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Comment on “α decay in the complex-energy shell model”
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A recent paper by Id Betan and Nazarewicz reopened the problem of the absolute width of the α decay leading
to a doubly magic nucleus. I point out a problematic aspect of this work, and reaffirm the correctness of the
classical results.
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The α-decay width (� = 1.5 × 10−15 MeV) of 212Po was
reproduced in a cluster-configuration shell model [1] as well as
in a shell model with a stochastically optimized Gaussian [2]
basis 20 years ago. It looked [3] as though the problem had been
settled once and for all. In these models the widths are extracted
from the tail of the wave function in the α-decay channel.
The amount of clustering turned out to be comparable with
unity (S ≈ 0.3), which shows that even the extreme cluster
models are viable [4,5]. In the meantime, the applications of
the extreme cluster model to heavy nuclei and radioactive
decay have been spectacularly extended (see, e.g., Ref. [6]).

In the paper I am commenting on [7], however, � is
reproduced in a shell model that yields S = 0.011, and that is
obviously inconsistent with the cluster model and even with
the classical microscopic calculations [1,2,8]. This calculation
of � relies on the amount of clustering S, thus the correctness
of S is crucial. I will argue for the validity of the classical
results.

The conventional α-formation amplitude g(R) and the
amplitude G(R) of the amount of clustering S are defined
as the radial factors of

g(R) = 〈A{�D�αδ(R − RαD)}|�P〉, (1)

G(R) = N−1/2g(R), (2)

where �P, �α , and �D are the intrinsic wave functions of the
parent nucleus, the α particle and the daughter, respectively,
and N is the α-D norm operator. That is expressed as N =∑

ν |ϕν〉nν〈ϕν |, where Nϕν = nνϕν is the eigenvalue equation
of N . The daughter being a heavy closed-shell core, the parent
state is expressible as �P = A{�D�val}, with �val describing
the valence nucleons.

The shapes of functions g(R) and G(R) are characteristic:
g(R) has 12 nodes [1], while G(R) has an awkward shape
with few nodes or none [1,8], except for pure cluster models,
in which G(R) also has 12 nodes [1,5,9]. But the amplitudes
in Ref. [7] are dissimilar: g(R) has no nodes, while G(R)
has 11. Expounding a hint made in Ref. [1], I now show that
the functions g(R) and G(R) are bound to behave like in
Refs. [1,8,9].

In the heavy-core approximation the daughter degrees of
freedom can be eliminated, with the effect of A incorporated
in an operator P that projects off the s.p. states occupied in
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�D [1]. The amplitude g(R) becomes

g(R) = 〈�αδ(R − RαD)|P|�val〉, (3)

and the eigenvalues of N can be expressed as

nν = 〈�αϕν |P|�αϕν〉 ≡ (〈�αϕν |P)(P|�αϕν〉). (4)

It is useful to introduce the normalized multiparticle state
belonging to the eigenfunction ϕν :

|�ν〉 = n−1/2
ν P|�αϕν〉. (5)

To have a feeling for the shapes of g and G, we should
expand them in terms of the complete orthonormal set {ϕν}. In
the shell model (�val = �sh)

gsh(R) =
∑

ν

ϕν(R)〈�αϕν |P|�sh〉

=
∑

ν

n1/2
ν 〈�ν |�sh〉ϕν(R). (6)

In the cluster model �val = �αφrel, with φrel a relative-motion
function. Hence

gcl(R) =
∑

ν

ϕν(R)〈�αϕν |P|�αφrel〉

=
∑

νν ′
ϕν(R)〈�αϕν |P|�αϕν ′ 〉〈ϕn′ |φrel〉

=
∑

ν

nν〈ϕν |φrel〉ϕν(R). (7)

For G(R) of Eq. (2), we thus have

Gsh(R) =
∑

ν

〈�ν |�sh〉ϕν(R), (8)

Gcl(R) =
∑

ν

n1/2
ν 〈ϕν |φrel〉ϕν(R). (9)

Both 〈�ν |�sh〉 and 〈ϕν |φrel〉 are overlaps between normalized
functions, and, for small ν values, both the bra and the ket
functions are appreciable in the nuclear volume. The eigen-
values, if ordered conventionally, start with n0 ≈ 10−9–10−7

[1,7] and tend to 1 monotonously. Since ϕν have ν = 0,1,2, . . .
nodes and nν < 0.1 for ν � 11, the functions gsh, gcl, and Gcl

are approximately orthogonal to all ϕν up to ν = 11, hence
they are bound to have at least 12 nodes. No such statement
holds for Gsh, whose expansion contains no nν . That agrees
with the classical results and contradicts Ref. [7].
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The situation becomes more clear-cut in a harmonic oscilla-
tor model. The valence protons in 212Po would carry 5�ω each,
while the neutrons 6�ω each, altogether 22�ω. In evaluating
g(R) = 〈�αδ(R − RαD)|P|�val〉 the oscillator functions in
�val have to be transformed into a series of products of an
intrinsic-motion function and a relative function. The overlap
of the intrinsic motion with �α is only nonzero if this factor
carries 0�ω, hence all 22�ω excitation must be carried by the
relative-motion factor. The g(R) being an L = 0 function, all
22�ω excitation must be concentrated in the radial motion, i.e.,
the node number must be at least 11. (Since the asymptotic α
cluster is formed mostly by protons lying as high as the valence
neutrons, node number 12 has turned out to be favored.) For
realistic models these considerations only hold approximately.

It would be important to understand why the amplitudes in
Ref. [7] look so unusual. One problem is obvious. The small
eigenvalues (nν < 10−3) are discarded without good reason.
In Ref. [7] it is stated that “a significant fraction of them
accumulate at zero.” This is incorrect, as is well known [10],
for a two-cluster system there is an accumulation point at
1, but there is none at 0. This property represents the Pauli
effects: a finite number of low-lying relative-motion states
are strongly suppressed, while the suppression dwindles as the
node number increases. The finite number of small eigenvalues
are those which belong to the “almost Pauli-forbidden”
relative-motion states, which are strictly Pauli-forbidden in
a single-�ω harmonic-oscillator model. For the L = 0 motion
of the 208Pb +α system there are about 11 such states, which
is borne out in all other works on α decay.

The authors omit the norm-operator eigenstates belonging
to small eigenvalues because they consider them to be spurious.
But that is not justifiable even though they might cause slight
numerical inaccuracies [8]. The almost forbidden states are
not forbidden; they give rise to well-defined Pauli-allowed
multinucleon configurations [10], which must mix into the
ground state. In calculating the amount of clustering S =
〈G|G〉 their inclusion is crucial since the terms of the amplitude
G(R) of S are multiplied by n

−1/2
ν (implicit in �ν), which is

large if nν is small. (It is quite another matter that in Ref. [7]
the eigenvalues nν are very inaccurate, especially the small
ones.) The enhancement by n

−1/2
ν is to compensate for the

“oversuppression” of these components in the conventional
formation amplitude g(R) [cf. Eqs. (6), (7)].

The omission of the components with small nν only
influences the inner region of the amplitudes and, especially,
the amount of clustering. It is worth mentioning that the
tail of G(R) actually produces 36 times smaller value for
the width than experiment, which is more or less what one
can expect from such a model. (The result of using single-
nucleon resonance states may not be expected to improve
the α width very much without a much more extensive
basis.)

The idea, proposed in Ref. [7], of using � = S�sp to
determine the width is sound since S = 〈G|G〉, being an
integrated quantity, is indeed less sensitive to the degree of
completeness of the model state space than the tail of g(R)
or G(R). This viable idea deserves confirmation with a more
reliable calculation.
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