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Pairing effects on neutrino transport in low-density stellar matter
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We investigate the impact of pairing correlations on neutrino transport in stellar matter. Our analysis is
extended to nuclear matter conditions where large density fluctuations may develop, associated with the onset of
the liquid-vapor phase transition, and where clustering phenomena occur. Within a thermodynamical treatment,
we show that at moderate temperatures, where pairing effects are still active, the scattering of neutrinos in
the nuclear medium is significantly affected by pairing correlations, which increase the neutrino trapping, thus
modifying the cooling mechanism, by neutrino emission, of protoneutron stars.
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Transport properties of neutrinos play an essential role
in the description of gravitational collapse, supernovae, pro-
toneutron stars, and binary mergers of compact objects. For
instance, the cooling process of newly formed neutron stars is,
over a broad time interval (10−10–105 yr), dominated by the
emission of neutrinos of all flavors. In fact, the neutrino flux
is the only direct probe of the mechanism of supernovae and
the structure of protoneutron stars [1–5].

The most important ingredient of neutrino transport cal-
culations is the neutrino opacity, essentially determined by
charged current absorption and neutral current scattering
reactions. While scattering from electrons dominates the
neutrino thermalization process, neutrino-baryon scattering
and absorption are the leading mechanisms for energy and
lepton number transport [6–9].

Recently, many efforts have been devoted to describing
the neutrino production and interactions in great detail [10–
15]. In particular, it appears that this mechanism is clearly
affected by general phenomena, such as phase transitions,
characterizing the behavior of interacting many-body systems.
Liquid-gas phase transitions are expected to appear for nuclear
matter at subsaturation density and relatively low temperature
(T � 15 MeV), driven by the unstable nuclear mean field
(i.e., by spinodal instabilities) [16]. This important feature of
nuclear matter is closely connected to the multifragmentation
mechanism experimentally observed in nuclear reactions [17]
and to the occurrence of clustering phenomena in the inner
crust of neutron stars [18,19]. It was recently pointed out that
large density fluctuations, associated with the first-order nu-
clear liquid-gas phase transition, hugely increase the scattering
of neutrinos [20], thus quenching their emissivity processes in
low-density regions.

As a quite general feature, fermionic systems may also
exhibit pairing correlations. Their importance is widely dis-
cussed in the astrophysical context, as far as cooling processes
[21] and glitch phenomena [22,23] are concerned.

Since pairing correlations are mostly active at low density
and relatively low temperature, below the critical temperature
for the transition from superfluid to normal matter, in a certain
region of the nuclear matter phase diagram volume instabilities
may coexist with strong pairing effects [24].

The aim of this work is to investigate the influence of
pairing correlations on the neutrino scattering cross section,
in conditions of moderate temperature, charge asymmetry,
and low density (close to the spinodal border), which are
encountered in protoneutron stars, as well as in supernova
explosions (pre-bounce phase).

At the onset of spinodal instabilities, the speed of sound
vanishes and the nucleonic free energy density exhibits a
negative curvature, both in symmetric and asymmetric matter.
Owing to the global isoscalar-like character of the instability,
the density response function is enhanced, thus modifying
the neutral current neutrino opacity, whereas charged current
absorption processes are not affected. Hence in the following
we will concentrate only on neutral current neutrino scattering.
We will consider nonrelativistic nucleons coupled to neutrinos
through only the vector neutral current, neglecting contribu-
tions from the axial current, because spin-density fluctuations
do not present any particular behavior for the assumed physical
conditions.

Then the differential cross section (per unit of volume V )
for scattering in the medium of neutrinos with energy Eν , as a
function of the neutrino final energy E′

ν and scattering angle
θ , is given by [8,25]

1

V

d3σ

dE′
ν d�2

= G2
F

8π3
(E′

ν)2(1 + cos θ )S00
V (ω,q), (1)

where ω = Eν − E′
ν denotes the energy transfer to the

medium, q is the momentum transfer, related to ω and
to the neutrino scattering angle θ (we use units such that
� = c = kB = 1). GF denotes the weak coupling constant and
S00

V identifies the dynamic form factor, which can be expressed
in terms of the nucleon density-density correlation factor as

S00
V (ω,q) =

∫
dt dr eiωt e−iq·r〈J (N)0(t,r)J (N)0(0,0)〉, (2)

where J
(N)
0 (t,r) = ∑

i=n,p c
(i)
V ρi(t,r), with c

(n)
V = −0.5, c(p)

V =
0.036, and ρi(t,r) (i = n,p) being the nucleon (neutron or
proton) local density. Based on energy conservation, we see
that a typical energy transfer ω from the medium to the neutrino
is of the order of q times the thermal velocity of nucleons
(T/m)1/2. Thus, in the limit of heavy nucleons, when we
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integrate the differential cross section over a range of ω values,
the other factors in the integrand can be evaluated at ω = 0, so
that

S00
V (ω,q) → δ(ω)

∫
dω′S00

V (ω′,q) = 2πδ(ω)S00
V (q), (3)

where S00
V (q) is the static structure factor, which, according

to Eq. (2), corresponds to n − n, p − p, and n − p density
fluctuation correlations taken at equal time:

S00
V (q) = 〈δJ (N) 0(q)δJ (N) 0(−q)〉. (4)

Exploiting the fluctuation-dissipation theorem [26] and ne-
glecting quantum fluctuations, the static structure factor can
be expressed, for a system at temperature T, as

S00
V (q) = T

[
c

(n)
V

2C−1
nn (q) + c

(p)
V

2C−1
pp (q) + 2c

(n)
V c

(p)
V C−1

np (q)
]
,

(5)

where the matrix C−1 is the inverse of curvature matrix of the
system free energy density [8].

In this Rapid Communication, we consider stellar matter
where the proton charge is globally neutralized by a Fermi gas
of electrons. The local energy density, which is a function of
the total density ρ = ρn + ρp, the proton fraction yp = ρp/ρ
and the electron density ρe, can be written as

Etot(ρ,yp,ρe) = ENM + Ef
NM + ECoul + Ee(ρe), (6)

where Ee is the energy density associated with the electron
kinetic energy, and the contributions of the Coulomb term,
ECoul, related to the interaction between all charges (protons
and electrons), and of nuclear matter surface terms, Ef

NM, are
explicitly evidenced.

The electron term is readily evaluated in the approximation
of a degenerate, ultrarelativistic Fermi gas, hence the electron
chemical potential μe is just equal to the electron Fermi
momentum.

The spin-saturated nuclear matter energy density ENM at
finite temperature T, in the BCS approximation reads [24,27]

ENM(ρ,yp) =
∑
i=n,p

[
2
∫

dp
(2π )3

fi

p2

2m∗
i

+1

4
vπ (ρi)|ρ̃i |2

]
+ ESky.

(7)
In this equation, fi is the occupation number for a nucleon of
species i with momentum p and ρ̃i = 2
i(ρi)/vπ (ρi) denotes
the anomalous density with the temperature-dependent pairing
gap 
i . The corresponding quasiparticle energies are given by

E
 =
√

ξ 2 + 
2
i , where ξ = p2/2m∗

i − μi + Ui , with μi and

Ui = ∂ENM
∂ρi

the chemical and mean-field potential, respectively,
for each nucleonic species i. We note that in the definition of
the mean-field potential Ui , the derivative with respect to ρi is
taken at constant ρ̃i .

In the following numerical applications, we will use
the SAMi-J35 parametrization [28] of the Skyrme energy
functional for the local energy density ESky and the effective
nucleon mass m∗

i . For the pairing term, we adopt here the
same functional form as in [24,27], whose density-dependent
strength vπ (ρi) is calculated exactly in the BCS approximation
by inverting the gap equation, to reproduce the 1S0 pairing

gap of pure neutron matter given by Brueckner-Hartree-Fock
calculations (see below) [29]. It should be remarked that
according to the asymmetry conditions of the stellar matter,
the pairing interaction acts only between nucleons of the same
type. The results are then extended to the pp case, assuming
that the pairing strength is the same as in the nn case, just
depending on the density of the species considered. Within
this framework, one can then determine the derivatives of μi

with respect to ρi and so evaluate the curvature matrix [30],
which is needed in the calculation of the cross section:

C(q) =
⎛
⎝∂ρn

μn ∂ρp
μn 0

∂ρn
μp ∂ρp

μp 0
0 0 ∂ρe

μe

⎞
⎠ + 2q2

⎛
⎝C

f
nn C

f
np 0

C
f
pn C

f
pp 0

0 0 0

⎞
⎠

+ 4πe2

q2

⎛
⎝0 0 0

0 1 −1
0 −1 1

⎞
⎠, (8)

where e2 = 1.44 (MeV fm) and the coefficients C
f
ij are

combinations of the Skyrme surface parameters [30].
The pairing interaction modifies neutron and proton chem-

ical potentials, and their derivatives, which appear in the
curvature matrix, Eq. (8). Thus, in suitable conditions of
density, asymmetry, and temperature, we can expect a non-
negligible impact on the neutrino differential cross section.

As stressed before, neutrino trapping is quite influenced
by large density fluctuations of the nuclear density, which
develop close to the spinodal border and may lead to clustering
phenomena. Within the framework adopted here [see Eq. (5)],
the amplitude of neutron and proton density fluctuations
is essentially related to the inverse of the eigenvalues of
the curvature matrix and so become quite large when the
isoscalar-like one, λS(q), is small. In this case, we expect
pairing correlations to have a large relative weight on the
curvature matrix elements, especially close to the critical
temperature Tc for the transition from normal to superfluid
matter, where discontinuities appear in the chemical potential
derivatives [24]. Hence we will discuss stellar matter at mod-
erate temperature (below 2 MeV), at density and asymmetry
conditions close to the spinodal border, where λS vanishes.

For the sake of simplicity, let us start considering only
neutron pairing. As shown in the following, the latter leads, in
any case, to the largest effects.

Since the magnitude of the gap in neutron matter is not clear
yet, we have considered two possible scenarios for pairing,
namely, the case of the bare nucleon-nucleon interaction
(denoted as strong pairing hereafter) or calculations taking
into account in-medium effects on two-body interaction and
self-energy, which lead to a considerable reduction of the
pairing gap (denoted as weak pairing) [29]. In Fig. 1 (left
panel) we represent the critical temperature, Tc � 0.57
n, as
a function of the neutron density for the two cases.

The right panel shows the spinodal border (full line), in
the (ρ,yp) plane, at temperature and q values of interest for
our study. It should be noticed that because of Coulomb and
surface effects, the spinodal border depends on q, but it is not
very sensitive to the temperature within the range considered
in our study. For a fixed value of the temperature T, the plot on
the left panel allows one to identify two values of the neutron
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density ρn for which the temperature considered corresponds
to the critical one, so pairing effects could be large. In the strong
pairing case, the density values corresponding to T = 0.5, 1,
and 1.5 MeV are indicated by circles in the plot. Each value
of the neutron density defines a hyperbole in the (ρ,yp) plane
(see the dashed lines on the right panel). Then the crossing
of the dashed lines with the spinodal border identifies the
density-asymmetry regions where large density fluctuations
can coexist with important pairing contributions. It appears
that a variety of conditions, from very small densities up to
ρ ≈ 0.4ρ0 ( ρ0 = 0.16 fm−3 being the saturation density) and
with the proton fraction ranging from quite low values up to
yp ≈ 0.5, are good candidates for our study. These conditions
may occur in the inner crust of a protoneutron star or in the pre-
bounce phase of a supernova explosion, when the temperature
is still low (see, e.g., Refs. [3,31–34]).

Guided by this analysis, in the following we will discuss the
results obtained for the two sets of parameters: (1) ρ = ρ0/100
at T = 0.5 MeV, and (2) ρ = ρ0/4 at T = 1.4 MeV, i.e., we
will consider two opposite density regimes at temperatures
where we expect large pairing effects. Several yp values will
be tested, close to the values suggested by Fig. 1. For the
conditions considered now, only neutrons are paired, because
the temperature values are always above the proton critical
one.

In Fig. 2 (left panel) we display the neutrino differential
cross section, σV E ≡ 1/(V E2

ν )d2σ/d�2 (full lines), as a
function of the neutrino energy Eν (we consider a scattering
angle θ such that q = Eν), as obtained in the strong pairing
case. To underline the importance of pairing effects, we
also show (dashed lines) the results obtained neglecting the
pairing interaction in our calculations. At the lowest density
considered [case (1), Fig. 2(a)], the proton fraction yp = 0.045

FIG. 1. Left panel: The critical temperature for the transition from
superfluid to normal matter, as a function of the reduced neutron
density ρn/ρ0, as obtained in the strong pairing (full line) and weak
pairing (dot-dashed line) cases. Right panel: The spinodal border (full
line), in the (ρ,yp) plane, associated with temperature T = 0.5 MeV
and momentum transfer q = 30 MeV. The inset shows a zoom of the
low-density region. The dashed lines are curves of constant neutron
density, corresponding to the values associated with the circles in the
left panel (see text for more details).

FIG. 2. Left panels: Neutrino differential cross sections, σV E

(see text), as a function of the neutrino energy Eν , obtained in the
full calculation (strong pairing case, full lines) or neglecting the
pairing interaction (dashed lines). Right panels: Ratio R between
the full calculation and the results obtained neglecting the pairing
interaction, as a function of the cosine of the neutrino scattering
angle θ , for selected neutrino energies. Results are shown for the
following conditions: ρ = ρ0/100 − T = 0.5 MeV [panels (a) and
(c)] and ρ = ρ0/4 − T = 1.4 MeV [(b) and (d)]. The proton fractions
considered are indicated inside the figure.

corresponds to conditions which are close, but outside the
spinodal region for all q values. One can notice quite large
pairing effects on the cross section, especially for intermediate
neutrino energies, where a bump is observed in the full
calculation. In this case the momentum transfer corresponds to
density oscillations not much affected by Coulomb (acting at
small q) or surface (acting at large q) effects, so that λS remains
close to zero for an appreciable extent of the momentum
transfer and the pairing effects are clearly enhanced. We notice
that pairing correlations go in the direction of reducing the
curvature of the free energy density, leading to an increase of
density fluctuations and related neutrino cross section. This
effect, associated with neutron pairing, indicates that neutron
correlations favor matter clustering.

Due to Coulomb repulsion effects, when the momentum
transfer q approaches zero, the eigenvalue λS(q) is always
positive and therefore density oscillations are stable. However,
for higher proton fractions (see the result for yp = 0.1), nuclear
matter approaches the spinodal border already for oscillations
related to quite low momentum transfer. At the crossing, a
divergent behavior is observed for density fluctuations and
neutrino cross section. Clearly here one should go beyond
the second curvature of the free energy density, in order
to accurately evaluate density fluctuations. However, our
calculations already point out interesting pairing effects, with
a significant shift to smaller values of the neutrino energy
associated with the divergency in the full calculations. This
implies that also less energetic neutrinos have more chances to
be trapped, so that the energy flux carried away by neutrinos
could be damped by pairing correlations.
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Larger transferred momenta q correspond to unstable
oscillations and since λS(q) is negative, one cannot simply
apply the prescription given above [Eq. (5)] to evaluate neutron
and proton density fluctuations. Indeed, whereas in stable sit-
uations the variance associated with isoscalar-like fluctuations
equals σS(q) = T/λS(q), in presence of instabilities it grows
exponentially with time until a new equilibrium condition,
corresponding to clustered matter, is reached [16]. Hence,
inside the spinodal region the correct equilibrium fluctuations
cannot be estimated within our framework. However, as a
first-order approximation, we assume that the equilibrium
variance is close to the value obtained, for each q, at the time
t ≈ τ (q), τ (q) being the instability growth time of the q mode
considered [35], leading to σS(q) ≈ T/|λS |. Then the elements
of the curvature matrix, Eq. (8), are modified accordingly. The
corresponding neutrino cross sections are indicated by thin
lines in Fig. 2. A similar behavior for the neutrino cross section
as the one just discussed for yp = 0.1 is observed at a higher
proton fraction, yp = 0.3 [not shown in Fig. 2(a)].

Figure 2(b) displays the results obtained for case (2), where,
as indicated by the analysis shown in Fig. 1, we take smaller
proton fractions yp. We note that this also corresponds to the
trend predicted for the proton fraction in the inner crust of
neutron stars [19,34]. The same considerations made above
for the lower density case hold. However, here the pairing
effects, though still significant, are reduced with respect to the
previous case, because they are linked to the density derivative
of the pairing gap (and thus of the critical temperature), which
is steeper for case (1) [24].

To emphasize the role of pairing effects, Figs. 2(c) and
2(d) represent the ratio R between the cross section associated
with the full calculations, performed employing the strong
pairing force, and the results obtained neglecting the pairing
interaction, as a function of cos θ , for selected neutrino
energies, compatible with β-equilibrium conditions. Unstable
q values are not considered in this plot. Results are shown
for three proton fractions for cases (1) and (2). From this
representation, it clearly emerges how important pairing
effects become approaching the spinodal border.

To explore the sensitivity of our results to the strength of the
pairing interaction, calculations have been performed also for
the weak pairing case. Results are shown in Fig. 3 for the lowest
density case. Since, as one can observe in Fig. 1, the density
derivative of the critical temperature is smaller in the case
of weak pairing, the influence of the pairing correlations on
the neutrino cross section is reduced, though still appreciable.
Clearly, the most important consequence of the weak pairing
assumption is the strong reduction of the maximum critical
temperature (see Fig. 1), which restricts considerably the range
of applicability of our calculations.

The influence of the temperature on our results is discussed
in Fig. 4, where the quantity σV E is displayed for selected
neutrino energies and q = Eν , as a function of T, for density
conditions as in case (1) [Fig. 4(a)] and case (2) [Fig. 4(b)].
Two proton fractions are considered. The full calculations,
performed for the strong pairing case, are compared to those
obtained neglecting the pairing interaction. The momentum
transfer considered in Fig. 4(a) corresponds to stable oscil-
lations. Pairing effects are quite important already at very

FIG. 3. Left panels: Neutrino differential cross sections, σV E

(see text), as a function of the neutrino energy Eν , obtained for
the full calculation, in the strong pairing (full lines) or weak
pairing (dashed-dotted line) case, or neglecting the pairing interaction
(dashed lines). Right panels: Ratio R between the full calculation and
the results obtained neglecting the pairing interaction, as a function
of the cosine of the neutrino scattering angle θ , for selected neutrino
energies. Results are shown for ρ = ρ0/100 − T = 0.4 MeV. The
proton fractions considered are indicated inside the figure.

low temperature, where pp pairing is also present, but they
increase approaching the neutron critical temperature, Tc ≈
0.65(0.55) MeV for yp = 0.1(0.3) and then vanish. Indeed,
quite interestingly, we observe a jump in the cross section at
T = Tc, which suddenly reaches the value of normal matter.
A small jump also occurs for both proton fractions at a lower
temperature, due to the disappearance of proton pairing. The
jumps observed are related to the discontinuity emerging in the

FIG. 4. Top panels: Neutrino differential cross section σV E (see
text) as a function of the temperature T, obtained in the full calculation
(strong pairing case, full lines) or neglecting the pairing interaction
(dashed lines). Bottom panels: Ratio R between the full calculation
and the results obtained neglecting the pairing interaction, as a
function of T. Results are shown for the following conditions:
ρ = ρ0/100 [panels (a) and (c)] and ρ = ρ0/4 [(b) and (d)]. The
proton fractions considered are indicated inside the figure.
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density derivative of the chemical potential, ∂μi/∂ρi , which
is connected to the matter compressibility, in analogy with the
well-known heat capacity discontinuity [24,34].

The conditions of Fig. 4(b) are such that the q value consid-
ered corresponds to unstable fluctuations at zero temperature.
A divergency occurs for the cross sections at the temperature
associated with the crossing of the spinodal border. Then, at
higher temperature, density oscillations become stable. We
note that in spite of the increasing temperature, the cross
section reduces when the nuclear matter moves away from the
spinodal border. Also in this case a discontinuity is observed
at the neutron critical temperature. To better evidence the role
of pairing effects, Figs. 4(c) and 4(d) show the ratio R between
the full calculations and the results obtained neglecting pairing
correlations. As in the previous figures, unstable conditions are
not plotted in Fig. 4(d).

To conclude, our analysis gives evidence of important
pairing effects on neutrino transport, for suitable density,
asymmetry, and temperature conditions, which are of relevant
interest for the evolution of neutron stars and supernovae
explosion in the pre-bounce phase [33,34]. We concentrate
on the behavior of low-density matter, close to the spinodal

border, characterized by quite large density fluctuations.
Focusing on neutral current neutrino scattering, we generally
observe an increase of the neutrino differential cross section
in paired matter, which enhances neutrino trapping and
reduces the energy flux carried out by neutrino emission.
This is essentially due to attractive neutron-neutron pairing
correlations, which favor low-density clustering. From this
study new hints emerge about the impact of pairing effects on
the cooling mechanism, by neutrino emission, of low-density
stellar matter at moderate temperature. However, it should be
noticed that our calculations are performed within the mean-
field approximation. As shown by more sophisticated analyses
[19,36], many-body correlations and clustering phenomena
can affect the thermodynamical conditions of the low-density
matter interacting with the neutrinos. Moreover, the presence
of large clusters, as the ones associated with the occurrence of
spinodal instabilities, may influence quantitatively the pairing
effects in the inner crust of a neutron star [37]. These issues
deserve further investigation.

Enlightening discussions with F. Gulminelli, S. Typel, and
H. H. Wolter are gratefully acknowledged.

[1] H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14 (1985).
[2] A. Burrows, Annu. Rev. Nucl. Part. Sci. 40, 181 (1990).
[3] M. Prakash, J. M. Lattimer, J. A. Pons, A. W. Steiner, and S.

Reddy, in Lectures Notes in Physics, edited by D. Blaschke,
N. K. Glendenning, and A. Sedrakian (Springer-Verlag, Berlin,
2001), Vol. 578, p. 364.

[4] H. T. Janka et al., Phys. Rep. 442, 38 (2007).
[5] M. Baldo, G. F. Burgio, H. J. Schulze, and G. Taranto, Phys.

Rev. C 89, 048801 (2014).
[6] S. Reddy, M. Prakash, and J. M. Lattimer, Phys. Rev. D 58,

013009 (1998).
[7] S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev.

C 59, 2888 (1999).
[8] A. Burrows and R. F. Sawyer, Phys. Rev. C 58, 554 (1998).
[9] S. Reddy, G. F. Bertsch, and M. Prakash, Phys. Lett. B 475, 1

(2000).
[10] G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phys. Rev.

C 68, 035806 (2003).
[11] C. Shen, U. Lombardo, N. Van Giai, and W. Zuo, Phys. Rev. C

68, 055802 (2003).
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