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Low-energy theorems for nucleon-nucleon scattering at Mπ = 450 MeV
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We apply the low-energy theorems to analyze the recent lattice QCD results for the two-nucleon system at a
pion mass of Mπ � 450 MeV obtained by the NPLQCD Collaboration. We find that the binding energies of the
deuteron and dineutron are inconsistent with the low-energy behavior of the corresponding phase shifts within
the quoted uncertainties and vice versa. Using the binding energies of the deuteron and dineutron as input, we
employ the low-energy theorems to predict the phase shifts and extract the scattering length and the effective
range in the 3S1 and 1S0 channels. Our results for these quantities are consistent with those obtained by the
NPLQCD Collaboration from effective field theory analyses but are in conflict with their determination based on
the effective-range approximation.
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I. INTRODUCTION

Understanding of certain fine-tunings in the parameters of
the Standard Model is an important frontier in modern hadron
and nuclear physics. In connection with anthropic consider-
ations, a question has been raised whether the light quark
masses have to take very specific values in order to maintain
conditions essential for the development of life; see Ref. [1] for
a discussion. In particular, the proximity of the Hoyle state,
the first 0+ excited state of 12C, to the triple alpha-particle
threshold is known to be crucial for the enhanced resonance
formation of the life-important elements 12C and 16O in red
giant stars [2]. The dependence of the excitation energy of the
Hoyle state on the light-quark masses was analyzed recently
within ab initio nuclear lattice simulations [3,4]. It was found
that the variation of the light quark masses by a few percent is
likely to be not detrimental for the development of life. More
conclusive statements would require a better knowledge of the
quark mass dependence of the nuclear force or, more precisely,
of the nucleon-nucleon (NN) S-wave scattering lengths, which
are by far the dominant source of theoretical uncertainty in this
calculation. The quark mass dependence of the nuclear force
also plays an important role in constraining a time variation
of the Standard Model parameters as predicted by various
extensions of the Standard Model at the time of Big Bang
nucleosynthesis by comparing the observed and calculated
primordial deuterium and helium abundances [5,6].

In recent years, there has been significant progress in
lattice-QCD calculations of nuclear systems which constitute
the primary source of information about the light-quark or,
equivalently, pion mass dependence of nuclear observables.
In particular, fully dynamical calculations at unphysical
pion masses as low as Mπ � 300–400 MeV have been
performed; see, e.g., Refs. [7–9]. To connect these results
with experimentally observed quantities corresponding to the
physical value of the quark masses one can employ chiral
effective field theory (EFT), which is still expected to be
applicable at such pion masses [6,10–17]. Notice that not only
the binding energies but also the NN scattering observables
such as the phase shifts and effective range parameters have

been calculated on a lattice; see Refs. [9,18,19] for recent
analyses of the NN 1S0 and 3S1 channels by the NPLQCD
Collaboration at Mπ � 450 and 800 MeV and Ref. [20] for the
analysis of the higher partial waves at Mπ � 800 MeV by the
CalLat Collaboration. Interestingly, the general trend of lattice
calculations by different groups suggests a stronger attraction
both in the 1S0 and 3S1 channels when going away from the
physical point towards heavier quark masses [7–9,19,21]. Both
the deuteron and dineutron systems in these calculations are
found to be bound at unphysically heavy pion masses, with
the deuteron binding energy being significantly larger than
the experimentally observed one. These results are, however,
not supported by the HAL QCD Collaboration, which finds
no bound states in these channels for pion masses ranging
from 469 to 1171 MeV [22]. It should be noted that unlike
the lattice calculations mentioned above, a different approach
is employed by the HAL QCD Collaboration, which makes
use of a two-nucleon potential at the intermediate step. The
puzzle is even more intriguing given that the chiral EFT
calculations tend to indicate less attraction at Mπ larger
than the physical value [6,10,12,13,17]; see also Ref. [23]
for a related work. These calculations, however, rely on
the naturalness assumption and/or make use of resonance
saturation estimates for Mπ -dependent four-nucleon contact
interactions.

In our recent paper [24], we argued that the low-energy
theorems (LETs) in NN scattering can provide important
consistency checks of both lattice-QCD results and their
chiral extrapolations. Specifically, knowledge of the analytic
properties of the scattering amplitude allows one to predict its
energy dependence and, under certain circumstances, extract
the parameters of the effective range expansion. In Ref. [24],
we tested this approach by predicting the effective range
parameters for S-wave NN scattering in the spin-triplet and the
spin-singlet channels; see also Refs. [25–30] for earlier studies
along this line. Further, we generalized the LETs to unphysical
pion masses and applied the resulting approach to selected
lattice-QCD results. In particular, using the linear behavior
of the quantity Mπr , where r refers to the effective range,
conjectured in Ref. [19] and visualized in Fig. 1, we employed
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FIG. 1. Linear with Mπ behavior of the effective range in units of
pion mass Mπr in the 3S1 partial wave conjectured in Ref. [19]. Red
solid triangle corresponds to the NPLQCD result at Mπ � 800 MeV
[18] while the shaded area shows the uncertainty of the suggested
linear interpolation. The black square shows the empirical value of
the effective range at the physical pion mass [31].

the LETs to predict the Mπ dependence of the deuteron binding
energy and of the other parameters in the effective range
expansion of the NN scattering amplitude in the 3S1 channel.
Remarkably, the resulting Mπ dependence of the deuteron
binding energy turned out to be in good agreement with
the general trend of different lattice calculations [7–9,19,21],
except for the results of Ref. [22] which do not support the
existence of bound states for large pion masses.

Recently, the NPLQCD Collaboration reported their new
results for the S-wave NN observables both in the spin-triplet
and the spin-singlet channels at Mπ = 450 MeV [9]. In
particular, they have calculated the values of the deuteron
and the dineutron binding energies and the phase shifts in
the 3S1 and 1S0 channels at several values of the center-of-
mass system (cms) momenta above threshold. In this paper
we confront these results with the LETs. In particular, we
demonstrate that the lattice phase shifts at the two lowest
energies in the 3S1 channel are inconsistent (within the quoted
uncertainties) with the deuteron binding energy obtained in
the same lattice calculation. The situation is less conclusive
in the 1S0 channel due to larger uncertainties of the LETs
in this channel. However, the results of our analysis in this
channel also indicate an inconsistency between the phase
shifts and the large value of the dineutron binding energy
reported by the NPLQCD Collaboration. Taking the NPLQCD
results for the deuteron and dineutron binding energies as
input, we use the LETs to infer the corresponding phase shifts
and extract the values of the scattering lengths and effective
ranges. We perform a detailed comparison of our results for
these quantities with the ones of Ref. [9] and argue that their
determination by means of the effective range approximation
is not self-consistent.

Our paper is organized as follows. In Sec. II, we discuss in
detail our formalism, explain the meaning of the LETs, and
discuss their generalization to unphysical values of the pion

mass. Implications of the LETs for the recent lattice-QCD
results at Mπ ∼ 450 MeV are considered in Sec. III. Section IV
addresses the dependence of the effective range on the pion
mass. Finally, our main findings are summarized in Sec. V.

II. LOW-ENERGY THEOREMS FOR NN SCATTERING

A. The formalism at the physical pion mass

The concept of the low-energy theorems for NN scattering
and their generalization to unphysical pion masses have been
discussed in Ref. [24], see also Refs. [25–30] for related
earlier studies. In this section we formulate the main idea of
the LETs from a somewhat different perspective as compared
to Ref. [24], where a quantum mechanical framework of the
modified effective range expansion [32] was employed.

We assume that the NN interaction is characterized by two
distinct scales ML and MS , ML � MS , so that the potential
can be written as

V = VL + VS, (2.1)

with the interaction ranges of the order of rL ∼ M−1
L and

rS ∼ M−1
S , respectively. The analytic structure of the scattering

amplitude near threshold is governed by the long-range
interactions. Taking into account the discontinuity across the
left-hand cut from the long-range potential VL, the energy
dependence of the scattering amplitude can be predicted in a
model-independent way up to the energies corresponding to
the branch point of a more distant left-hand cut associated
with the potential VS . This prediction can be regarded as a
low-energy theorem. Alternatively, one can view the LETs
as correlations between the parameters in the effective-range
expansion of the inverse scattering amplitude induced by
long-range interactions. Notice that the inverse scattering
amplitude may possess poles in the near-threshold region,
whose appearance does not affect the validity range of the
LETs if the scattering amplitude is kept unexpanded.

The longest-range part of the NN force is due to the
one-pion exchange potential (OPEP). Thus, the LETs for NN
scattering are expected to be governed by the left-hand cut
generated by the OPEP. The OPEP is, however, singular at
the origin and requires regularization and renormalization.
Therefore, instead of using the quantum mechanical approach,
we formulate the LET within the modified Weinberg approach
of chiral EFT [17,24,33,34]. Since the correlations between the
effective range expansion parameters are inherently long-range
phenomena, the results after renormalization and removing the
ultraviolet cutoff should be model and regularization-scheme
independent.

To be specific, we calculate the scattering amplitude T
by solving the Lippmann-Schwinger-type integral equation
introduced originally by Kadyshevsky [35] which, for the case
of the fully off-shell kinematics, has the form

T ( �p, �p ′,k ) = V ( �p, �p ′) +
∫

d3q V ( �p,�q ) G(k,q) T (�q, �p ′,k),

(2.2)
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+,

FIG. 2. Graphical illustration of the functions � and L in Eq. (2.6), which correspond to convolutions of the pionic amplitude Tπ with the
pointlike vertices as explained in the text.

where G(k,q) is the free Green function,

G(k,q) = m2
N

2(2 π )3

1(�q2 + m2
N

)(
Ek −

√
�q2 + m2

N + iε
) .

(2.3)

Further, �p ( �p ′) is the incoming (outgoing) three-momentum

of the nucleon in the cms and Ek =
√

�k2 + m2
N with mN

denoting the nucleon mass and �k being the corresponding
(on-mass-shell) three-momentum. The S-wave potential at
leading order (LO) consists of the OPEP and two derivativeless
contact interactions (here denoted C0 for each given partial
wave)

VLO( �p, �p ′)= − g2
A

4F 2
π

�σ1 · ( �p − �p′)�σ2 · ( �p − �p′)
( �p − �p′)2 + M2

π

τ 1 · τ 2 + C0,

(2.4)

where �σi (τ i) denote the spin (isospin) Pauli matrices of the
nucleon i, while gA and Fπ refer to the axial vector coupling
of the nucleon and the pion decay constant, respectively.
As discussed in Ref. [33], the LO integral equation in this
framework is exactly renormalizable,1 that is, all ultraviolet
divergencies appearing from iterations of the LO potential
can be removed via an appropriate redefinition of the contact
interaction C0. As a consequence, the cutoff in the integral
equation can be put to infinity, so that no finite-cutoff artifacts
can affect the LET.

The numerical solution of the integral equation (2.2) is
carried out to obtain the full quantitative results for the
correlations implied by the LETs for the single- (1S0) and
coupled-channel (3S1−3D1) problems. While the integral
equation (2.2) with the potential (2.4) can, in general, be only
solved numerically, the correlations between the parameters
of the effective range expansion implied by the LETs can be
demonstrated analytically. To make this demonstration more
transparent, we consider the partial wave projected T matrix in
an uncoupled channel with the zero orbital angular momentum,
whereas generalizations to the coupled-channel case and to
nonzero angular momenta are straightforward.

Since the LO contact interaction is separable, it is possible
to write the solution for the T matrix in the semianalytic

1For a recent extension of the approach to D̄D∗ scattering see
Ref. [36]. This paper also addresses chiral extrapolations of the
X(3872) binding energy.

(operator) form

T (p,p′,k) = Tπ (p,p′,k) + �(p,k) D(k) �(k,p′),

D(k) = 1

C−1
0 − L(k)

, (2.5)

where Tπ (p,p′,k) denotes the off-shell solution of the pro-
jected integral equation (2.3) with the OPEP alone (C0 = 0),
whereas the functions � and L, shown graphically in Fig. 2,
involve convolutions of this pionic amplitude with the point-
like vertex, namely

�(k,p′) = 1 +
∫

dq q2 G(k,q) Tπ (q,p′,k),

�(p,k) = 1 +
∫

dq q2 Tπ (p,q,k) G(k,q),

L(k) =
∫

dq q2 G(k,q) +
∫

dq dq ′ q2 q ′2 G(k,q)

× Tπ (q,q ′,k) G(k,q ′). (2.6)

To complete the renormalization program at LO, one has
to express the contact interaction C0 in terms of the scattering
amplitude at zero momentum; that is, the scattering length a,
which is assumed to be an input quantity. Thus, the on-shell
NN amplitude reads

T (k) = Tπ (k) + �(k) D(k) �(k),

D(k) = 1
�2(0)

T (0)−Tπ (0) + L(0) − L(k)
, (2.7)

T (0) = −16π2

mN

a,

where we used the shorthand notation T (k) ≡ T (k,k,k),
�(k) ≡ �(k,k).

For an uncoupled channel with the zero orbital angular
momentum, the scattering amplitude T (k) can be expressed
in terms of the so-called effective range function F (k) ≡
k cot δ(k) via

T (k) = −16π2

mN

1

F (k) − ik
. (2.8)

We are now in the position to formulate the LETs at LO:
Using the scattering length as the only input quantity to fix the
unknown low-energy constant, we employ Eqs. (2.7)–(2.8) to
predict the momentum dependence of the scattering amplitude
and to calculate the phase shifts δ(k). Such a prediction is
possible because all information about the longest-range OPE
potential and, in particular, about the discontinuity across the
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corresponding left-hand cut starting from the momentum k =
±iMπ/2, is explicitly taken into account in the calculation.

Unlike the scattering amplitude, the effective range function
does not possess the kinematic unitarity cut and is a real
meromorphic function of k2 near the origin k = 0 [37,38].
It can, therefore, be Taylor expanded about the origin, leading
to the effective range expansion2

k cot δ(k) = −1

a
+ 1

2
rk2 + v2k

4 + v3k
6 + v4k

8 + · · · ,

(2.9)

where r is the effective range, while vi are the so-called shape
parameters. Thus, a single piece of information in the form of
the scattering length (or the energy of a bound/virtual state)
allows one to predict all the coefficients in the effective range
expansion:

r = α(aMπ )

Mπ

, vi = βi(aMπ )

M2i−1
π

, (2.10)

where α and βi are polynomials in the inverse scattering length,
namely

α = α0 + α1

(aMπ )
+ α2

(aMπ )2
, (2.11)

βi = βi,0 + βi,1

(aMπ )
+ βi,2

(aMπ )2
+ · · · + βi,i+1

(aMπ )i+1
, (2.12)

with the coefficients αi and βi,j being calculable from the
various quantities appearing in Eq. (2.7) and their derivatives
evaluated at k = 0. Their explicit form can be easily obtained
by performing Taylor expansion of the inverse amplitude T −1

around k2 = 0.
Given that the left-hand cut from the OPEP is explicitly

included, the convergence radius of the LETs is restricted
by the next-to-lowest-lying left-hand singularity associated
with the two-pion exchange potential (TPEP). In the present
analysis, we take into account the contributions of the TPEP
implicitly by including the relevant momentum-dependent
short-range interactions at next-to-leading order (NLO), whose
strengths have to be adjusted to reproduce the empirical value
of the effective range in the corresponding channel. Then, the
shape parameters can be predicted up to and including the
NLO corrections.

After renormalization, the predictions for the LETs become
insensitive to details of the short-range interaction once its
strength is adjusted to reproduce the physical observable. As
argued in Ref. [24], it is convenient to employ resonance
saturation via a heavy-meson exchange in order to model
higher-order contact interaction without destroying explicit
renormalizability of the integral equation or having to rely on
perturbation theory. Specifically, the NLO correction to the

2We assume here that the phase shift does not cross zero in the region
of validity of the effective range expansion. If this is the case, the
Taylor expansion should be replaced by, e.g., the Padé approximation
or the amplitude should be kept unexpanded; see Ref. [39] for a
related discussion.

potential is taken in the form

VNLO( �p, �p ′) = β
�σ1 · ( �p − �p ′) �σ2 · ( �p − �p ′)

( �p − �p ′) 2 + M2
, (2.13)

where the heavy-meson mass M is set to be M = 700 MeV
and the strength β is adjusted to reproduce the empirical
value of the effective range in the 1S0 and the 3S1 channels.
Our results are not sensitive to the functional form of the
term parametrizing the subleading short-range interaction in
Eq. (2.13); see Ref. [24] for more details.

We now summarize the main findings of Ref. [24] for the
physical value of the pion mass:

(1) In the 3S1 channel, the LETs yield very accurate results
already at LO. For example, the effective range is pre-
dicted with an accuracy better than 10%. The accuracy
at LO even appears to be better than one could naively
expect from the ratio of scales corresponding to the
explicitly included lowest left-hand cut from the OPEP
and the next-to-lowest one from the TPEP, which is
not considered explicitly at this order. This observation
can be understood by noticing that iterations of the
OPEP do actually generate the dominant contributions
to the left-hand cuts due to the two- and multiple-pion
exchange.

(2) The accuracy of the LETs in the 1S0 channel is much
worse than in the spin-triplet case. This has to be
expected due to the weakness of the OPEP in that
channel. Indeed, the OPEP contributes less than 20%
to the magnitude of the empirical 1S0 phase shift at its
maximum value.

(3) As expected, the predicted values of the shape parame-
ters at NLO show in both channels a clear improvement
as compared with the LO results. In particular, the NLO
LETs appear to be accurate at the level of a few percent
for the 3S1 channel (except for v2 which is unnaturally
small), while the accuracy of the predictions in the 1S0

channel is improved to ∼25%.

B. Generalization to unphysical pion masses

A generalization of the LETs to the case of unphysical
pion masses can be carried out straightforwardly [24]. The
main dynamical effect of changing the pion mass in the OPEP
corresponds to shifts of the branch points of all left-hand
cuts. The discontinuity across the left-hand cuts also changes
due to the dependence of the ratio gA/Fπ , which determines
the strength of the OPEP, on the pion mass3Mπ . Finally, the
discontinuity across the left-hand cuts is also affected by the
Mπ -dependence of the nucleon mass through its appearance in
the integral equation (2.2). To account for the last two effects in
a way that minimizes the theoretical uncertainty, we use lattice-
QCD results for the Mπ dependence of gA, Fπ , and mN . In

3We do not take into account the Goldberger-Treiman discrepancy in
our analysis. For not too heavy pion masses, we expect the uncertainty
in the strength of the OPEP to be dominated by the current uncertainty
in the lattice-QCD calculations of gA.
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particular, we performed quadratic polynomial regression fits
(as functions of M2

π ) of the lattice-QCD data for pion masses up
to Mπ = 500 MeV as shown in Fig. 3 of Ref. [24]. We refer the
reader to this paper for more details on the fits and references
to the included lattice-QCD calculations of these quantities.
Using the above results, we can generalize the LO LETs by
calculating the effective range function F (k), see Eq. (2.8), as a
function of the (inverse) scattering length at arbitrary values of
the pion mass. Using a single input quantity such as the binding
energy or the scattering length, we can then predict the phase
shifts and extract the effective range r and the shape parameters
vi (provided the effective range function does not have poles
near the origin). Some exemplary results for such predictions
are discussed in Ref. [24] for different values of the pion mass.
Notice that contrary to the chiral extrapolations performed
in the framework of chiral EFT, no assumptions about the
short-range interaction C0 as a function of the pion mass is
made when calculating the LETs. Instead, we perform fully
independent calculations at each given value of the pion mass
as if we lived in different worlds characterized by a specific
value of Mπ . Thus, for each considered value of the pion mass,
the low-energy constant C0 has to be adjusted to reproduce
the given value of the scattering length used as input. By
providing relations between various low-energy observables
at unphysical values of the pion mass, the LETs may serve as
consistency checks of the lattice QCD calculations.

As already emphasized above, the extension of the LETs
to NLO is achieved by including subleading contact interac-
tions parametrized via resonance saturation; see Eq. (2.13).
Retaining the light-quark mass variation in the subleading
contact interaction is formally suppressed according to the
chiral EFT estimates. On the other hand, allowing for a
variation of this term with Mπ can be used to estimate the
theoretical uncertainty of our analysis. Following Ref. [24],
this is achieved by adjusting the strength β of the short-range
interaction to reproduce the effective range at the physical
point and by assuming that the M2

π dependence of β is within
the envelope built by the straight lines which go through the
physical point and describe a ±50% change in the value of β
for Mπ = 500 MeV, i.e.,

1 − δβ

∣∣∣∣∣
M2

π − (
M

phys
π

)2

	M2
π

∣∣∣∣∣ � β(Mπ )

β
(
M

phys
π

)

� 1 + δβ

∣∣∣∣∣
M2

π − (
M

phys
π

)2

	M2
π

∣∣∣∣∣, (2.14)

with δβ = 0.5 and 	M2
π ≡ (M2

π − (Mphys
π )2)|Mπ =500 MeV. Such

a choice of δβ is motivated by the fact that it would cover
the known Mπ dependence of gA, Fπ , and mN if the same
procedure is applied to these quantities. In the next section, we
will also give results corresponding to the more conservative
choice of δβ = 1.0.

III. APPLICATION OF THE LETS TO THE NPLQCD
RESULTS AT Mπ ∼ 450 MEV

As explained in the previous section, the LETs allow
one to perform consistency checks of lattice-QCD results

for NN scattering provided more than a single observable is
extracted. Unfortunately, most of the lattice calculations in the
NN sector have so far focused on the determination of the
binding energies. One exception is the work by the NPLQCD
Collaboration at the pion mass of Mπ ∼ 800 MeV [19], which
provides, in addition to the binding energies, also the values of
the scattering length, effective range and even the first shape
parameter. It is, furthermore, conjectured in that paper that
the effective range, expressed in units of the pion mass, may
be approximated by a linear function of Mπ . While the LETs
are certainly beyond their range of applicability at such heavy
pion masses, this conjecture was tested using the LETs in our
previous work [24], where the resulting Mπ dependence of
the deuteron binding energy was indeed found to be in good
agreement with the general trend of lattice data [7–9,19,21].

Recently, new results for NN scattering in the 3S1 and
1S0 channels were reported by the NPLQCD Collaboration
at Mπ ∼ 450 MeV [9]. The calculations were performed for
nf = 2 + 1 flavors of light quarks at three lattice volumes of
L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice
spacing of b = 0.12 fm. In analogy to their previous work, the
scattering phase shifts for the 3S1 and 1S0 partial waves were
extracted for several values of the cms NN momenta using the
extended Lüscher approach [40–42], as shown by the black
filled regions in Fig. 3 for the case of the 3S1 channel.

In addition to the phase shifts, the binding energies of
the deuteron and the dineutron were extracted. Thus, it is
interesting to test whether these results fulfill the LETs
introduced above.

A. The 3 S1 channel

The deuteron binding energy calculated in Ref. [9] at
Mπ � 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
(+3.2
−2.6

)
MeV, (3.1)

where the errors include statistical and systematic uncertain-
ties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coefficients in the effective
range expansion, namely the scattering length and the effective
range, were determined in Ref. [9] by fitting the effective range
approximation of the effective range function,

k cot δ � −1

a
+ 1

2
rk2, (3.2)

to the two lowest-energy scattering data points and the
deuteron binding energy; see the grey bands in the right
panel of Fig. 3. Notice that all three lattice data correspond
to nucleon momenta below the branch point |k| = Mπ/2 of
the left-hand cut from the OPEP. The resulting values for the
inverse scattering length and the effective range in units of the
pion mass reported in Ref. [9] are

(
Mπa(3S1))−1 = −0.04

(+0.07
−0.10

)(+0.08
−0.17

)
,

(3.3)
Mπr(3S1) = 7.8

(+2.2
−1.5

)(+3.5
−1.7

)
,

where the uncertainties in the first and second parentheses are
statistical and systematic, respectively.
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FIG. 3. Neutron-proton phase shifts (left panel) and the effective-range function (right panel) in the 3S1 channel calculated on the lattice at
Mπ ∼ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs at LO (orange light-shaded bands) and NLO
(blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD result for the deuteron binding energy Bd as input. The uncertainty
at LO shown by the orange bands is entirely given by the uncertainty of Bd in Eq. (3.1). The NLO dark-shaded (hatched light-shaded) bands
correspond to the uncertainty in Bd and the theoretical uncertainty of the LETs estimated via the variation of β with δβ = 0.5 (δβ = 1.0)
combined in quadrature. The grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on
the effective range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the effective-range function
k cot δ(3S1) and the unitarity term ik/Mπ = ±√−(k/Mπ )2, shown by the dotted line in the right panel, in the lower (upper) half-plane. The
phase shift corresponds to the Blatt-Biedenharn parametrization of the S matrix [43].

In Fig. 3, we confront the lattice-QCD phase shifts of
Ref. [9] with the predictions of the LETs at LO and NLO. We
use the NPLQCD result for the deuteron binding energy given
in Eq. (3.1) as input to adjust the leading-order contact term C0.
This is sufficient to predict the phase shift at LO. As explained
in the previous section, there are no additional parameters at
NLO. As shown in the left panel of Fig. 3, the change in
the phase shifts when going from LO to NLO is reasonably
small, which confirms a good convergence of the LETs in this
channel. The expected accuracy of the NLO prediction can
be roughly estimated by the width of the blue band generated
by the variation of the parameter β, as described above, and
appears to be consistent with the shift from LO to NLO.
Notice that the LO (orange) band reflects the uncertainty in
the NPLQCD prediction of the binding energy and does not
include the theoretical uncertainty of the LETs. As required
by the Levinson theorem for the case of a bound deuteron,
the phase shifts generated by the LETs go through 180◦ at
the origin. Comparing the NPLQCD results for phase shifts
and the effective range function in the 3S1 channel with those
based on the LETs as visualized in Fig. 3, we end up with the
following conclusions:

(1) First, as shown in the right panel of Fig. 3, only positive
values of the scattering length appear to be consistent
with the NPLQCD result for the deuteron binding
energy quoted in Eq. (3.1) as opposed to the negative
central value for a(3S1) reported in Ref. [9]. Our results
for the inverse scattering length extracted from Bd by
means of the LETs disagree with the NPLQCD ones
given in Eq. (3.3), as can be inferred from the right
panel of Fig. 3.

(2) While the lattice phase shifts at higher momenta are in
reasonable agreement with the ones predicted by the

LETs, their low-momentum behavior is incompatible
(within the quoted errors) with that predicted by the
LETs, as demonstrated in both panels in Fig. 3. In
particular, the phase shift calculated on the lattice at
the lowest considered momentum of k � 122 MeV, δ =
38(+13

−11)(+23
−16) degrees, is a factor of 3 smaller than the

corresponding value of δ = 111(±5) degrees extracted
from the LETs.

(3) An extrapolation of the lattice data to zero momenta in
the left panel of Fig. 3 seems to indicate that the phase
shift goes to zero. This would, however, contradict
the existence of a bound state in this partial wave as
a consequence of the Levinson theorem (or require
shifting δ3S1 by 180 degrees in the entire plotted energy
range, which would be inconsistent with the LETs).

One may raise a question whether the observed inconsis-
tencies between the lattice-QCD results for phase shifts, and
the LETs predictions could originate from underestimating
the quark mass dependence of the NLO contact interaction by
constraining the function β(Mπ ) as described in the previous
section. To clarify this issue, we have increased the allowed
variation of β by a factor of 2, i.e., we set δβ = 1 instead
of δβ = 0.5. This corresponds to the allowed variation of the
strength of the short-range term at Mπ = 500 MeV by ±100%
as compared to its value at the physical point. The resulting
predictions for the phase shifts and the effective range function
are shown by the hatched blue light-shaded bands in Fig. 3.
With the resulting uncertainty nearly covering the shift from
our LO to NLO results, we expect such an error estimation to
be too conservative. Still, none of our conclusions appear to
be affected by employing this very conservative uncertainty
estimation.
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FIG. 4. Correlations between the inverse scattering length a−1,
effective range r and the binding energy in the 3S1 partial wave
induced by the one-pion exchange potential. The red solid and dashed
magenta lines show the predictions of the LO LETs for Mπr (3S1)

and Bd . The light-shaded bands between the red solid and dashed
magenta lines visualize the predictions of the NLO LETs for Mπr (3S1)

and Bd , respectively, and reflect the theoretical uncertainty estimated
via the variation of β with δβ = 0.5 as described in the text. The
horizontal dotted lines specify the range of values for Bd consistent
with the lattice-QCD results of Ref. [9] for this observable. The
solid dark-red circle (blue rectangle) shows the LO (NLO) LET
predictions for the effective range. The open black circle gives the
result for the inverse scattering length and effective range reported by
the NPLQCD Collaboration [9] while the grey area around it shows
the estimated uncertainty from that paper. All results correspond to
the Blatt-Biedenharn parametrization of the S-matrix [43].

We are now in the position to employ the LETs in order
to extract the scattering length and the effective range from
the deuteron binding energy calculated by the NPLQCD
Collaboration. Such an extraction is possible because the
effective range function does not possess poles at low momenta
and, therefore, can be Taylor expanded around the origin.4 In
Fig. 4, we plot the deuteron binding energy and the effective
range as functions of the inverse scattering length in units of
the pion mass predicted by the LETs at LO (shown by the
lines) and NLO (shown by the bands).

Specifically, the red band between two solid lines represents
the NLO LET calculation for the effective range as a function
of the inverse scattering length. Similarly, the magenta band
between two dashed lines shows the deuteron binding energy
versus the inverse scattering length at NLO. Further, the two
horizontal dotted lines separate the region of the binding
energies consistent with the NPLQCD result of Ref. [9],
Eq. (3.1), for the binding energy. Projecting this area onto
the x axis, as shown by the vertical lines, one obtains the
corresponding values of the scattering length and the effective

4The effective range function does have a pole at k � 500 MeV
where the phase shift crosses zero, but these momenta are already
beyond the region of the validity of the effective range expansion.

range from the LETs. In particular, we find
(
Mπa

(3S1)
LET, LO

)−1
= 0.229

(+0.019
−0.018

)
,

(
Mπa

(3S1)
LET, NLO

)−1
= 0.196

(+0.014
−0.013

)(+0.007
−0.004

)
,

(3.4)
Mπr

(3S1)
LET, LO = 1.62

(+0.06
−0.06

)
,

Mπr
(3S1)
LET, NLO = 2.44

(+0.08
−0.08

)(+0.12
−0.17

)
,

which correspond to the following values in units of fm:

a
(3S1)
LET, LO = 1.915

(+0.159
−0.147

)
fm,

a
(3S1)
LET, NLO = 2.234

(+0.156
−0.144

)(+0.052
−0.072

)
fm,

(3.5)
r
(3S1)
LET, LO = 0.71

(+0.02
−0.03

)
fm,

r
(3S1)
LET, NLO = 1.07

(+0.03
−0.03

)(+0.05
−0.08

)
fm.

Here, the errors in the first parentheses reflect the uncertainty
in the value of the deuteron binding energy in Eq. (3.1)
used as input. For the NLO results, we also give in the
second parentheses an estimation of the theoretical uncertainty
corresponding to the choice of δβ = 0.5. Clearly, the above
values are at variance with those extracted by the NPLQCD
Collaboration and given in Eq. (3.3). In particular, our value
for the effective range is about a factor of 3 smaller than the one
found in Ref. [9]. Interestingly, the NLO LET prediction for
the effective range is in excellent agreement with the assumed
linear in Mπ behavior of the quantity Mπr (3S1) conjectured in
Ref. [19]; cf. Fig. 1 and the right panel of Fig. 8. For the sake
of completeness, we also give the NLO LET results based
on a more conservative uncertainty estimation, resulting by
employing a weaker constraint on the allowed Mπ dependence
of the subleading contact interaction corresponding to the
choice of δβ = 1:

(
Mπa

(3S1)
LET, NLO

)−1
= 0.196

(+0.014
−0.013

)(+0.018
−0.008

)
,

(3.6)
Mπr

(3S1)
LET, NLO = 2.44

(+0.08
−0.08

)(+0.21
−0.47

)
,

or

a
(3S1)
LET, NLO = 2.234

(+0.156
−0.144

)(+0.093
−0.191

)
fm,

(3.7)
r
(3S1)
LET, NLO = 1.07

(+0.03
−0.03

)(+0.09
−0.21

)
fm

in units of fm.
To understand the origin of the disagreement between our

results for the scattering length and effective range with those
of Ref. [9], it is instructive to take a closer look at the
procedure for their determination employed by the NPLQCD
Collaboration. To this aim, a fit of the lattice phase-shift data at
the two lowest energies and the deuteron pole was performed
using the effective-range approximation (3.2). Note that the
considered phase shifts and the deuteron pole correspond to
momenta below the branch point of the t-channel cut due to
the OPEP. For nonsingular potentials of a finite range, the
applicability region of the effective range expansion is given
by the inverse range of the interaction which determines the
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FIG. 5. Neutron-proton phase shifts in the 3S1 channel (left panel) and the mixing angle ε̄1 (right panel) at Mπ ∼ 450 MeV based on the
LETs at LO and NLO in comparison with the results obtained in Ref. [9] using the EFT formulation of Ref. [10], labeled as BBSvK, at LO
(light-shaded band between pink dotted lines) and NLO (light-shaded band between blue dashed lines). The results for the 3S1 phase shift
correspond to the Blatt-Biedenharn parametrization of the S-matrix [43] while the mixing parameter is shown for the Stapp parametrization to
allow for the comparison with the results of Ref. [9]. For remaining notation see Fig. 3.

position of the first left-hand singularity. Consequently, the
effective range and shape parameters may be expected to
scale with the corresponding powers of the pion mass. For
example, for the physical value of the pion mass, one has
r (1S0) = 1.9M−1

π and r (3S1) = 1.2M−1
π . The very large value of

the effective range reported by the NPLQCD Collaboration,
r (3S1) = 7.8M−1

π , either indicates that the range of the nuclear
force is considerably larger than that of the OPEP or signals
the appearance of a pole in the effective-range function in
the near-threshold region.5 In both cases, the applicability
range of the effective range expansion of k cot δ would be
significantly smaller than one may expect based on the position
of the left-hand cut due to the OPEP. As a consequence,
the solution for a(3S1) and r (3S1) reported in Ref. [9] and
listed in Eq. (3.3) is not self-consistent in the sense that it
is obtained by fitting the effective range approximation to
the data points outside of its validity region, which can be
roughly estimated as |k| � 2/r (3S1) ∼ 0.26Mπ . Specifically,
the deuteron binding momentum at Mπ � 450 MeV is of the
order of γ ∼ 0.3Mπ , whereas the phase-shift data employed
in the analysis correspond to k ∼ 0.27Mπ and k ∼ 0.42Mπ .

To get further insights into this issue, consider the two
roots of the quadratic equation −1/a + rk2/2 − ik = 0 which
determines the pole positions of the scattering amplitude
within the effective-range approximation,

k1 = i

r

(
1 +

√
1 − 2r

a

)
� i

(
2

r
− 1

a

)
,

(3.8)

k2 = i

r

(
1 −

√
1 − 2r

a

)
� i

a

(
1 + r

2a

)
,

where we have expanded the square root in powers of r/a
and neglected terms of order O((r/a)2). This is justified
both for the physical value of the pion mass and for the

5For example, such a pole very close to threshold appears in the
spin-doublet S-wave channel for neutron-deuteron scattering.

solution given in Eq. (3.3), since in both cases one has
|r/a| ∼ 0.3. At the physical pion mass, the second root yields
the deuteron binding momentum k2 � 45i MeV while the first
root, k1 � 200i MeV, lies outside of the applicability region of
the effective range expansion and is an artifact of the effective
range approximation. In particular, it disappears or changes
the position upon including higher-order terms in the effective
range expansion. On the contrary, for the solution in Eq. (3.3)
at Mπ � 450 MeV, the deuteron pole corresponds to the first
root, k1 � 135i MeV, where the dominant contribution comes
from the effective range. Meanwhile, because the scattering
length in Eq. (3.3) is negative, the second root corresponds to
the momentum k2 � −15i MeV lying on the imaginary axis
in the lower half-plane. Therefore, the results of Ref. [9] imply
the existence of a shallow virtual state with excitation energy
less than 0.5 MeV in addition to the deuteron, which is not
supported by our analysis based on the LETs.

Finally, it is interesting to compare our results based on
the LETs with the ones obtained using an alternative approach
proposed in Ref. [10], which will be referred to as BBSvK,
where the expansion of the nuclear force around the chiral
limit was employed; see, however, Ref. [28] for a criticism.
This approach was used in Ref. [9] to calculate the phase shifts
and the mixing angle in the 3S1–3D1 channel. A comparison
of results from the two approaches is presented in Fig. 5.

While the 3S1 phase shift and the mixing angle show a very
similar behavior at LO, there are more sizable differences at
NLO. Notice that apart from the different treatment of pions,
the two approaches also differ in the way the NLO short-range
interaction is taken into account. In particular, in Ref. [9], the
strength of this subleading short-range term was adjusted to
fit the lattice phase shifts. In contrast, in our approach, the
strength of the subleading contact interaction β is determined
by the value of the effective range at the physical point, while
its allowed Mπ dependence at unphysical pion masses is used
to estimate the theoretical uncertainty as explained in Sec. II B.
This procedure ensures that both the LO and NLO LET results
depend on a single unknown parameter. We further emphasize
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that the low-energy behavior of the mixing angle found in
Ref. [9] and shown in the right panel of Fig. 5 seems to
be at variance with the expected threshold behavior for this
quantity, ε̄1 ∼ k3 (for details see, e.g., [31]). Regardless of
these differences, the two approaches yield similar numerical
results for the 3S1 phase shift and the mixing angle ε̄1 in the
considered range of momenta. The values of the scattering
length and effective range extracted in Ref. [9] from the lattice
data using the framework of Ref. [10] read

a
(3S1)
BBSvK, LO = 1.94(09)(17) fm,

a
(3S1)
BBSvK, NLO = 2.72(22)(27) fm,

(3.9)
r

(3S1)
BBSvK, LO = 0.674(17)(29) fm,

r
(3S1)
BBSvK, NLO = 1.43(12)(13) fm,

where the uncertainties in the first and second parentheses
correspond to the statistical and systematic uncertainties of
the lattice results. As already pointed out, the LO values are in
agreement with our LO predictions given in Eq. (3.5), while
the deviations at NLO and, in particular, the large value of
the effective range are presumably caused by an attempt to
reproduce the lattice-QCD result for the 3S1 phase shift at k �
0.2 GeV within the BBSvK approach. We further emphasize
that the authors of Ref. [9] do not elaborate on possible sources
of inconsistency between the two sets of values reported in
their work and listed in Eqs. (3.3) and (3.9).

B. The 1 S0 channel

We now turn to the spin-singlet channel. In Fig. 6, we
confront the phase shifts extracted based on the LETs with
the lattice-QCD results for the 1S0 partial wave. Here we
apply the same procedure as in the 3S1 channel and use the
NPLQCD result for the dineutron binding energy [9],

Bnn = 12.5
(+3.0
−5.0

)
MeV, (3.10)

as input to fix the short-range interaction at LO. The NLO
short-range interaction is again taken into account by means of
resonance saturation, see Eq. (2.13), with the strength β being
determined by the effective range at the physical point. The

allowed Mπ dependence of β is specified by Eq. (2.14), and
the blue dark-shaded bands in Fig. 6 correspond to the choice
δβ = 0.5. Notice that the shift in the predictions when going
from LO to NLO is now much larger than in the spin-triplet
channel, which is in line with the lower predictive power of the
LETs in the 1S0 partial wave. Consequently, we believe that a
variation of the strength β with δβ = 0.5 does not provide a
realistic estimation of the theoretical uncertainty at NLO in this
channel. To have a more conservative estimation, we will allow
for a larger Mπ dependence in this channel and set δβ = 1 as
visualized by the hatched blue light-shaded bands in Fig. 6.

As shown in Fig. 6, we arrive at similar conclusions as
in the case of the spin-triplet channel. While our NLO LET
predictions for k > 300 MeV are in very good agreement with
the phase shifts calculated by the NPLQCD Collaboration,
there is a clear discrepancy for the two lowest values of the
momentum k. In particular, for the lowest momentum of k ∼
100 MeV, the phase shift from the NLO LETs is roughly
a factor of 2 larger than that from the lattice-QCD analysis.
Similarly to the 3S1 channel, the predictions of the LETs based
on the dineutron binding energy are only compatible with
positive values of the scattering length; see the right panel of
Fig. 6. Specifically, we obtain

(
Mπa

(1S0)
LET, LO

)−1
= 0.244

(+0.026
−0.051

)
,

(
Mπa

(1S0)
LET, NLO

)−1
= 0.175

(+0.013
−0.028

)(+0.024
−0.008

)
,

(3.11)
Mπr

(1S0)
LET, LO = 0.90

(+0.14
−0.06

)
,

Mπr
(1S0)
LET, NLO = 2.86

(+0.27
−0.12

)(+0.27
−0.74

)
,

which correspond to the following values in units of fm:

a
(1S0)
LET, LO = 1.797

(+0.479
−0.171

)
fm,

a
(1S0)
LET, NLO = 2.501

(+0.481
−0.174

)(+0.123
−0.304

)
fm,

(3.12)
r

(1S0)
LET, LO = 0.40

(+0.06
−0.03

)
fm,

r
(1S0)
LET, NLO = 1.25

(+0.12
−0.05

)(+0.12
−0.32

)
fm.
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FIG. 6. Two-nucleon phase shifts (left panel) and the effective-range function (right panel) in the 1S0 channel calculated on the lattice at
Mπ ∼ 450 MeV [9] in comparison with the predictions based on the LETs at LO and NLO using the NPLQCD result for the dineutron binding
energy Bnn as input. For notation see Fig. 3.
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FIG. 7. Two-nucleon phase shifts (left panel) and the effective-range function (right panel) in the 1S0 channel calculated on the lattice at
Mπ ∼ 450 MeV [9] in comparison with the predictions based on the LETs at NLO (blue shaded bands) using the scattering length in Eq. (3.14)
as input. For remaining notation see Fig. 3.

Here, the errors at LO and in the first parentheses at NLO
correspond to the uncertainty in the dineutron binding energy
while the ones in the second parentheses at NLO reflect the
unknown Mπ dependence of β subject to the constraint δβ = 1.
These results are in conflict with the NPLQCD determination
based on the effective range expansion, namely [9]

(
Mπa(1S0)

)−1 = 0.021
(+0.028
−0.036

)(+0.032
−0.063

)
,

Mπr (1S0) = 6.7
(+1.0
−0.8

)(+2.0
−1.3

)
. (3.13)

Again, we believe that the analysis performed by the
NPLQCD Collaboration and based on the effective range
approximation is not self-consistent. All arguments given in
the previous section apply to the 1S0 channel too, even though
our conclusions in this case are somewhat less stringent due
to the lower accuracy of the LETs. To further elaborate on
this point and to provide an assessment of the robustness of
our conclusions, we have redone the calculations by using the
lattice phase shifts instead of the dineutron binding energy as
input. Specifically, we vary the scattering length, which is now
used as input for the LETs at NLO, in the range consistent with
the lattice-QCD phase shifts at the two lowest energies. The
resulting phase shifts, corresponding to the inverse scattering
length in the range of

(
Mπa(1S0))−1 = −0.01 ± 0.06, (3.14)

are shown in the left panel of Fig. 7. Here, we set δβ = 0, and
the width of the band reflects the uncertainty of the lattice-QCD
phase shifts used as input. Notice that while the NPLQCD
value of the inverse scattering length given in Eq. (3.13)
is indeed consistent with the range of values in Eq. (3.14),
the obtained solutions correspond to the bound (virtual)
state binding energy of Bnn < 0.5 MeV (Bvirtual

nn < 0.6 MeV),
which is in conflict with the lattice-QCD prediction. The
apparent bound state corresponding to the leftmost intersection
point of the gray bands with the unitarity term ik/Mπ =
−

√
−(k/Mπ )2 in the right panel of Fig. 6 is an artifact of

the effective range approximation.

Finally, it is interesting to compare our results for the
scattering length and effective range with the values obtained
in Ref. [9] within the Kaplan-Savage-Wise (KSW) approach
to chiral EFT [44,45], namely

a
(1S0)
KSW, NLO = 2.62(07)(16) fm,

a
(1S0)
KSW, NNLO = 2.99(07)(15) fm,

(3.15)
r

(1S0)
KSW, NLO = 1.320(18)(38) fm,

r
(1S0)
KSW, NNLO = 1.611(42)(83) fm.

Notice that the effective range vanishes at LO in the KSW
approach, and the number of independent parameters fitted to
lattice data is equal to 1, 2, and 3 at LO, NLO, and next-to-
next-to-leading order (NNLO), respectively. Our NLO LET
results are in excellent agreement with the NLO KSW values
and also nearly consistent with the NNLO KSW results.

IV. THE EFFECTIVE RANGE AT UNPHYSICAL
PION MASSES

As already discussed, Ref. [19] conjectured that the
effective range calculated on lattice at Mπ � 800 MeV and
expressed in units of the pion mass may be extrapolated
to the physical point by a linear function of Mπ . We are
now in the position to test this hypothesis by an explicit
calculation based on the LETs. Using the NN bound state
energies calculated on the lattice at Mπ � 300 MeV [8],
Mπ � 390 MeV [7], Mπ � 450 MeV [9], and Mπ � 510 MeV
[21], we employ the LETs at NLO to predict the values of
the effective range in the 1S0 and 3S1 partial waves. The
results are visualized in Fig. 8.6 Note that the last point in

6The value for Mπr (1S0) at Mπ � 800 MeV given in Ref. [19],
Mπr (1S0) = 4.61(+0.29

−0.31)(+0.24
−0.26), is somewhat different from the one

plotted in their Fig. 11 and corresponding to the linear extrapolation
specified in Eq. (8) of that work. The lattice-QCD result at Mπ � 800
MeV shown in the left panel of Fig. 8 is based on the linear
extrapolation specified in Eq. (8) of Ref. [19].
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FIG. 8. Nucleon-nucleon effective range (Mπr) in the 1S0 (left panel) and 3S1 (right panel) partial waves predicted based on the next-to-
leading order LETs using the bound state energies calculated on the lattice as input. Blue open triangles, orange crosses, green open circles and
purple solid circles show Mπr for the binding energies at Mπ � 300 MeV [8], Mπ � 390 MeV [7], Mπ � 450 MeV [9], and Mπ � 510 MeV
[21], respectively. The uncertainty of our results for Mπr is twofold: the smaller error bars reflect the uncertainty of the lattice results for the
binding energies used as input while larger ones correspond to the theoretical uncertainty of the LETs estimated by setting δβ = 1 and the
uncertainty of the lattice results added in quadrature. Red solid triangles correspond to the NPLQCD results for Mπr at Mπ � 800 MeV [18].
The black squares show the empirical values of the effective range at the physical pion mass [31,46].

both panels at Mπ � 800 MeV represents the result of lattice
calculations by the NPLQCD Collaboration [19], while the
LETs are already beyond their range of validity at such heavy
pion masses. As seen from the right panel of Fig. 8, the NLO
LETs predictions for the effective range in the 3S1 partial wave
are in very good agreement with the linear in Mπ behavior
of the quantity Mπr (3S1). Interestingly, the lattice data point
at Mπ � 800 MeV is consistent with the NLO LET results
linearly extrapolated to higher pion masses. The results from
the LETs for the 1S0 partial wave, although less conclusive due
to larger uncertainties, are also generally consistent with the
linear in Mπ behavior of Mπr (1S0). We note at this point that the
lattice data at Mπ � 800 MeV were obtained in Ref. [18] by
using the effective range approximation. The same procedure
was employed by the NPLQCD Collaboration to extract the
scattering length and effective range at Mπ � 450 MeV and
is criticized in this work. It is conceivable that the data
at Mπ � 800 MeV might also suffer from underestimated
systematic uncertainties.

V. SUMMARY

In this paper, we have employed the low-energy theorems
for NN scattering, which have been generalized in Ref. [24]
to the case of unphysical pion masses, to analyze the recent
lattice-QCD results at Mπ � 450 MeV reported by the
NPLQCD Collaboration [9]. The pertinent results of our work
can be summarized as follows.

(1) We have used the LETs along with the lattice-QCD
results for the deuteron and dineutron binding energies
in order to extract the energy behavior of the NN
phase shifts in the 3S1 and 1S0 partial waves and the
mixing angle ε̄1 at Mπ � 450 MeV. Our LO and NLO
calculations suggest a good (fair) convergence of our
theoretical approach in the spin-triplet (spin-singlet)
channel. In both channels, the resulting phase shifts

are in good agreement with the lattice-QCD results
of Ref. [9] for momenta of k > 300 MeV, but are
inconsistent with the lattice-QCD predictions at lower
energies.

(2) We have used the LETs to extract the values of the
scattering length and effective range in the 3S1 and 1S0

partial waves from the bound state energies obtained
on the lattice. The extracted value of Mπr (3S1) is in
excellent agreement with the linear in Mπ behavior
of this quantity conjectured in Ref. [19]. On the other
hand, our results are in strong disagreement with the
values obtained by the NPLQCD Collaboration from
fits to the lattice-QCD data based on the effective range
approximation. We have argued that the very large
values for the effective range found in Ref. [9] make
the effective range approximation invalid in the energy
region corresponding to the lattice data.

(3) Our results for phase shifts, scattering lengths, and
effective ranges agree reasonably well with those
obtained in Ref. [9] by analyzing lattice-QCD data
within the various EFT approaches.

Given considerable evidence of a bound dineutron and a
stronger bound deuteron at heavy pion masses [7–9,21], our
findings indicate that the lattice-QCD calculations of the NN
phase shifts of Ref. [9] using the extended Lüscher approach
may possibly suffer from underestimated systematic errors at
the lowest considered energies. While this seems less likely
to us, the origin of the observed inconsistencies may also
be related to the incorrect determination of the deuteron and
dineutron binding energies on the lattice; see Refs. [22,47] for
related discussions.

In addition, using lattice results for the binding energies
of the deuteron and dineutron at various pion masses as input
[7–9,21], we demonstrate that the effective range expressed in
units of the pion mass behaves as a linear function of Mπ .
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Our work demonstrates that the LETs provide a useful
tool to analyze lattice QCD results for the NN system by
allowing one to extract the scattering phase shifts from the
calculated bound state energies and/or test consistency of
lattice calculations if several observables are computed for
a given value of the pion mass.
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