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Meaning of the nuclear wave function

John D. Terry1,2 and Gerald A. Miller2

1Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106-9530, USA
2Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

(Received 5 April 2016; published 18 July 2016)

Background: The intense current experimental interest in studying the structure of the deuteron and using it to
enable accurate studies of neutron structure motivate us to examine the four-dimensional space-time nature of
the nuclear wave function and the various approximations used to reduce it to an object that depends only on
three spatial variables.
Purpose: The aim is to determine if the ability to understand and analyze measured experimental cross sections
is compromised by making the reduction from four to three dimensions.
Method: Simple, exactly calculable, covariant models of a bound-state wave-state wave function (a scalar boson
made of two constituent-scalar bosons) with parameters chosen to represent a deuteron are used to investigate the
accuracy of using different approximations to the nuclear wave function to compute the quasielastic scattering
cross section. Four different versions of the wave function are defined (light-front-spectator, light-front, light-front
with scaling, and nonrelativistic) and used to compute the cross sections as a function of how far off the mass
shell (how virtual) is the struck constituent.
Results: We show that making an exact calculation of the quasielastic scattering cross section involves using the
light-front-spectator wave function. All of the other approaches fail to reproduce the model exact calculation if
the value of Bjorken x differs from unity. The model is extended to consider an essential effect of spin to show
that constituent nucleons cannot be treated as being on their mass shell even when taking the matrix element of
a “good” current.
Conclusions: Developing realistic light-front-spectator wave functions to meet the needs of current and planned
experiments is a worthwhile activity.
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I. INTRODUCTION

Nuclear theorists have made tremendous progress during
the last decade in computing nuclear spectra from first
principles [1–3]. Two- and three- nucleon interactions, with
a traceable connection to QCD [4–7], have been used in
exact calculations of the energy levels of nuclei with A � 12.
Furthermore, a variety of new techniques to treat heavy
nuclei have been developed. Nevertheless, some fundamental
questions regarding the nature of the nuclear wave function
remain.

The nuclear wave function depends on only three of the four
available space-time variables. The usual derivation of three-
dimensional physics starts with the four-dimensional Bethe-
Salpeter equation for two nucleons, which in principle makes
a nonperturbative sum of the effects of all interactions, and
reduces it to a three-dimensional equation without changing
the unitarity properties. The result of the procedure is that the
square of the four-momentum of the nucleons is equal to the
mass squared; the nucleons are placed on their mass shell
[8]. If the relativistic phase-space factor is replaced by the
nonrelativistic version, the resulting equation is the Lippmann-
Schwinger (LS) equation, equivalent to the Schroedinger
equation. The two-nucleon potential, as constrained by phase
shifts computed within the LS equation, is then used to
compute nuclear properties, by solving or approximating the
many-body Schrödinger equation. Three-nucleon forces are
also included. Within this procedure the constituent nucleons
of nuclear wave functions are on their mass shell. However,

the sum of their basis-dependent single-particle energies is not
the energy of the nucleus; the nucleons are therefore termed
as being off the energy shell.

Carrying out the reduction from four to three dimensions
can be effected using either the standard equal time formula-
tion, in which the relative time is set to 0, or the light-front
procedure, in which the relative value of z + ct is set to
0 [9–12]. An exception to this procedure is the use of the
Gross equations [13–16], rooted in atomic physics [17], that
places only one nucleon (the “spectator”) on its mass shell.
No applications of this procedure to nuclei with A > 3 exist
at this time.

The purpose of the present article is to examine and
determine the limitations of the three-dimensional approach
to the nuclear wave function through exact and approximate
evaluations of quasielastic scattering on a two-body system
that is a semirealistic, but completely Lorentz-invariant version
of the deuteron. We concentrate on the deuteron because
it is the simplest nucleus and because there is now intense
experimental interest in a variety of measurements that focus
on its wave function. For example, there is much attention
on studying the wave function at high momentum transfer
[18–20]. Another experiment of high interest is the proposed
measurement of Azz (JLab LOI12-14-002), available by
using a tensor-polarized deuteron target, aimed specifically at
studying the deuteron wave function [21]. In the quasielastic
region, Azz can be used to compare light cone calculations
with calculations that incorporate the virtual nature of the
struck nucleon, and it is an important quantity to determine
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for understanding tensor effects. Such effects are related to
the dominance of pn correlations in nuclei [22–26]. The
measurements are planned to occur at values of Bjorken
x = Q2

2mN ν
significantly greater than unity. Furthermore, the

light-front-deuteron wave function is needed to interpret
existing and planned spectator-tagging experiments [27,28]
aimed at determining neutron structure.

The outline of the remainder of this article is as follows. Our
simple model is defined in Sec. II. The deuteron is treated as
a scalar boson that is a bound state of two different scalar
bosons. The vertex function is taken as a constant. Such
models have long been used [29,30] to illustrate relativistic
aspects of complicated dynamical situations. The definition
of constituent virtuality is presented and its importance is
illustrated in Sec. III. The model exact calculation of the analog
of quasielastic electron-deuteron scattering cross section is
presented in Sec. IV. We neglect the influence of final-state
interactions throughout this article. This simplification allows
us to focus on the influence of virtuality. Furthermore, the
effects of final-state interactions can be minimized through
the appropriate choice of kinematics [20]. A discussion of
four different wave functions, light-front-spectator, light-front,
light-front with Bjorken scaling, and nonrelativistic, is pre-
sented in Sec. V. Cross sections obtained using these different
models are compared with the model exact cross sections in
Sec. VI. All of the models, except the light-front-spectator,
fail badly if the value of x differs significantly from unity. The
vertex function of the simple model of Sec. II is generalized
in Sec. VII, where it is shown that the qualitative conclusion
just stated does not depend on using a constant vertex function.
One aspect of spin is considered in Sec. VIII, where it is shown
that it is necessary to consider the virtual nature of constituent
fermions, even if computing the matrix element of a good
current. The final section presents a summary and discussion
of the possible implications of the work presented here.

II. MODEL DYNAMICS AND MODEL
SCATTERING PROCESS

The nuclear dynamics are modeled by a version of the
φ3 model, generalized to Dφχ so that one scalar particle, a
“deuteron” D, of mass M is a bound system of two different
scalar particles, φ and χ , of mass m, only one of which interacts
with a scalar probe of the four-momentum q. The interaction
between the probe and the struck nucleon is taken to be a
constant, g. The deuteron vertex function �(k,P ) is also taken
as a constant, G. This set of dynamics corresponds to the
zeroth-order chiral perturbation theory version of the deuteron.
The model allows for all matrix elements to be computed in
covariant fashion and there is no need to limit the kinematics.
The values of m and M are those of the average nucleon mass
and the mass of the physical deuteron. Thus M = 2m − B,
with B = 0.0022 GeV. These scales B and M span the range
of mass scales that would enter into a more realistic model.

The quasielastic scattering reaction of interest is shown in
Fig. 1. A scalar deuteron of the four-momentum P encounters
a virtual-spacelike scalar photon of the four-momentum q,
leading to a final state in which the struck nucleon has
momentum k + q and is a real particle of positive energy. The

D(P)
k

k+q
γ∗(q)

ps

FIG. 1. Scattering process of interest.

spectator s has the four-momentum ps with p2
s = m2 and its

energy is greater than 0. We consider only this diagram here
so as to concentrate on the fundamental aspects. Therefore
the usually important effects of final-state interactions are
neglected throughout this article. We use the convention that
in the deuteron rest frame the four-momentum q is given by
q = (ν,0,0, −

√
Q2 + ν2), with Q2 = −q2 > 0. It is useful

to define two kinematic variables:

x ≡ Q2

2mν
, (1)

which ranges between 0 and about M/m ≈ 2, and

ξ ≡ Q2

Mq− = −q+

M
= m

M

2x

1 +
√

1 + 4m2x2

Q2

= m

M

2xQ

Q +
√

Q2 + 4m2x2
, (2)

where ξ is the Nachtmann variable for the given target and it is
limited by momentum conservation to be less than unity. The
± components of the four-momentum V of any particle are
defined here as V ± ≡ V 0 + V 3. Another useful variable is the
light-front variable α, defined via

p+
s ≡ (1 − α)P + = Es + psz. (3)

In the deuteron rest frame, P ± = M .

III. NUCLEON VIRTUALITY

The virtual nucleon in Fig. 1 has the four-momentum k
given by k = P − ps . The quantity

V ≡ m2 − (P − ps)
2 = m2 − k2 ≡ −X (4)

measures the deviation of the about to be struck nucleon from
its mass shell. The founding assumption of nearly all nuclear
wave functions is that the virtuality vanishes.

Proceed by examining the quantity X = −V .
Given that k− = P − − p−

s , the use of Eq. (3) gives k+ =
αM, in the deuteron rest frame, and also k− = P − − p−

s =
M − k2

⊥+m2

(1−α)M , where k⊥ is the momentum of the spectator
nucleon. Furthermore

X(α,k⊥) = (P + − p+
s )(P − − p−

s ) − k2
⊥ − m2

= α

(
M2 − k2

⊥ + m2

α(1 − α)

)
. (5)
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We examine the delta function δ(X + 2k · q − Q2) to deter-
mine the relevant value of α as a function of q and k⊥:

X + q+
(

M − k2
⊥ + m2

M(1 − α)

)
+ q−αM − Q2 = 0. (6)

The vanishing of the effect of the virtuality at high momentum
transfer and energy can most readily be observed by using
light-front variables. The argument of the delta function shown
in Eq. (6) can be rewritten as

(α − ξ )(q−M + M2) − (1 − ξ )
k2
⊥ + m2

(1 − α)
= 0. (7)

It is worthwhile to point out that in the Bjorken limit of
Q2/ν2 � 1, q+ � q−, the last two terms of Eq. (6) are much
larger than the first two terms. In that case, one may ignore the
the first two terms, so that in this scaling limit α = ξ .

We need to examine the effects of the first two terms of
Eq. (7). This is a quadratic equation in α, which can be solved,
yielding the result

α = 1

2
(1 + ξ −

√
(1 − ξ )2 − ε4C(1 − ξ )), (8)

ε ≡ M

M + q− < 1, C ≡ (k2
⊥ + m2)

M2
, (9)

obtained using the condition that, when εC = 0, α = ξ
and k⊥ is the perp component momentum of the spectator.
The relations Eq. (8) and Eq. (2) determine the spectator
momentum for each value of k⊥.

The value of α must be such that the spectator energy
Es � m. This means that

1

2

[
M(1 − α) + k2

⊥ + m2

(1 − α)M

]
� m. (10)

Note that M = 2m − B, B > 0. Equation (10) holds for
all values of α such that α < 1. Conservation of the four-
momentum leads to a limit on x ≡ Q2

2mν
:

x � M

m

1

1 + 4m2−M2+4k2
⊥

Q2

. (11)

This equation can also be written as a limit on k2
⊥:

Q2 + 4m2 − M2 + 4k2
⊥ < 2Mν. (12)

Armed with the value of α which depends on x, Q2, and
k⊥, we may compute the value of V for different kinematic
situations. The results are shown in Figs. 2, 3, and 4.

We see that, except for small values of Q2 and x near
unity, the value of V is generally larger than 0.1 GeV2. This
corresponds to a momentum of 300 MeV/c, which is not an
ignorable scale in nuclear physics. Thus in general approxi-
mating V by 0 is expected to be a dangerous approximation.
This means that the usual nuclear procedure of treating the
nucleons as being on their mass shell is not valid and that
the connection between the scattering amplitude and the usual
equal-time or light-front three-dimensional wave functions is
severed.

Q2=1 GeV2

Q2=5 GeV2

Q2=10 GeV2

FIG. 2. Virtuality as a function of x and Q2 for k⊥ = 0.

IV. EXACT MODEL QUASIELASTIC CROSS SECTION

The cross section is for the absorption of a spacelike scalar
“photon” of the four-momentum q on a two-body system of
scalar mesons that is our toy model of the deuteron. In this
case

dσ = (2π )4

j

d4p

(2π )3
δ+(p2 − m2)

× d3ps

2Es(2π )3
δ4(P + q − p − ps)|M|2, (13)

where M is the invariant amplitude and j = 4M|�q| is the flux
factor. Define k = P − ps , the four-momentum of the struck
particle. Anticipating the use of light-front variables, we state

d3ps

2Es

= d2k⊥dk+

2(P + − k+)
, (14)

so that integration over the four-momentum-conserving delta
function yields

dσ = δ+[(k + q)2 − m2]
d2k⊥dk+

2(P + − k+)(2π )2j
|M|2. (15)

Q2=1 GeV2

Q2=5 GeV2

Q2=10 GeV2

FIG. 3. Virtuality as a function of x and Q2 for k⊥ = 0.25 GeV.
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Q2=1 GeV2

Q2=0.5 GeV2

Q2=0.25 GeV2

Q2=0.125 GeV2

FIG. 4. Virtuality as a function of x and Q2, lower values of Q2,
for k⊥ = 0.

For our model

|M|2 = g2G2

X(α,k⊥)2
, (16)

where X(α,k⊥) is the absolute value of the inverse propagator.
Then we write

dσ = d2k⊥
8π2j

∫
dk+

p+
i − k+ δ+[(k + q)2 − m2]

g2G2

X(α,k⊥)2
. (17)

The value of X(α,k⊥) is given by Eq. (5).
We do the integral over dk+ to obtain

j
8π2

g2G2

dσ

d2k⊥
= 1

X(α,k⊥)2

1

q−M + M2

1

1 − 2α + ξ
, (18)

where E = ν + M − Es and α as given by Eq. (8) and X
of Eq. (5) are functions of ν,Q2, and k2

⊥. Note that the limit
α � 1 is enforced by Eq. (8), and the limit ξ � 1. The use
of light-front variables is not necessary, but their use does
simplify the evaluation. We have obtained equivalent results
using the standard energy-momentum variables.

It is convenient to define the quantity

d�

d2k
≡ j

8π2

g2G2

νdσ

d2k⊥
. (19)

The factor ν is inserted because the cross section for a single
free nucleon can be interpreted to have this factor. Thus d�

d2k

represents a cross section per nucleon. Results for d�
d2k⊥

are

shown for two ranges of Q2 in Fig. 5. We begin by noting
that the cross sections look qualitatively similar to measured
experimental data (see, e.g., Fig. 6 of Ref. [20]) giving some
credence to the simple model we use. Note also that the scaling
limit (in which the cross sections depend on x but not on Q2)
is obtained for Q2 on the order of tens of GeV2.

V. WAVE FUNCTIONS

We next relate the exact model calculations of the previous
section with various ideas about wave functions that are in the
literature.

(a)

(b)

FIG. 5. d�

d2k⊥
as a function of x for two different ranges of Q2 with

k⊥ = 0. (a) Q2 from 1 to 6 GeV2. (b) Q2 from 10 to 60 GeV2. For
each case, the lower the value of Q2, the higher the cross section. For
larger values of Q2 the curves tend to coalesce.

A. Exact model calculation uses the
light-front-spectator wave function

The Bethe-Salpeter [31] wave function for this model is
given by

(k,P ) = −iG

(k2 − m2 + iε)[(P − k)2 − m2 + iε]
. (20)

This quantity does not enter in the calculation of the in-
variant amplitude, which involves only −iG

(k2−m2+iε) = −iG/X.

Exact

On mass−shell

On mass−shell w. scaling

=

FIG. 6. d�

d2k⊥
for three models at x = 1 and k⊥ = 0. Only two

curves are observable easily because of the confluence of the exact
and on-mass-shell light-front wave function approach.

014002-4



MEANING OF THE NUCLEAR WAVE FUNCTION PHYSICAL REVIEW C 94, 014002 (2016)

However, the factor 1/X can be obtained by doing an
integration that places the spectator particle on the mass shell,
so that (P − k)2 = m2, with (P + − k+) > 0. The result of this
integral is the spectator wave function of the Gross equation
[13] times a kinematic factor, so that the object 1/X of Eq. (5)
corresponds to using the spectator wave function. Note that the
integration used here involves light-front coordinates to take
advantage of the high energy of the incident virtual photon.
Thus, computation of the exact cross section makes explicit use
of a light-front version of the Gross equation wave function.
We may even say that the light-front-spectator wave function
is designed to give the correct quasielastic scattering cross
section. This wave function has the odd, but useful, feature that
one constituent is virtual and the other spectator constituent, a
spectator, is on its mass shell.

B. The on-mass-shell limit uses the light-front wave function

The light-front wave function is derived by taking the
constituent particles to be on the mass shell, denoted by OS.
In this case k2 − m2 = 0 and Eq. (6) becomes

q+
(

M − k2
⊥ + m2

M(1 − α)

)
+ q−αM − Q2 = 0. (21)

The solution is given by

α = αOS = 1

2
(−

√
ε0(4Cξ + 2ξ 2 − 2ξ ) + (1 − ξ )2 + ξ 2ε2

0

+ ξ (ε0 + 1) + 1), (22)

with ε0 ≡ M
q− . The cross section is given by

j8π2dσOS = d2k⊥
∫

dk+

P + − k+ δ+

[
−ξ

(
M2 − k2

⊥ + m2

1 − α

)

+ k+q− − Q2

]
g2G2

X2(αOS,k⊥)
. (23)

The notation X(αOS,k⊥) refers to using α → αOS in the defin-
ing equation, Eq. (22). For calculations of elastic scattering
the use of the light-front wave function gives the exact result
[30].

C. Light-front wave function with scaling

For large values of Q2 and ν, when Q2/ν is constant and
x ≡ Q2/2mν (the scaling limit), one may ignore the k2 − m2

and q+k− appearing in the argument of the delta function of
Eq. (6). In this case

δ(X + 2kq − Q2) = δ(k2 − m2 + 2kq − Q2)

→ δ(k+q− − Q2), (24)

so that

α = ξ (25)

and

j8π2dσsc = d2k⊥
∫

dk+

P + − k+ δ+(k+q− − Q2)
g2G2

X(α,k⊥)2
,

(26)

yielding

j8π2 dσsc

g2G2d2k⊥
= 1

(1 − ξ )q−M

1

X2(ξ,k⊥)
. (27)

In the scaling limit, the relevant wave function is the light-front
wave function evaluated at a momentum fraction ξ that is
determined only by x and Q2.

The net result, so far, is that the exact calculation is handled
by the spectator wave function. If one neglects the virtuality of
the struck nucleon, one may use the light-front wave function,
but it is evaluated at a momentum fraction that depends upon
k⊥ as well as on x and Q2. Only in the scaling limit can one
use the light-front wave function, evaluated at the Nachtman
variable ξ .

D. Nonrelativistic limit

We define the nonrelativistic limit as using the nonrelativis-
tic approximation to the inverse propagator X of Eq. (5) in the
expression for the cross section, Eq. (18). Thus

X = M(M − 2Es) → −M

(
B +

�k2

m

)
, (28)

where in the nonrelativistic approximation Es =
√�k2 + m2 ≈

m + �k2

2m
. Thus we use the nonrelativistic limit and obtain

1

XNR
= −m

M

1

mB + k2
z + k2

⊥
. (29)

This is essentially the nonrelativistic wave function for a delta
function potential and is also the zero-range wave function of
Bethe [32].

To evaluate the cross section in Eq. (18) we use XNR of
Eq. (29). It is necessary to determine kz in terms of α. In the
nonrelativstic theory all constituent particles are on their mass
shell, so kz is determined from αOS via

αOS = E(k) + kz

2m
, E(k) = m +

�k2

2m
. (30)

Solving this equation for kz gives the following result:

kz

m
= −1 +

√
4αOS − 1 − k2

⊥
m2

, (31)

with αOS given by Eq. (22). This is the root that has kz = 0 if
αOS = 1/2 and k⊥ = 0.

VI. MODEL RESULTS AND THE ACCURACY OF USING
DIFFERENT WAVE FUNCTIONS

Figure 6 shows cross sections at x = 1. We see that the
exact and on-mass-shell (0 virtuality) light-front approaches
agree at all values of Q2 that are shown. The curves for these
two methods are not distinguishable. In contrast, the use of
Bjorken scaling is not valid unless the value of Q2 is very
high.

That the accuracy of neglecting the virtuality holds only for
values of x near unity is shown in Fig. 7. Significant errors are
seen for values of x lower and higher than unity. The accuracy
improves as the value of Q2 increases. However, these results
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Q2=1 GeV2

Q2=3 GeV2

Q2= 5 GeV2

Q2= 7 GeV2

− −

FIG. 7. Exact to on-mass-shell ratios as a function of x and k⊥ =
0 for different values of Q2.

show that the reliability of using light-front wave functions is
questionable if one is investigating high or low values of x for
momentum transfers less than about 10 GeV2.

All of the previous cross sections are obtained using
relativistic wave functions. The nonrelativistic approximation
is studied in Fig. 8. Using the nonrelativsitic approximation
fails except for values of x near unity. The relative errors
increase significantly with increasing Q2. This indicates
that using standard nonrelativistic wave functions to analyze
quasielastic scattering from deuteron targets may introduce an
uncontrolled systematic error.

VII. OTHER DEUTERON WAVE FUNCTIONS

One might wonder if the qualitative results presented here
are obtained only because of the simplicity of taking the
deuteron vertex function to be a constant. Therefore we derive
and use a more general wave function. Suppose instead of
taking the vertex function to be constant � = G, we postulate
that, for example,

�(k,P ) = G�2

−k2 + �2 + m2
, (32)

Q2=0.25 GeV2

Q2=0.5 GeV2

Q2=0.75 GeV2

Q2= 1 GeV2

( )

( )

FIG. 8. Nonrelativistic approximation. Ratios of exact to nonrel-
ativistic cross sections are shown as a function of x for different
values of Q2.

where � is a parameter to be determined. This means that the
factor 1/X is replaced:

1

X
= 1

k2 − m2
→ 1

k2 − m2

�2

−k2 + �2 + m2

= 1

k2 − m2
− 1

k2 − m2 − L2
≡ 1

X̃
. (33)

The meaning of the second term may be identified by
considering the nonrelativistic limit

1

X̃
= − m

M

[
1

mB + �k2
− 1

mB + �2 m
M

+ �k2

]
, (34)

and we observe that 1
X̃

is the Fourier transform of the Hulthén
and Laurikaine wave function [33] (e−ar − e−br )/r with the
following parameters [34]:

a =
√

Bm = 0.2316 fm−1, b2 − a2 = �2m/M,

b = 1.3802 fm−1. (35)

Evaluation yields � = 0.3795 GeV.
The result, Eq. (33), provides an alternate model wave

function, which can be treated using the four different wave
functions discussed above.

The use of this wave function is shown in Fig. 9. We
see that the general shape and cross sections are about the
same as those obtained using the wave function of Sec. II.

(a)

(b)

FIG. 9. d�

d2k⊥
as a function of x for two different ranges of Q2

with k⊥ = 0. (a) Q2 from 1 to 6 GeV2. (b) Q2 from 10 to 60 GeV2.
For each case, the lower the value of Q2, the higher the cross section.
For larger values of Q2 the curves tend to coalesce. Deuteron wave
function of Eq. (33).
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Q2=1 GeV2

Q2=3 GeV2

Q2= 5 GeV2

Q2= 7 GeV2

− −

FIG. 10. Exact to on-mass-shell ratios as a function of x and
k⊥ = 0 for different values of Q2. Deuteron wave function of Eq. (33).

In particular, the requirement that Q2 values of tens of GeV2

is reached to achieve scaling again occurs. Figure 10 shows
again that the differences between using the exact spectator
wave function instead of the light-front wave function are very
substantial. Similarly, the nonrelativistic approximation fails
(see Fig. 11). Thus the large effects of virtuality shown in the
previous section seem to be general.

A final remark is that the model of Eq. (33) can be gener-
alized to match to any s-wave function in the nonrelativistic
limit.

VIII. VIRTUALITY OF SPIN- 1
2 FERMIONS

Previous sections used a simple model involving spinless
particles. In this section, we consider what happens when the
virtual particle is a fermion. There is a lore stating that when
evaluating matrix elements of so-called good currents, with
matrix elements that go to infinity in the infinite momentum
frame, that the struck particles may be regarded as being on
shell. This lore is not generally correct, as we shall show.
The Feynman propagator of a virtual fermion of the four-

Q2=0.25 GeV2

Q2=0.5 GeV2

Q2=0.75 GeV2

Q2= 1 GeV2

( )

( )

FIG. 11. Nonrelativistic approximation. Ratios of exact to non-
relativistic cross sections are shown as a function of x for different
values of Q2. Deuteron wave function of Eq. (33).

momentum p can be written as

1

p/ − m + iε
= (p/ + m)

p2 − m2 + iε

=
∑

s u(p,s)ū(p,s)

p2 − m2 + iε
+ γ +

2p+ , p+ > 0, (36)

= −
∑

s v(p,s)v̄(−p,s)

p2 − m2 + iε
+ γ +

2p+ , p+ < 0. (37)

In our notation the good current contains the operator γ +,
and γ +2 = 0, so the second terms of Eqs. (36) and (37)
proportional to γ + do not contribute. Then one may use only
on-shell spinors. This is the origin of the lore. However, there
are two kinds of on-shell spinors, depending on whether the
energy is positive or negative. For a virtual particle the value
of p+ can be positive or negative, so that one may not neglect
the possibility of intermediate negative energy states having a
significant influence.

IX. SUMMARY AND DISCUSSION

The need to understand the kinematic region in which x
is not close to unity provides new challenges to relativistic
treatments of the nuclear wave function. This need is driven
by several experiments that aim at either determining deuteron
structure or using known deuteron wave functions to determine
neutron structure. In this article, simple models are used to
show that applying commonly used reductions of the Bethe-
Salpeter equation from four dimensions to three dimensions
severely compromises the ability to compute accurate cross
sections for the interesting kinematic region in which the
Bjorken x variable differs from unity. The only exact approach
involves using the light-front-spectator wave function. In this
case the wave function consists of one virtual constituent
and one on-shell constituent, and the correct model scattering
amplitude is obtained using the model’s one-body current.

An alternative approach would be to use realistic nucleon-
nucleon interactions. These can be interpreted relativistically
[35], but the present results suggest that a complete treatment
of the problem at hand would involve deriving the appropriate
two-body current operators. Such two-body currents are
needed in the other quasipotential methods (involving only on-
mass-shell constituents) discussed here to describe the physics
that appears automatically in the impulse approximation to the
spectator equation. The simple model used here demonstrates
that the impulse approximation to the spectator equations
already contain important terms that appear as two-body
currents in other formalisms. The potential importance of these
contributions for large-x physics applications has implications
for approved experiments at JLab.

One current experiment [21] planned to specifically test the
use of light-front-spectator wave functions versus light-front
wave functions is particularly relevant. The considerations
presented here encourage us to predict that only the light-
front-spectator wave functions would reproduce the experi-
mental results. The present results indicate that the accurate
interpretation of future experiments would be simplified by
developing realistic relativistic light-front-spectator nuclear
wave functions.
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