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We discuss anharmonicity of the multi–octupole-phonon states in 208Pb based on a covariant density functional
theory by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom.
Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation
energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly
enhances the fragmentation of the two–octupole-phonon states in 208Pb. Using those transition strengths as inputs
to coupled-channels calculations, we then discuss the fusion reaction of 16O +208Pb at energies around the
Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves
previous coupled-channels calculations in the harmonic-oscillator limit, significantly reducing the height of the
main peak in the fusion barrier distribution.
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Collective vibrational excitations exist commonly in many-
fermion systems [1]. Here, the concept of the phonon is
an important keystone to understand these excitations. For
instance, for finite nuclear systems, vibrations of the nuclear
surface are treated as elementary excitations [2,3]. The
phonons for these vibrations are bosonlike in character, and
multiple excitations of the same type are possible, resulting in
multiphonon states [2]. In a harmonic vibration, all the levels
in a phonon multiplet are degenerate in energy, and the energy
spacing between neighboring multiplets is a constant. The
energy patterns close to such harmonic vibration have been
observed in nearly spherical nuclei in different mass regions,
and these states have been primarily interpreted as multipole
phonon states [2,4,5].

From a microscopic viewpoint, however, the collective
excitations are generated by a coherent superposition of
quasiparticle excitations of fermions in orbits close to the
Fermi surface. The Pauli principle correction, together with
residual interactions among phonons (that is, mode-mode
couplings), modifies the structure of multiphonon states and
makes them highly fragmented [6]. To assess the degree
of such anharmonicity is a fundamental question in nuclear
physics that needs to be studied more extensively. In particular,
we mention that recent studies on the anharmonicity in the
multi–quadrupole-phonon states have questioned the concept
of low-energy vibrational modes in atomic nuclei [7,8].

The double-magic nucleus 208Pb provides an ideal lab-
oratory to examine the concept of multi–octupole-phonon
excitations in nuclear systems as the first excited 3− state of this
nucleus has long been interpreted as a collective one–octupole-
phonon state [9]. In the past decades, several experimental
searches for the two–octupole-phonon (TOP) states in 208Pb
have been carried out [10–13]. Even though many of the TOP
members have been identified, the multiphonon excitations in
208Pb have not yet been understood completely. This is the

case especially for the nature of the TOP multiplets, which has
been predicted to show a strong fragmentation [13–15].

Incidentally, heavy-ion fusion reactions provide an alter-
native way to probe the multiphonon excitations in atomic
nuclei, which significantly affect the subbarrier fusion cross
sections [16–19] as illustrated by coupled-channels calcula-
tions [16,20,21]. Previous coupled-channels calculations for
the fusion reaction of 16O +208Pb based on multi-harmonic-
phonon excitations fail to reproduce the observed energy de-
pendence of the fusion cross sections [22–24] and overestimate
the height of the main peak in the so-called fusion barrier
distribution [25]. It has been a long-standing unsolved question
how the fusion cross sections for the 16O +208Pb system can
be accounted for by the coupled-channels approach.

In this Rapid Communication, we for the first time examine
the concept of multi–octupole-phonon excitations in 208Pb in
the microscopic framework of the generator coordinate method
(GCM) based on a covariant energy density functional [26].
This beyond mean-field approach is also referred to as mul-
tireference (MR) covariant density functional theory (DFT)
and has been rapidly developed in the past decade [27–29]. In
this method, collective vibrational excitations are described as
fluctuations in nuclear shapes in a full microscopic manner,
and therefore, the Pauli principle correction to the phonon
excitations is taken into account automatically. We show that
this method is capable to capture the main characters of nuclear
multipole phonon excitations, which are generally fragmented
by its internal fermionic structure and by coupling to other
shape degrees of freedom. We show that these anharmonic fea-
tures considerably improve the coupled-channels calculations
for the fusion reaction of 16O +208Pb, significantly reducing
the height of the main peak in the fusion barrier distribution.

In the multireference covariant density functional theory,
the wave functions for nuclear collective states are con-
structed by superposing a set of quantum-number projected
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nonorthogonal mean-field reference states |β2β3〉 around the
equilibrium shape. Here, the reference states |β2β3〉 are
obtained by deformation-constrained relativistic mean-field
calculations with the quadrupole and octupole-deformation
parameters β2 and β3, respectively. The wave functions thus
read

|JMπ〉 =
∑

q

f Jπ (q)P̂ J
M0P̂

N P̂ ZP̂ π |q〉, (1)

where q refers to (β2,β3) and P̂ ’s are projection operators
onto the angular momentum J , the parity (π = ±), and the
neutron and proton numbers (N,Z) [3]. For the sake of
simplicity, we have restricted all the reference states |q〉 to be
axially deformed. We note that the effects of pairing vibrations
are not taken into account in the present calculation, even
though they may have an influence on low-lying excited 0+
states [30]. The weight function f Jπ (q) in Eq. (1) as well as
the energy Eπ

J for each GCM state |JMπ〉 are determined
by the Hill-Wheeler-Griffin equation [31]. As in our previous
studies [27], the mixed-density prescription is adopted for the
energy overlap in the Hamiltonian kernel. In the calculations
presented below, we employ the relativistic energy functional
PC-F1 [32]. The pairing correlation among the nucleons is
treated in the BCS approximation with a density-independent
δ force supplemented with a smooth energy cutoff [33]. The
strength parameters in the pairing force are chosen according
to the PC-F1 force [32].

We first examine the concept of one-dimensional vi-
bration in 208Pb with an octupole degree of freedom by
freezing the quadrupole degree of freedom at β2 = 0. The
deformation energy curve in the mean-field approximation
as well as the projected energy curve for Jπ = 0+ are
shown in Fig. 1. The excitation energies of natural-parity
phonon states and the collective wave functions defined by
gJπ (q) ≡ ∑

q ′ [N Jπ
q,q ′ ]1/2f Jπ (q ′) for the 0+

1 , 3−
1 , [3− ⊗ 3−]6+ ,

and [3− ⊗ 3− ⊗ 3−]9− states are also shown, where N Jπ
q,q ′ is

the norm kernel in the Hill-Wheeler-Griffin equation [28].
The mean-field energy curve is almost parabolic and is
centered at β3 = 0. As expected, the dynamical octupole
effect originated from the symmetry restoration generates
two octupole minima and shifts the dominant component
in the 0+ state to an octupole-deformed configuration with
|β3| ∼ 0.1. One can also see that the multiples of two- and
three-phonon states appear at similar excitation energies to
each other. The spin average of the excitation energies for
the natural-parity two–and three–octupole-phonon states is 9.6
and 13.1 MeV, respectively, which is about two and three times
the energy of the one–octupole-phonon state 4.3 MeV, close
to ∼4.0 MeV from nonrelativistic GCM calculations [34,35]
(the excitation energies are expected to be lowered down if the
cranking mean-field states are adopted in the configuration
mixing calculations [36,37]). Notice, however, that there
are some energy displacements, indicating the existence of
anharmonicity. The energy displacement appears to increase
with the number of the phonons in the states. As can be seen
in the figure, the wave functions for the 0+

1 and 3−
1 states

show a similarity to the wave functions for the zero- and
one-phonon states of a harmonic oscillator, whereas those of

FIG. 1. The total energy (normalized to the GCM ground state)
of the 208Pb nucleus as a function of octupole-deformation parameter
β3. The quadrupole degree of freedom is frozen at β2 = 0. The energy
curve with a projection onto the particle numbers (N,Z) and the spin
parity of 0+ is also shown by the solid line, together with the excitation
energies and the collective wave functions for the states.

the [3− ⊗ 3−]6+ and [3− ⊗ 3− ⊗ 3−]9− states are considerably
distorted.

It is interesting to notice that an anharmonicity is stronger
in the transition strengths as shown in Fig. 2(c) where the
E3-transition strength from the 3−

1 state to the ground state is
underestimated by a factor of more than 2. Moreover, the E2-
transition strength from the first 2+ state to the ground state
is underestimated by three orders of magnitude. The strength
of the E3 transition from the two-phonon multiplets to the 3−

1
state is also much larger than twice the B(E3) value from the
3−

1 state to the ground state. In particular, the E3 transition
from the [3−

1 ⊗ 3−
1 ]0+ state to the 3−

1 state is much stronger
than that from the other multiplets of the TOP states. We
note that a large anharmonicity in the transition strengths also
has been found in the multi–quadrupole-phonon excitations in
Refs. [7,8].

To examine the anharmonicity arising from the coupling
between the octupole and the quadrupole shape fluctuations,
we next carry out the GCM calculation on the two-dimensional
(β2,β3) deformation plane. The calculated low-lying energy
spectra are shown in Fig. 2(b) where only natural-parity
states are plotted. Here, the spectra are scaled by a constant
factor so that the energy of the first 3− state matches with
the empirical value 2.62 MeV. Notice that the inclusion of
the quadrupole shape fluctuation slightly alters the excitation
energies of the [3−

1 ⊗ 3−
1 ]0+,2+,4+,6+ states. One can see that,

after including this effect, the transition strengths for the
3−

1 → 0+
1 and the 2+

1 → 0+
1 transitions are closer to the

experimental data. The B(E3; 3−
1 → 0+

1 ) value is consistent
with 21.93 W.u. by the Gogny D1S force [35], although
it is slightly larger than 18.7 W.u. by the Skyrme SLy4
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FIG. 2. The low-lying energy spectra of 208Pb obtained by mixing
the octupole-quadrupole- (β3 − β2-) deformed configurations [panel
(b)] and by mixing only the octupole- (β3-) deformed configurations
[panel (c)] in comparison with the experimental data taken from
Ref. [38] [panel (a)]. Panels (d) and (e) show the E3-transition
strengths from the ground state to the 3− states and from the first
3− state to the 2+ states, respectively, as a function of the excitation
energy of the final states. In panels (a)–(c), the red solid and the
blue dashed lines indicate the E3- and the E2-transition strengths (in
W.u.), respectively. All the calculated excitation energies are scaled
to the empirical excitation energy of the lowest 3− state by dividing
them by a constant factor.

force [34]. Moreover, the electric dipole transition strengths
are also well reproduced by this calculation. For instance, we
obtain the B(E1) value from the first 4+ state to the first
5− state to be 1.5 × 10−4 W.u., which is compared to the
experimental upper bound of 1.0 × 10−4 W.u. [11]. We note
that, in the octupole-quadrupole shape-mixing calculation, the
E3-transition strengths from the four TOP states to the 3−

1
state are similar to each other, about three times the B(E3)
value from the 3−

1 state to the ground state. Figures 2(d)
and 2(e) show the calculated B(E3) values from the ground
state to the 3− state and those from the first 3− state to the
2+ states as a function of the excitation energy of the final
states, respectively. The solid and the dotted lines indicate
the results of the octupole-quadrupole shape fluctuation and
of the octupole vibration only, respectively. One can see that
generally the E3 transitions become more fragmented after
taking into account the fluctuation in the quadrupole shape. In
particular, the E3 transition from the 3−

1 state to the excited
2+ states are strongly quenched. A similar phenomenon is also
found in the E3 transitions from the 3−

1 state to other excited
states (not shown here).

Figure 3 shows the distribution of the collective wave
functions for the ground state and some selected excitation
states. Comparing with the wave functions in Fig. 1, one can
see a rather large fluctuation along the quadrupole deformation
in all the states. For the multiplets of the TOP states, only the

FIG. 3. The distribution of the collective wave functions gJπ for
several selected low-lying states of 208Pb shown in Fig. 2(b).

0+ state has two nodes along the β3 direction, showing again
the anharmonicity in the wave functions.

We have repeated the GCM calculation using the PC-PK1
force [39]. The calculated excitation energies and electric
multipole transition strengths for the one–and two–octupole-
phonon states turned out to be similar to those by the PC-F1
force. However, we have found that the 2+ states and the
high-lying states with the PC-PK1 force may have a problem
of convergence as they are much more sensitive to the model
space than those by the PC-F1 force, even though both PC-F1
and PC-PK1 forces give much better convergent solutions for
the quadrupole-phonon states in 58,60Ni [40]. In view of this, we
present only the PC-F1 results in this Rapid Communication.

In order to further test the results of the present calculation
for the 208Pb nucleus, we next discuss the subbarrier fusion
reaction of the 16O +208Pb system. To this end, we employ
the semimicroscopic approach [40] and solve the coupled-
channels equations by using the transition strengths from the
GCM calculations as inputs. In this approach, the internuclear
potential and the coupling potentials are generated from
a phenomenological-deformed Woods-Saxon potential. For
this, we use the parameters of V0 = 178 MeV, R0 = 0.978 ×
(161/3 + 2081/3), and a = 1.005 fm, which are similar to those
used in Ref. [22]. In the coupled-channels calculations, in
addition to the entrance channel, we include the one–octupole-
phonon state 3−

1 at 2.615 MeV, the one–quadrupole-phonon
state 2+

1 , and several states which are strongly coupled to
those 3−

1 and 2+
1 states by the octupole and the quadrupole

couplings. The whole TOP candidate states are included in
this model space. As is shown in Ref. [40], we scale all the
excitation energies to the empirical excitation energy of the 3−

1
state. We also scale all the coupling strengths to the empirical
coupling strength between the ground state and the 3−

1 state,
that is, β = 0.144, which is estimated from the measured
B(E3) strength with the radius parameter of r0 = 1.1 fm.
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FIG. 4. The fusion cross sections (upper panel) and the fusion
barrier distributions (lower panel) for the 16O +208Pb system obtained
with the semimicroscopic coupled-channels calculation with the
coupling strengths from the MR-DFT calculations (the solid line).
The dashed and the dotted lines show the results of the two-phonon
coupling in the harmonic-oscillator limit and of the no-coupling limit,
respectively. The experimental data are taken from Ref. [22].

The resultant coupled-channels equations are solved using the
computer code CCFULL [41].

The solid line in Fig. 4 is the fusion cross sections (the upper
panel) and the fusion barrier distribution (the lower panel)
so obtained. Here, the fusion barrier distribution is defined
as the second energy derivative of the product of energy E
and fusion cross section σfus, that is, d2(Eσfus)/dE2 [17,25].
This is compared to the two-phonon calculations in the
harmonic-oscillator limit (the dashed line) and to the single-
channel calculation (the dotted line). For the former, we
include the 3−

1 , 2+
1 , (3−

1 )2, (2+
1 )2, and 3−

1 ⊗ 2+
1 states within

the harmonic-oscillator coupling scheme [16]. It has been
a long-standing problem that for this particular system the
coupled-channels calculation with the harmonic-oscillator
couplings overestimates the height of the main peak in the

barrier distribution [22–24]. It is remarkable that the present
GCM calculation yields a much lower peak in the fusion
barrier distribution, leading to a much better agreement with
the experimental data both for the fusion cross sections and
for the barrier distribution. For this good reproduction, it turns
out that the coupling between the 3−

1 and the 2+
1 states as

well as the couplings between the TOP states and the excited
negative parity states play an important role. In the previous
coupled-channels calculations, the 3−, 2+

1 , and 5−
1 states have

been treated as independent phonon states, and these couplings
were absent in the calculations. In contrast, in the present GCM
calculation, the 2+

1 and the 5−
1 states have in part the two–and

three–octupole-phonon characters, respectively. Likewise, the
1− states have both the (3−

1 )3 and the 3−
1 ⊗ 2+

1 characters.
Apparently those anharmonicity effects in the transition
strengths lead to the strong couplings between the ground state
and those states via multiple-octupole excitations, significantly
improving the previous coupled-channels calculations.

To summarize, the multi–octupole-phonon excitations in
208Pb have been examined with the multidimensional GCM
calculations based on a covariant energy density functional. We
have shown that the coupling to quadrupole shape fluctuation
leads to a stronger fragmentation of the double-octupole
phonon states and enhances the E3-transition strength between
the ground state and the single–octupole-phonon state. These
calculated transition strengths have then been used as inputs
to the coupled-channels equations in order to discuss the
subbarrier fusion reaction of 16O +208Pb. We have shown
that these anharmonicities in the transition strengths play
an important role in this reaction, leading to a much better
reproduction of fusion barrier distribution as compared to the
previous coupled-channels calculations.

Our calculations indicate that anharmonicity of nuclear
vibrations is much larger in the collective wave functions and
in the transition properties as compared to the anharmonicity
in the excitation energies. An interesting feature is that the
anharmonicity may be large even if the energy spectrum
resembles a harmonic oscillator. It will be interesting to
reexamine systematically nuclear vibrations with a fully
microscopic theory, such as the multireference density func-
tional approaches based on both nonrelativistic and relativistic
energy functionals in the future.
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