for all the nucleons. This width is much
wider than that of nucleons in cluster states, in which all the
nucleons have a width of just 1.9–2.1 fm. So the independent
and variable wave packet width for each nucleon plays a crucial
role on clustering, which is a distinct advantage of EQMD.
Figure 2 shows the GDR results of noncluster and cluster 16O
ground states, together with the experimental data in Ref. [54].
The GDR of the noncluster ground state cannot reproduce
the data and the centroid is 4 MeV lower than the centroid
of the main peak of the data. In contrast, the GDR of the
tetrahedral configuration can reproduce the data well. So the
tetrahedral four-α configuration in initialization is reasonable
and the procedure used to calculate the GDR is reliable. For
12C, the noncluster ground state is also obtained, in which
the wave packet widths of all the nucleons range from 3.5 to
3.6 fm. Figure 3 shows a comparison between the calculated
result of 12C and the data. The noncluster ground state can
reproduce the shape of the low energy peak quite well with
only about 1 MeV centroid shift. The centroids of high energy
small peaks can be obtained from the triangle 12C ground
state. It is reasonable to infer that the ground state of 12C is
a multiconfiguration mixing of shell-model-like and α cluster
configurations, which is consistent with the calculations of
AMD [55] and FMD [26] models.

B. α cluster configurations around threshold of nα breakup

In th EQMD model framework, 8Be at ground state
has α cluster structure. It consists of two α clusters, with
7.06A MeV binding energy. 12C has two possible α cluster
structures (Fig. 4). One is the triangle structure, with three α
clusters forming a regular triangle shape. Its binding energy
is 7.12A MeV, a little bigger than that of 8Be. The other is
the chain structure, with a binding energy of 7.17A MeV,
which means that the chain structure formed by three α
clusters is more stable than the triangle structure. Similar to
other theoretical predictions, α cluster states of light nuclei
are shown, around the threshold energy, to decay into free
α particles. In the EQMD result, 8Be is the closest to the
threshold, and other α cluster states inside heavier nuclei have
bigger binding energy than the threshold. For a nucleus with
different α cluster states, the binding energies of different
cluster states differ very little from each other, which indicates
different energy levels. The 16O α cluster states have three
structures, with bigger binding energies (than those of 8Be and
12C α cluster states) of 7.29A, 7.17A, and 7.21A MeV for the
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(a) and (b) show the coherence of motion along the long axis. Panel
(c) shows the coherence of motion along the short axis. Arrows in (a)
indicate the phase of oscillations at different frequencies.

square, kite, and chain structures respectively. Consequently,
the most stable α cluster structure for 16O is square, and
then the chain structure. The kite is the most unstable structure.
The excitation energy shown in Fig. 4 for 12C and 16O is very
near the predicted threshold energy in the Ikeda diagram [3].
We have checked that our results are not sensitive to the
tiny binding energy difference, just sensitive to the geometric
configurations of clusters.

α cluster structures that are less symmetrical, like the 12C
chain structure compared to the triangle structure, are more
stable. This property indicates that α clusters in the 12C chain
structure state play different roles. For instance, the α cluster
at the center of 12C chain structure has a larger Gaussian wave
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packet width, which can help to hold the α clusters at both
ends of the chain. The λi of nucleons in different α clusters
are shown in Fig. 5. As one can see in 16O chain structure and
kite structure, α clusters at the center of a nucleus have larger
Gaussian wave packet widths than outer ones.

In the EQMD framework, the binding energy of α clusters
in nuclei is smaller than that of free α particles. For 8Be, the
calculated internal binding energy of the α cluster is 27.2 MeV,
which is a little less than the experimental result (28.3 MeV)
for the free α particle. Considering that the binding energy
of the 8Be system is 7.06A MeV, one knows that the binding
energy between two α clusters is 1.02 MeV/α. For 12C and
16O, the binding energy among α clusters shows larger values.
Under time evolution, those binding energies will oscillate
periodically (see Fig. 6). In fact, the 8Be binding energy
between two α clusters oscillates, though with very small
amplitude (< 0.01 MeV). Figure 6 shows that the periods
are very different and are sensitive to α cluster structure, and
every oscillation consists of multiple frequencies. For the 16O
chain structure, more than two periods are within a difference
of >200 fm/c. The oscillation of binding energy indicates that
energy flows into and out of the α clusters periodically.

The momentum distribution of cluster states differs greatly
from that normal nuclei at ground state. Figure 7 shows
momentum distributions of 8Be, 12C, and 16O. The red data
points are clustering state results calculated in the EQMD
model, where the black lines are the nonclustering state results
calculated in the IQMD model. The momentum distribution
is not sensitive to different structures of α clusters. As shown
by the red marked lines, the 12C chain structure and triangle
structure give the same result, and the 16O chain, square, and
kite structures also give the same results. One can see from
Fig. 7 that, in the low momentum region, clustering nuclei have

higher values of momentum distribution than nonclustering
nuclei, while this reverses in the high momentum region.

To calculate the GDR spectrum, one can give the nucleus a
boost to obtain the dipole oscillation, or simulate a Coulomb
excitation with a heavier nucleus. The two methods give the
same result. But the first method gives no information about
the difference between α clusters in a nucleus. To discuss the
dipole motion’s coherence of different α clusters in a nucleus,
the following results of this section are obtained by simulations
of clustering nuclei as projectiles hitting 40Ca as target. In
detail, the impact parameter is 20 fm, and the projectiles are
100 MeV in incident energy. The systems evolve, stopping at
600 fm/c. The length of time will affect the GDR spectrum
width in EQMD calculations: the shorter the calculation time,
the wider the spectrum obtained. Therefore, the time should
be greater than 300 fm/c, to avoid a too wide GDR spectrum
width. Because the oscillations excited by Coulomb reaction
are of small amplitude, the peaks of GDR spectra in this article
shift 1 MeV toward high energy compared with our previous
results [24]. Another point that should be mentioned here is
that the excited energy of the following results are based on
cluster states which are all low-lying states, and are different
from the excited energy mentioned in Sec. III A (Figs. 2 and 3)
which are based on ground states.

C. 8Be dipole oscillation

As a collective motion of nucleons, GDR will be affected
sensitively by nuclear exotic structures. α clusters will split
and complicate the GDR spectrum. To discuss how α clusters
affect collective motions, we use 8Be as the simplest example.
Figure 8 shows the GDR spectrum of 8Be. The two peaks
at 21 and 31 MeV are contributed by the long and the
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short axes of system, respectively. There exists a rule that
the dipole oscillation frequency in any direction of a cluster
system is inversely proportional to the length of the system’s
configuration. In Fig. 8, both α clusters have a single frequency
in the long axis direction at 21 MeV with the same oscillation
phase. It should be noted that the arrows drawn on the clusters
do not indicate the motion direction of the whole α cluster,
but represent the isovector dipole motion in the α cluster, in
which the two protons move against the two neutrons. For
example, in Fig. 8(b), the two filled blue arrows with the same
direction mean that the two α clusters have the same direction
of isovector dipole motion with the same oscillation phase;
the two empty red arrows with opposite direction mean that
the two α clusters have the same direction of isovector dipole
motion but with the opposite oscillation phase. For this case,
in the short axis direction, every α cluster has two frequencies,
at 31 and 18 MeV. The oscillations of the two α clusters at
31 MeV are coherent with the same phase, while the peak
at 18 MeV disappears when two α clusters are considered
as a whole system. The oscillations with this frequency are
coherent with opposite phase.

D. 12C dipole oscillation

1. 12C triangle structure

The 12C GDR spectrum with triangle structure gives three
peaks, at 21, 26.5, and 31 MeV. For this configuration, the short
axis is perpendicular to the plane determined by the triangle
shape. In this direction, every α cluster has a main peak at
31 MeV and a small peak at 21.5 MeV. But the little peaks
of different α clusters are noncoherent. So this peak does not
show up in the whole system GDR spectrum. The frequency
of 31 MeV is coherent, which gives a strong peak. In the long
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axis, every α cluster has two peaks, at 21 and 26.5 MeV. The
21 MeV peak is close to GDR peak of 8Be in the long axis
and is supposed to be built by interaction of two α clusters.
To check the components of peaks at 26.5 MeV, the long axis
is rotated by π/6. As shown in Fig. 9, after rotation, the two
components of 26.5 and 21 MeV are separated. The oscillating
direction of 26.5 MeV frequency is parallel to the bottom line
of the triangle shape. This frequency is proposed to be built by
interaction among three α clusters.

2. 12C chain structure

The results of 12C with chain structure are shown in Fig. 10,
with three components at 15, 23.5, and 31.5 MeV. The 31.5
MeV peak is along the short axis, and is contributed to equally
by every α cluster, while the 15 MeV peak is contributed to
mainly by the central α cluster. The α clusters at both ends
contribute to it, though weakly. The central α cluster feels
stronger three-α interaction than the two other-side α clusters.
For the peak at 23.5 MeV, it is supposed to be built by three-α
interaction like the triangle structure. This kind of three-α
interaction is sensitive to the configuration of α clusters. The
regular triangle structure shows stronger oscillation strength
at the higher frequency of 26.5 MeV, andthe chain structure

gives weak strength and lower frequency at 23.5 MeV. Because
of the weak oscillations caused by Coulomb excitation, it
does not show a peak around 21 MeV, which indicates the
two-α interaction. In fact, when the dipole oscillation has
larger strength, the triangle structure may degenerate into a
8Be substructure with an α bounded to it very weakly. Then it
will give a peak around 21 MeV.

3. 16O chain structure

Figure 11 shows the spectrum of the short axis. The coherent
peak locates at 31 MeV too. The α clusters at the ends of the
chain structure appear at a frequency at 28.5 MeV, which is
supposed to be a multi-α-interaction effect. As the previous
results do not show these peaks, it can be supposed to show
up only when the oscillation strength is weak enough and the
structure keeps a nearly regular linear chain. The same occurs
at 14 MeV. It is a very small peak, and the oscillations are
noncoherent, so its total strength is close to one α cluster.
For the long axis, the main peak locates at 12.5 MeV, due to
the mean field effect of the system. Its size is the largest of
all nuclei and structures, hence it has the lowest frequency
of all. Like the case of 12C chain structure, the α clusters at
the center have the strongest oscillation strength. The peak
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at 24 MeV indicates that α clusters at the chain ends feel a
three-α-interaction like the 12C chain and triangle structures.
But oscillation of the two α clusters is noncoherent, so the total
GDR strength is not stronger than one α cluster. Figure 12
shows that the GDR spectrum of 16O chain structure is a little
bent. If the chain is considered as two 8Be subsystems, each
8Be will show a peak around 20.5 MeV in the GDR spectrum.
But the two subsystems are coherent with opposite phase, so
the peak disappears in the total GDR spectrum.

4. 16O kite structure

The 16O kite structure is the most complicated 16O structure,
and is more complicated than the 12C cluster states discussed
above. It can be regarded as one triangle 12C added with a
weakly bound α located at one of the vertices of the triangle
structure. The wave packets of nucleons in the central α cluster
are larger than nucleons in other α clusters, including the 12C
triangle state. This is the way to keep the additional α cluster
bounded. Figure 13 shows the GDR spectrum in the short
axis; all peaks are similar to the 16O chain structure, without
the peak at 14 MeV. In the long axis, each α cluster behaves
very differently. The GDR peak at 14.5 MeV is determined by
the mean field effect, with the central α cluster contributing the
most of all the α clusters in triangle subsystem. In other words,
the weakly bounded α clusters contribute the lowest. The three-
α interaction is dependent on the structures of the related α
clusters. The 16O kite structure can be decomposed into three
kinds of triangle structures. As shown in Fig. 13, α 1 gives
a peak at 24 MeV, which is the effect of triangle 1 structure.
This frequency is lower than that of the 12C triangle state, and
higher than that of the 12C chain state, due to difference of the
triangle structures. α’s 2 and 3 give peaks at 26.5 and 21.5 MeV,
respectively. The 26.5 MeV peak is similar to that of the 12C
triangle state, because of is the similar triangle structures. α 2
(or 3), α 4, and α 1 make up an obtuse triangle structure. This
special structure makes α 2 and 3 give a peak at lower energy,
so the peak at 21.5 MeV is not caused by the 8Be subsystem.

5. 16O square structure

The 16O square structure is a comparatively simple struc-
ture. As shown in Fig. 14, the short axis peak is at 31 MeV
and the long axis peak is at 22 MeV. Because this state has
the highest binding energy and the structure enhances three α

E (MeV)
5 10 15 20 25 30 35 40

dP
/d

E
 (

ar
b.

 u
ni

ts
)

=0.8
2

βC12

long axis
short axis

E (MeV)
5 10 15 20 25 30 35 40

dP
/d

E
 (

ar
b.

 u
ni

ts
)

= - 0.6
2

βC12

long axis

short axis

(a () b)

FIG. 15. GDR spectra split by deformation. (a) Deformation with β2 = 0.8; (b) deformation with β2 = −0.6.

014301-10



DIPOLE OSCILLATION MODES IN LIGHT α- . . . PHYSICAL REVIEW C 94, 014301 (2016)

interaction, the energy peak in the long axis is the highest of
all states.

E. The difference of GDR spectrum between
α cluster states and deformation

The calculated GDRs of 12C in positive or negative β2,
without clustering, are shown in Fig. 15. However, these 12C
samples are initialized manually. The split between two peaks
is much smaller than the split of GDR with clustering. The
missing 30 MeV peak is a significant difference in comparison
with the α cluster states. This is true for both prolate and oblate
deformations.

The homogeneous prolate or oblate ellipsoid, which has
two collective structure degrees of freedom, usually can have
two obvious peaks, corresponding to the long and short
axes, respectively, whereas a clustering GDR spectrum with
multiple peaks has several collective degrees of freedom.
The fragmented response function is a complicated coherent
result of strong interference between α’s, which counteract or
strengthen each other. The GDR peak around 30 MeV is a reli-
able proof to confirm the existence of α clusters in light nuclei.

There are obvious substructures in GDR, such as similar
GDRs of 8Be and triangle 12C, that appear as substructure in
GDRs of chain 12C and kite 16O, respectively. This distinct fea-
ture of GDR can be taken as a strong signal which is different
from the normal prolate or oblate deformation in light nuclei.

IV. CONCLUSIONS

In conclusion, the advantage and results of the EQMD
model to describe cluster states and a calculation method of
isovector nuclear GDR are discussed. Properties of ground
states and α cluster states in light nuclei are discussed with an
extended QMD model. 8Be at ground state consists of two α
clusters. For 12C and 16O cluster states, clusters form different

configurations. The average binding energies of 12C and 16O
cluster states, around threshold energy for the decay into free
α particles, are slightly bigger than that of 8Be at 7.07A MeV.
For cluster states, the binding energy between α clusters is
studied, which oscillates in several frequencies. So, energy
flows into and out of the clusters periodically. The dynamic
Gaussian wave packets’ width is important for a QMD model
to describe nuclear α cluster states. For different α clusters in a
nucleus, the central ones have larger width and the outer ones
have smaller width. The momentum distribution of α cluster
states differs greatly from the that of nuclei in the standard
QMD model.

Collective excitation of α cluster states shows interesting
phenomena. The giant dipole resonances depends on geomet-
ric configuration of α clusters in a nucleus. The Coulomb
excitation process is applied to study the resonance rule of
different α clusters. The dipole oscillation frequency in any
direction of a cluster’s system is inversely proportional to the
length of the system configuration. As the simplest system of
a cluster state, 8Be has one GDR peak at 31 MeV oscillating
perpendicular the long symmetrical axis of two α clusters
and another peak at 21 MeV oscillating along the long axis.
The complicated behavior of collective oscillations for 12C and
16O α cluster states with different configurations are discussed
in detail. These show that GDR spectra of clustered nuclei are
sensitive to α cluster states and configurations.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Contracts No. 11421505,
No. 11305239, and No. 11220101005 and by the Major
State Basic Research Development Program in China under
Contract No. 2014CB845401.

[1] W. Greiner, J. Y. Park, and W. Scheid, Nuclear Molecules (World
Scientific, Singapore, 1995).

[2] W. von Oertzen, M. Freer, and Y. Kanada-En’yo, Phys. Rep.
432, 43 (2006).

[3] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys.
Suppl. E68, 464 (1968).

[4] D. M. Brink and J. J. Castro, Nucl. Phys. A 216, 109 (1973).
[5] T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A.
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Lett. 87, 192501 (2001).
[34] T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki,

Phys. Rev. Lett. 112, 062501 (2014).
[35] W. Bauhoff, H. Schultheis, and R. Schultheis, Phys. Rev. C 29,

1046 (1984).
[36] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, Ulf-G. Meißner,

and G. Rupak, Phys. Rev. Lett. 112, 102501 (2014).
[37] R. Bijker and F. Iachello, Phys. Rev. Lett. 112, 152501 (2014).
[38] T. Yamada, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Röpke,
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