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Time reversal invariance violating and parity conserving effects in proton-deuteron scattering
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Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton-deuteron
scattering with proton energies up to 2 MeV. The distorted-wave Born approximation is employed to estimate
TVPC matrix elements, based on hadronic wave functions, obtained by solving three-body Faddeev-Merkuriev
equations in configuration space with realistic potentials.

DOI: 10.1103/PhysRevC.93.065501

I. INTRODUCTION

The study of time reversal invariance violating and parity
conserving (TVPC) effects is an important approach for the
search of new physics beyond the standard model. In the
standard model, time reversal invariance violation requires also
parity violation. Therefore, an observation of TVPC effects
can be interpreted as a direct signal of new physics. Although
TVPC interactions may be observed in neutron, atomic, and
molecular electric dipole moment measurements due to the
one-loop diagram with one TVPC vertex and with other
time reversal conserving and parity violating vertexes (see,
for example [1]), TVPC interactions cannot be distinguished
from time reversal violating and parity violating ones in
these experiments. From this point of view, the search for
TVPC effects in scattering experiments has the advantage of
being direct evidence of the existence of TVPC interactions
up to the second order of weak interaction contributions
(∼10−14). TVPC effects in neutron-deuteron scattering have
been calculated recently [2]. In this paper we consider similar
effects of TVPC interaction in proton-deuteron scattering
which are related to the σ p · [ p × I]( p · I) correlation with a
tensor polarized target, where σ p is the proton spin, I is the
target spin, and p is the proton momentum. This correlation can
be observed by measuring the asymmetry of protons polarized
in parallel and antiparallel to the [ p × I]( p · I) direction when
transmitted through a deuteron target. This is the simplest
system to realize the aforementioned correlation related to
TVPC effects for proton scattering. The five-fold correlation
σ p · [ p × I]( p · I) is equal to zero, unless the target spin I
is larger or equal to unity. As a consequence, this correlation
cannot be observed in nucleon-nucleon scattering.

TVPC effects in proton-deuteron forward scattering for a
few hundred MeV proton energy range have been calculated
[3,4], in relation to the proposed experiment at the cooler
synchrotron (COSY) at the Forschungszentrum Julich GmbH
facility [5]. We consider TVPC effects for a proton energy
range up to 2 MeV which could be calculated accurately
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in a formally exact framework based on Faddeev-Merkuriev
equations [6] with realistic potentials. This gives us an
opportunity to compare directly these TVPC effects with the
case of TVPC [2] effects in neutron-deuteron scattering, as
well as with the cases of parity violation in proton-deuteron
and neutron-deuteron [7] scattering.

II. OBSERVABLES

In a contrast to neutron-deuteron scattering, the proton-
deuteron scattering amplitude ffull diverges at zero scattering
angle due to the Coulomb interaction. To avoid this divergence
in the calculations of TVPC effects we estimate a “nuclear”
amplitude f = ffull − fCoul with the Coulomb amplitude be-
ing subtracted. Since the Coulomb interaction does not violate
time reversal invariance, it cannot contribute to TVPC effects.
For further calculations we fix the direction of the proton
momentum as axis z, and the direction of [ p × I]( p · I) as
axis y. Then, zero-angle scattering amplitudes f±(E,θ = 0),
for protons, polarized along and opposite to the direction of
[ p × I]( p · I), and propagating through the tensor polarized
deuteron target are defined as

f±(E,θ = 0) ≡ 1

2

′∑
md

f

(
pẑ,

(
1

2

±1

2

)ŷ

,

(1md )x̂ẑ ← pẑ,

(
1

2

±1

2

)ŷ

,(1md )x̂ẑ

)
. (1)

Here,
∑′ means that the state with md = 0 is excluded from

the summation, and the factor 1
2 in front of the summation is a

deuteron spin statistical factor. Then, using the optical theorem
[8], the asymmetry in the transmission of the polarized proton
through the tensor-polarized deuteron target can be written as

P (E) = σ nuc
+ − σ nuc

−
σ nuc+ + σ nuc−

= Im[f+(E,θ = 0) − f−(E,θ = 0)]

Im[f+(E,θ = 0) + f−(E,θ = 0)]
.

(2)

The corresponding “nuclear” S matrix (with the subtracted
Coulomb scattering part) is defined from the asymptotic form
of scattering wave function for partial waves α′ and α, where
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α = (L,S,J,T ),

wα′,α(r; p)

r
→ 1

2

[
δα′,αH

(−)
l′ (η,ρ) + Sα′,αH

(+)
l′ (η,ρ)

]
for r → ∞, (3)

with

H
(±)
l (η,ρ) = 1

ρ
[Fl(η,ρ) ∓ iGl(η,ρ)], (4)

where Fl(η,ρ) and Gl(η,ρ) are regular and irregular Coulomb
functions, η = Z1Z2μα

p
is a Sommerfeld parameter, μ is a

reduced mass, and ρ = pr . Then, the nuclear scattering
amplitudes in Eq. (1) are related to the nuclear S matrix
as

f

(
p′,1m′

d ,
1

2
m′ ← p,1md,

1

2
m

)

=
∑

LS,L′S ′,J

f J
L′S ′,LS(p)

(
Z

(J ),L′S ′m′
dm′

LSmdm (p̂′,p̂)
)
, (5)

where

f J
L′S ′,LS(p) =
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J
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2ip
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)
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×
〈
1m′
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1

2
m′

∣∣∣∣S ′m′
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〉
, (6)

and σl(η) ≡ arg 	(l + 1 + iη) is a Coulomb phase shift. Since
the TVPC interaction is considered to be weak, we can use the
distorted-wave Born approximation (DWBA) to express the
symmetry violating scattering amplitudes related to the TVPC
potential

f
/T P

αβ (k) = eiσα

(
Ŝ /T P − 1

2ik

)
α,β

eiσβ

� −2μeiσα 〈ψ (−)
α |V /T P |ψ (+)

β 〉eiσβ , (7)

where 〈r|ψ (±)
α 〉 = ∑

α′
w

(±)
α′,α (r;p)

r
Yα′(r̂) represents wave func-

tion solutions with outgoing and incoming boundary con-
ditions in partial wave α with Yα′(r̂) representing tensor
spherical harmonics in partial wave α′. Thus, by calculating
matrix elements 〈ψ (−)

α |V /T P |ψ (+)
β 〉, we can obtain the nuclear

asymmetry P of the TVPC interaction in Eq. (2).

III. TIME REVERSAL VIOLATING PARITY
CONSERVING POTENTIAL

The most general form of the time reversal violating and
parity conserving part of the nucleon-nucleon Hamiltonian in
the first order of relative nucleon momentum can be written
as [9]

H
/T P = (

g1(r) + g2(r)τ1 · τ2 + g3(r)T z
12 + g4(r)τ+

)
r̂ · p̄ + (

g5(r) + g6(r)τ1 · τ2 + g7(r)T z
12 + g8(r)τ+

)
σ 1 · σ 2r̂ · p̄

+ (
g9(r) + g10(r)τ1 · τ2 + g11(r)T z

12 + g12(r)τ+
)(

r̂ · σ 1 p̄ · σ 2 + r̂ · σ 2 p̄ · σ 1 − 2
3 r̂ · p̄σ 1 · σ 2

)
+ (

g13(r) + g14(r)τ1 · τ2 + g15(r)T z
12 + g16(r)τ+

)(
r̂ · σ 1r̂ · σ 2r̂ · p̄ − 1

5 (r̂ · p̄σ 1 · σ 2 + r̂ · σ 1 p̄ · σ 2 + r̂ · σ 2 p̄ · σ 1)
)

+ g17(r)τ−r̂ · (
σ× × p̄ + g18(r)τ z

×r̂ · (σ− × p̄
)
, (8)

where the exact form of gi(r) depends on the details of a particular theory of TVPC.
One should note that pions, being spin zero particles, do not contribute to the TVPC on-shell interaction [10]. Therefore to

describe the TVPC nucleon-nucleon interaction in a one-meson-exchange potential model, by assuming CPT (Charge, Parity,
Time reversal) symmetry conservation, one should consider the contribution from heavier mesons: ρ(770), IG(JPC) = 1+(1−−)
and h1(1170), IG(JPC) = 0−(1+−) (see, for example, [11–13] and references therein). The Lagrangians for the strong and TVPC
interactions with explicit ρ and h1 meson exchanges are expressed as

Lst = −gρN̄

(
γμρμ,a − κV

2M
σμν∂

νρμ,a

)
τ aN − ghN̄γ μγ5hμN, (9)

L /T P = − ḡρ

2mN

N̄σμνε3abτ a∂νρ
b
μN + i

ḡh

2mN

N̄σμνγ5∂νhμN, (10)

where we neglected terms N̄γ5∂
μhμN , which are small at low energy. The parameters g and ḡ are meson-nucleon coupling

constants for strong and TVPC interactions, respectively. Then, one can separate the TVPC potential due to ρ and h1 meson
exchange as

V
/T P

ρ = gρḡρm
2
ρ

8πmN

Y1(mρr)τ z
×r̂ ·

(
σ− × p̄

mN

)
, V

/T P
h1

= −ghḡhm
2
h

2πmN

Y1(mhr)

(
σ 1 · p̄

mN

σ 2 · r̂ + σ 2 · p̄
mN

σ 1 · r̂

)
, (11)
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TABLE I. Scattering amplitudes at various energies calculated with AV18UIX potential in fm−1 units. The second column corresponds
to the time reversal invariant Im(f+ + f−)(E,θ = 0) for the tensor-polarized deuteron target and other columns correspond to time reversal
violating scattering amplitudes 1

cn
Im(f+ − f−)(E,θ = 0) for operator n and scalar function Y1(r,m).

Ec.m. (keV) Im(f+ + f−) n = 5 (m = mh) n = 9 (m = mh) n = 18 (m = mρ)

15 0.0907 0.116 × 10−7 0.131 × 10−6 −0.540 × 10−8

100 1.76 0.437 × 10−6 0.348 × 10−5 −0.136 × 10−6

300 3.59 0.177 × 10−5 0.471 × 10−5 −0.396 × 10−6

1000 6.75 0.118 × 10−4 −0.658 × 10−5 0.482 × 10−5

2000 8.04 0.327 × 10−4 −0.229 × 10−4 0.296 × 10−5

n-d 100 2.85 0.107 × 10−6 −0.217 × 10−5 −0.711 × 10−7

where Y1(x) = (1 + 1
x

) e−x
x

, xa = mar . Comparing these po-
tentials with Eq. (8), one can see that in the meson-exchange
(ME) model, all gi(r)ME = 0, except for

gME
5 (r) =

(
−ghḡhm

2
h

3m2
Nπ

)
Y1(mhr) = ch

5Y1(mhr),

gME
9 (r) =

(
−ghḡhm

2
h

2m2
Nπ

)
Y1(mhr) = ch

9Y1(mhr), (12)

gME
18 (r) =

(
gρḡρm

2
ρ

8m2
Nπ

)
Y1(mρr) = c

ρ
18Y1(mρr).

The possible contributions from heavier vector isovector
mesons, like a1 and b1, correspond to g6 and g10 functions
of TVPC potential. However, for the sake of simplicity, in this
work we focus only on the contribution from the exchange of
the lightest mesons, by considering ρ and h1.

Because the function Y1(μr) for ρ and h1 mesons is singular
at short distances, the calculation of potential matrix elements
requires a careful treatment. One way to regulate the singular
behavior of the Y1(μr) Yukawa function is by introducing a
regulated Yukawa function Y1�(r,m) with a momentum cutoff
� as

Y1�(r,m) = − 1

m

d

dr

∫
d3k

(2π )3
eik·re− k2

�2
1

k2 + m2
. (13)

From the point of view of effective field theory (EFT), we
may regard Eq. (8) as a leading order potential of EFT. In
this approach, the cutoff represents our ignorance on short
distance dynamics. Therefore, the low energy constants should
be renormalized to absorb the cutoff dependence to make the
final results not sensitive to short distance uncertainties. This
approach, which was adopted in our previous work on neutron-
deuteron scattering, is preferable from a theoretical point
of view. However, it introduces many unknown low energy
constants which have to be fixed from a number of TVPC
experiments. Therefore, to be able to make a prediction for the
value of the TVPC observable, instead of following a rigorous
EFT approach, we use a one-meson-exchange model of the
TVPC potential. Then, by calculating the potential matrix
elements using both Y1(μr), and Y1�(r,μ) with � = 1.5 GeV,
one can attribute the difference of these two calculations to the
uncertainty in short-range interactions.

IV. RESULTS AND DISCUSSIONS

For the calculations of TVPC amplitudes in the DWBA
approach we used the nonperturbed (time reversal invariance
conserving) three-body wave functions for proton-deuteron
scattering obtained by solving Faddeev-Merkuriev equations
in configuration space [6] for the AV18 nucleon-nucleon
potential in conjunction with the UIX three-nucleon force.
The detailed procedure for these calculations is described in
our papers [2,7,14].

The main results of the calculations are summarized in
Table I where imaginary parts of time-reversal invariant
scattering amplitudes (f+ + f−)(E,θ = 0) and TVPC scatter-
ing amplitudes (f+ − f−)(E,θ = 0) in one-meson-exchange
models are calculated with the AV18UIX potential. To com-
pare TVPC effects in proton-deuteron scattering with the case
of neutron-deuteron scattering, we include the corresponding
TVPC scattering amplitudes of neutron-deuteron scattering
at Ec.m. = 100 keV in the last line of Table I. [Note that
the convention we use is different from the one in Ref. [2],
and the unpolarized total proton-deuteron cross section can
be written as σ el

tot = 1
2

4π
p

Im(f+ + f−)(E,θ = 0).] The energy
dependence of scattering amplitudes for different operators
in Table I in general follows the expected behavior of TVPC
effect (which is increasing with energy as ∼Ec.m. for Ec.m. <
2 MeV, when only the elastic channel is open). However,
since each amplitude contains many partial waves, one can
see changes of the amplitude signs at some energies due to
occasional destructive interferences.

To test how TVPC amplitudes depend on the choice of
strong interaction potentials we calculated these amplitudes
with three different phenomenological potentials: AV18,
AV18UIX, and INOY. We found that time reversal conserving
scattering amplitudes calculated with these three different
potentials are in very good agreement for the considered proton
energy range Ec.m. � 2 MeV. For example, the amplitudes at
Ec.m. = 1 MeV (see second column of Table II) shows that
AV18UIX and INOY potential results agree well with each
other and comparison with AV18 implies that three-body force
effects contribute only at the level of 2%. This result is not
surprising because these amplitudes, which reproduce the total
cross sections, are mostly sensitive to the long-range part of
the interaction.

For the TVPC and PV matrix elements, which are more
sensitive to a short-range behavior of the potential, we can
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TABLE II. Scattering amplitudes calculated at Ec.m. = 1 MeV for various potential models in fm−1 units. The second column corresponds
to time reversal invariant Im(f+ + f−)(E,θ = 0) for the tensor-polarized deuteron target and other columns correspond to TVPC scattering
amplitudes 1

cn
Im(f+ − f−)(E,θ = 0) for operator n and scalar function Y1(r,m).

Potential Im(f+ + f−) n = 5 (m = mh) n = 9 (m = mh) n = 18 (m = mρ)

AV18UIX 6.75 0.118 × 10−4 −0.658 × 10−5 0.482 × 10−5

AV18 6.90 0.102 × 10−4 0.258 × 10−5 0.403×10−5

INOY 6.75 −0.324 × 10−5 0.482 × 10−4 0.103 × 10−4

expect stronger dependence on the strong interaction input.
Moreover, singularities of Yukawa functions at short distances
result in a finite residue of the radial integrals for TVPC
matrix elements at two-nucleon contact which requires careful
treatment of short-range integrals. Nevertheless, the results
of calculations for most TVPC matrix elements with AV18
and AV18UIX potentials agree with each other rather well.
The operator 9 (see Table II) is an exception, which shows
large sensitivity to the presence of a three-nucleon force.
Calculations based on INOY NN interaction deviate from
the AV18. It should be noted that similar discrepancies
with the INOY potential were also observed in our previous
calculations [15,16] of parity and time reversal violating
effects in neutron-deuteron interactions, which resulted in
10%–20% differences in final amplitudes after a summation
of contributions from all operators. This issue is clearly
related to a softness of the INOY potential and the qualitative
difference of calculated nuclear wave functions at the short
distances.

To test the sensitivity of TVPC operators to a short-range
behavior of the potentials, we calculated TVPC amplitudes
with Yukawa-type meson-exchange potentials Eq. (12) and
with regulated Yukawa potentials Eq. (13) with a cutoff
parameter � = 1.5 GeV. Thus, comparing corresponding
results in Tables I and III, one can see rather good agreement
between TVPC amplitudes calculated with AV18UIX strong
potential for different energies. The comparison of Tables II
and IV shows good agreement between the same amplitudes
calculated at Ec.m. = 1 MeV with AV18UIX, AV18, and INOY
potentials.

To be able to test the consistency our calculations in
the future when measurements of parity violating effects in
proton-deuteron scattering will be available, we calculated

TABLE III. Scattering amplitudes at various energies calculated
with AV18UIX potential in fm−1 units. Each column corresponds to
time reversal violating and parity conserving scattering amplitudes
1
cn

Im(f+ − f−)(E,θ = 0) for operator n and scalar function Y1�(r,m)
with � = 1.5 GeV.

Ec.m. (keV) n = 5 (m = mh) n = 9 (m = mh) n = 18 (m = mρ)

15 0.174 × 10−7 0.185 × 10−6 −0.540 × 10−8

100 0.633 × 10−6 0.492 × 10−5 −0.168 × 10−6

300 0.258 × 10−5 0.680 × 10−5 −0.246 × 10−6

1000 0.173 × 10−4 −0.759 × 10−5 0.327 × 10−5

2000 0.484 × 10−4 −0.274 × 10−4 0.509 × 10−5

time reversal invariant parity violating scattering amplitudes
for opposite helicities f

pv
± (E,θ = 0) defined as

f
pv
± (E,θ = 0) ≡ 1

3

∑
md

f

(
pẑ,

(
1

2

±1

2

)ẑ

,

(1md )ẑ ← pẑ,

(
1

2

±1

2

)ẑ

,(1md )ẑ
)

. (14)

In these calculations we used a short-range isovector pion-
exchange part of the Desplanques-Donoghue-Holstein (DDH)
parity violating potential [17]

V
pv,DDH

1π =
(

gπh1
π

2
√

2mN

)
(τ1 × τ2)z(σ 1 + σ 2) · r̂

d

dr

(
e−mπ r

4πr

)
.

(15)

The results for Im(f pv
+ − f

pv
− )(E,θ = 0) are presented in

Table V, where the last line presents corresponding parity
violating amplitudes for neutron-deuteron scattering at Ec.m. =
100 keV. One can see that the PV amplitude is much less
sensitive to the particular choice of the strong interaction.
This is not surprising, since PV effects are dominated by pion
exchange with much longer range of interactions.

Finally, by comparing our results for proton-deuteron and
neutron-deuteron scattering [2] at an energy of 100 keV
(see the second and the last rows in Table I), one can
see that corresponding amplitudes for these two processes
have different sensitivity to TVPC h1 an ρ-meson inter-
actions. Therefore, they are rather complimentary to each
other in the search for new physics, which can be man-
ifested by TVPC interactions of h1 an ρ mesons with
nucleons.

TABLE IV. Scattering amplitudes calculated at Ec.m. = 1 MeV
for various potential models in fm−1 units. Each column corresponds
to Time-reversal violating and parity conserving scattering ampli-
tudes 1

cn
Im(f+ − f−)(E,θ = 0) for operator n and scalar function

Y1�(r,m) with � = 1.5 GeV.

potential n = 5 (m = mh) n = 9 (m = mh) n = 18 (m = mρ)

AV18UIX 0.173 × 10−4 −0.759 × 10−5 0.327 × 10−5

AV18 0.150 × 10−4 0.242 × 10−5 0.243 × 10−5

INOY 0.875 × 10−5 0.282 × 10−4 0.996 × 10−5

065501-4



TIME REVERSAL INVARIANCE VIOLATING AND PARITY . . . PHYSICAL REVIEW C 93, 065501 (2016)

TABLE V. Parity violating scattering amplitudes 1
cDDH

1
Im(f pv

+ −
f

pv
− )(E,θ = 0) from PV DDH potential of isovector pion exchange

in fm−2 units, where cDDH
1 = gπ h1

π

2
√

2mN
.

Ec.m. (keV) AV18UIX AV18 INOY

15 0.130 × 10−2

100 −0.425 × 10−1

300 −0.248 × 10+0

1000 −0.729 × 10+0 −0.728 × 10+0 −0.751 × 10+0

2000 −0.941 × 10+0

n-d 100 0.124 × 10−1
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