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We have previously calculated the pion-nucleon �πN term in the chiral mixing approach with u,d flavors only,
and found the lower bound �πN � (1 + 16

3 sin2 θ ) 3
2 (m0

u + m0
d ), where m0

u,m
0
d are the current quark masses, and

θ is the mixing angle of the [( 1
2 ,0) ⊕ (0, 1

2 )] and the [(1, 1
2 ) ⊕ ( 1

2 ,1)] chiral multiplets. This mixing angle can

be calculated as sin2 θ = 3
8 (g(0)

A + g
(3)
A ), where g

(0)
A ,g

(3)
A , are the flavor-singlet and the isovector axial couplings.

With presently accepted values of current quark masses, this leads to �πN � 58.0 ± 4.5+11.4
−6.5 MeV, which is in

agreement with the values extracted from experiments, and substantially higher than most previous two-flavor
calculations. The causes of this enhancement are: (1) the large, ( 16

3 � 5.3), purely SUL(2) × SUR(2) algebraic
factor; (2) the admixture of the [(1, 1

2 ) ⊕ ( 1
2 ,1)] chiral multiplet component in the nucleon, whose presence has

been known for some time, but that had not been properly taken into account, yet. We have now extended
these calculations of �πN to three light flavors, i.e., to SUL(3) × SUR(3) multiplet mixing. Phenomenology of
chiral SUL(3) × SUR(3) multiplet mixing demands the presence of three chiral SUL(3) × SUR(3) multiplets, viz.
[(6,3) ⊕ (3,6)], [(3,3̄) ⊕ (3̄,3)], and [(3̄,3) ⊕ (3,3̄)], in order to successfully reproduce the baryons’ flavor-octet
and flavor-singlet axial current coupling constants, as well as the baryon anomalous magnetic moments. Here we
use these previously obtained results, together with known constraints on the explicit chiral symmetry breaking
in baryons to calculate the �πN term, but find no change of �πN from the above successful two-flavor result. The
physical significance of these results lies in the fact that they show no need for q4q̄ components, and in particular,
no need for an ss̄ component in the nucleon, in order to explain the large “observed” �πN value. We also predict
the kaon-nucleon σ term �KN that is experimentally unknown, but may be calculable in lattice QCD.

DOI: 10.1103/PhysRevC.93.065208

I. INTRODUCTION

For more than 35 years the deviation of the nucleon �πN

term extracted from the measured πN scattering partial wave
analyses (in the following to be called “measured value”,
for brevity) from the naive quark model value of 25 MeV
was interpreted as an increase of Zweig rule breaking in the
nucleon, or equivalently to an increased content of unpolarized
ss̄ pairs in the nucleon [1–3], defined as y = 2〈N |s̄s|N〉

〈N |ūu+ūu|N〉 .
Moreover, the anomalously small measured value of the flavor-
singlet axial coupling g

(0)
A = 0.33 ± 0.06 [4–6], or the older

value 0.28 ± 0.16 [7], as compared with the naive quark model
prediction of g

(0)
A = 1, was long interpreted as evidence for an

increased polarized ss̄ content of the nucleon [7–10]. Yet more
recently, both of these conclusions and interpretations were
checked directly in low-momentum transfer Q parity-violating
elastic electron scattering experiments, however, and were
found to be incorrect [11–13].

Whereas this situation is consistent with QCD, it seems
in contradiction with earlier expectations, that were based
on a combination of quark and chiral effective field theory
models [14–16]. The question remains if one can explicitly
construct an effective chiral field theory model for nucleons
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and mesons that is connected to the underlying quark structure
of hadrons and reproduces these two “anomalous” results.

Gell-Mann and Lévy’s (GML) linear σ model has been
the principal example of an effective field theory model of
strongly interacting nucleons and pions with spontaneously
broken chiral symmetry ever since its inception more than
50 years ago [17,18]. It is well known that this linear σ model
does not always reproduce the correct phenomenology, e.g.,
(a) the value of the isovector axial coupling strength g

(3)
A equals

unity in this model; (b) the value of the isoscalar pion-nucleon
scattering length is too large in this model.

Both of these shortcomings have been removed in an
extended linear σ model, proposed by Bjorken and Nauen-
berg [19] and by Lee [20]: (a) The first one had been
fixed by introducing an additional derivative-coupling term
that is not renormalizable. (b) Reference [21] showed that
consequently the phenomenology is considerably improved in
the Bjorken-Nauenberg-Lee (BNL) extended linear σ model,
as compared to the original GML model; in particular, the value
of the isoscalar pion-nucleon scattering length is reduced to
its observed value. This improvement is directly related to
the correct value of the isovector axial coupling constant g

(3)
A

of the nucleon in the BNL model, which in turn is a direct
consequence of the new derivative coupling.1 This shows the

1This BNL extended linear σ model allows one to study the g
(1)
A

dependence of the πN scattering lengths, aπN , and of the nucleon σ
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phenomenological importance of having the correct value of
the isovector axial coupling.

That is not the only axial coupling of the nucleon; however,
there is also the isoscalar one g

(0)
A , whose measured value

g
(0)
A = 0.33 ± 0.08 or 0.28 ± 0.16 deviates even more from

unity, which is the value that the naive nonrelativistic quark
model suggests and the GML model postulates. The BNL
derivative coupling term does not fix the value of the isoscalar
axial coupling strength g

(0)
A , however. Here one could continue

with the BNL stratagem and introduce yet another derivative-
coupling term to fix this problem, but clearly that would be
ad hoc and in no apparent way related to the underlying quark
structure.

An alternative approach was attempted with the notion
of chiral representation mixing, which is in fact older than
the BNL model, but was able to reproduce realistic values
of the isovector axial couplings [22–24]. By choosing low-
dimensional representations, as corresponding to the ones of
the nucleon’s three-quark interpolators at present days, that
approach turned out to give some constraints on the values
of the axial couplings g

(0,1)
A without introducing derivative

couplings of hadrons [25–27]. In this sense it is rather different
from the BNL model, and one should not be surprised if
other predictions of the two models are different. What
is perhaps not so well known is that there are two-flavor
(linear realization) σ model chiral Lagrangians based on
the concept of chiral mixing, that reproduce the two-flavor
chiral low-energy theorems [20,26–31]. Over the years, these
Lagrangians have been extended to three flavors [32–38] and
adapted/fitted to the two axial couplings and other nucleon
properties, such as the magnetic moments [39,40].

An advantage of the chiral representation mixing is that
the possible representations and their mixing may be inferred
by the quark structure of the nucleon. For instance, in
the Schwinger-Dyson-Faddeev-Bethe-Salpeter approach to
QCD [41], different Dirac structures in the Faddeev-Bethe-
Salpeter equation are sources of different chiral representation
(or components in the Faddeev-Bethe-Salpeter amplitude),
thus leading to a mixing of chiral representations in the
physical nucleon wave function.

The purpose of the present paper is to coherently and
systematically present the calculation of the pion-nucleon
σ term �πN and of the isoscalar axial coupling g

(0)
A in the

chiral-mixing linear σ model. The isovector axial coupling
g

(3)
A has been studied by many authors as already mentioned

above. The isoscalar axial coupling g
(0)
A had been calculated in

Refs. [30,42], and in Refs. [43,44] we have briefly presented
our results for the pion-nucleon σ term �πN in the chiral

term �πN . It is well known that a
(−)
πN depends crucially on the value of

g
(3)
A , whereas the �πN dependence on g

(3)
A was not known (and may be

model-dependent). We displayed this dependence of a
(−)
πN and showed

that a large value of �πN could easily be obtained without recourse to
any ss̄ component of the nucleon with the values of bare parameters
available at the time (which have changed drastically in the meantime,
however). We also reproduced the then new, tiny experimental value
of the isoscalar πN scattering length a

(+)
0 .

mixing approach. The result of �πN depends substantially
on the isovector axial coupling g

(3)
A , in contrast to the BNL

model one [21], and agrees with the experimental value (almost
embarrassingly) well. This phenomenological success has
been a source of some open and more hidden criticism. We do
not wish to overemphasize this phenomenological agreement
here, as it is subject to the time-dependent variation of the free
parameters, more specifically, to the current quark masses,
which were about 50% larger 15 years ago—in this model, but
rather we try and systematically explore the differences among
various effective chiral models.

Moreover, we make a systematic exposition of our approach
and we record this model’s predictions of the kaon-nucleon
σ term, which have not been measured as yet, just in case
some day they are measured if only on the lattice, and
thus open ourselves to potential future criticism. In this way
we explicitly show how to construct effective linear chiral
model(s) of interacting nucleons and mesons based on the
underlying quark structure, that does not need ss̄ content in the
nucleon to reproduce the two crucial observables, the �πN and
the g

(0)
A .

The crucial assumption here is the systematic implementa-
tion of chiral symmetry at all levels, i.e., at both the quark and
the hadron levels. In Ref. [21] we have shown how Weinberg’s
“chiral boost” transformation of the BNL model leads to a
nonlinear realization chiral Lagrangian, as corresponding to
the leading order of the chiral perturbation theory Lagrangian.
The same procedure can be applied to the chiral mixing
Lagrangian, with the same result. For this to happen, two
different linear Lagrangians lead to the same nonlinear one.
That goes to show that the linear-to-nonlinear-realization
mapping (Weinberg’s chiral boost) is of the many-to-one kind.
Thus, it “hides” many details of the underlying dynamics at low
values of momentum transfer as compared with fπ = 93 MeV
and mπ = 140 MeV, and emphasizes the dynamical aspects of
chiral symmetry. In that sense, the nonlinear realization can be
viewed as being “coarser” than the linear one. These dynamical
details become increasingly visible as the momentum transfer
is increased, however.

We believe that at least some of the generally valid
chiral predictions of all chiral models are most economically
obtained in the chiral-mixing model. In particular, we believe
that the role of UA(1) symmetry and its breaking in the baryon
sector has been ignored thus far, and our study appears to be
the first step in rectifying this lamentable situation.

Throughout this paper we shall use the first Born approx-
imation at the tree level. In order to explore the various
possibilities and to facilitate comparison with earlier stud-
ies of the Gell-Mann–Levy linear σ model, we introduce
three different chiral symmetry breaking [χSB] terms, as in
Refs. [45,46].

This paper is the fifth one in a sequence of papers [33–
35,47], consequently, we shall repeat here, for the sake
of completeness and coherence of presentation, rather than
merely cite, several (a bare minimum of) equations and tables
that have already appeared in our previous papers.

The paper falls into six sections and three Appendices.
In Sec. II we consider the chiral mixing phenomenology.
Then in Sec. III, which is devoted to a construction of a
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two- and three-flavor chiral Lagrangians that reproduce the
chiral mixing phenomenology, we present the χSB terms
and the canonical field variables, and show that the Noether
charges close the chiral algebra although gA �= 1. In Sec. IV
we examine the pion-nucleon σ term �πN—some of these
results have been reported at conferences [43,44]. In Sec. V
we examine the kaon-nucleon �KN term, and in Sec. VI we
summarize the results. Technical topics are relegated to the
Appendices.

II. PHENOMENOLOGY OF CHIRAL MIXING

The basic premise of the chiral mixing approach is that the
chiral SUL(3) × SUR(3) symmetry is spontaneously broken
and therefore that the eigenstates do not form irreducible rep-
resentations of the chiral symmetry group SUL(3) × SUR(3).2

Rather, the eigenstates are linear superpositions of several
(irreducible representations of SUL(3) × SUR(3). In general,
such chiral representation mixing theories tend to be most
powerful and predictive when only a few chiral multiplets are
involved. As the number of admixed multiplets grows, this
method becomes increasingly complicated and thus loses its
predictive power.

Just which irreducible representations are being admixed,
is a question that ultimately ought to be answered by QCD.
In the absence of a QCD-based answer, the choice can be
(severely) limited by the following mathematical and physical
considerations.

A. Chiral representations

Group-theoretical considerations impose limitations on
the allowed irreducible representation of SUL(3) ⊗ SUR(3):
any irreducible representation of SUL(3) ⊗ SUR(3), that is
described by two SU(3) irreducible representations, (GL,GR),
leads to irreducible representations GF of SUF (3) as
determined by the Clebsch-Gordan series of the tensor
product: GF ∈ GL ⊗ GR . For example, 10 ⊕ 8 = 6 ⊗ 3 ∈
[(6,3) ⊕ (3,6)], 1 ⊕ 8 = 3̄ ⊗ 3 ∈ [(3̄,3) ⊕ (3,3̄)], and 8 = 8 ⊗
1 ∈ [(8,1) ⊕ (1,8)].

If one demands that only the experimentally observed irre-
ducible representations G of SUF (3) appear in these Clebsch-
Gordan series, then one is limited to the above three reducible
chiral representations: Any other chiral representation, other
than the (trivial) chiral-singlet one, [(1,1)], necessarily leads
to SUF (3) exotics.

When we further take into account the so-called “mirror”
representations, in which the left- (L) and the right-handed
(R) representations are interchanged, (GL ↔ GR), in the
chiral multiplet, then the number of allowed chiral multiplets
is six. Mathematically, there is no difference between the
“naive” (natural?) and “mirror” representations; physically,
and historically, the “naive” ones were introduced first, mostly
because there were no explicit examples how the “mirror”
ones could arise in a three-quark system. That “objection”

2Chiral symmetry does not require irreducible representations for
parity-conserving interactions.

was finally raised by explicit examples of mirror (three-quark)
interpolating fields in Refs. [25–27,47–49]. For octet baryons,
this limits the permissible chiral multiplets to [(6,3) ⊕ (3,6)],
and its “mirror” [(3,6) ⊕ (6,3)], to [(3̄,3) ⊕ (3,3̄)], and its
“mirror” [(3,3̄) ⊕ (3̄,3)], and to [(8,1) ⊕ (1,8)], and its “mir-
ror” [(1,8) ⊕ (8,1)]. Of course, one may have other, “exotic”
chiral multiplets that contain manifestly exotic flavor SUF (3)
multiplets, but we exclude them per fiat, for lack of observed
exotics.

Historically, after the observation, in Refs. [50–54], that
several crucial SU(6) algebra results follow from its (smaller)
SU(3) ⊗ SU(3) subalgebra, the notion of SU(3) ⊗ SU(3)
representation mixing was proposed as an explanation of
the nucleon’s (isovector) axial coupling g

(1)
A . The physical

nature of this SU(3) ⊗ SU(3) subalgebra was not immediately
clear, however, as two options (the conventional chiral charge
algebra, and the so-called “collinear” algebra) existed at
the time.

Indeed, the “collinear” SU(3) ⊗ SU(3) algebra, which was
generally assumed in the early work, holds only in a particular
(the so-called pz → ∞) frame of reference, which appears to
be in conflict with the general principles of special relativity.
Moreover, Adler and Weisberger had also derived their sum
rule(s) with the help of the p∞ frame. It was only after
Weinberg’s [55] clarification of the Adler-Weisberger sum
rule as consisting of two independent statements [viz. (a) the
model-independent Goldberger-Miyazawa-Oehme sum rule
for the πN scattering lengths; and (b) the chiral symmetry
breaking-dependent predictions for the πN scattering lengths]
that this matter was settled in favor of chiral symmetry,
and thus the way was paved for its later applications
in QCD. Thus, only the chiral charge symmetry option
leads to Lorentz-invariant quark interaction theories, such as
QCD.

B. Chiral mixing

In one of the earliest physical applications of the chiral
configuration mixing idea, Harari [22], Bincer [56], Gerstein
and Lee [23], and Gatto et al. [57] used the mixing of three
of the aforementioned six chiral multiplets to fit the nucleon’s
isovector axial coupling constant g

(1)
A value at 1.267, [58] and

thus explain its being different from unity, as was seemingly
demanded by the Gell-Mann–Lévy model [17]. It turned out,
however, that this application was not selective at all: all
mixing scenarios could reproduce this value, so long as the
[(6,3) ⊕ (3,6)] multiplet was involved: (a) Gatto et al.—Harari
scenario [22,57]

|N (8)〉 = sin θ |(6,3)〉 + cos θ (cos ϕ|(3,3̄)〉 + sin ϕ|(3̄,3)〉),
(1)

or (b) Gerstein-Lee scenario [23]

|N (8)〉 = sin θ |(6,3)〉 + cos θ (cos ϕ|(3,3̄)〉 + sin ϕ|(8,1)〉).
(2)

For other, more exotic scenarios, see Ref. [59]. Simultaneously,
or somewhat later, Refs. [24,40,53,60,61] used the same
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TABLE I. The Abelian and the non-Abelian axial charges (+ sign indicates “naive”, − sign “mirror” transformation properties) and the
non-Abelian chiral multiplets of J P = 1

2 , Lorentz representation ( 1
2 ,0) nucleon fields. The field denoted by 0 belongs to the (1, 1

2 ) ⊕ ( 1
2 ,1)

chiral multiplet and is the basic nucleon field that is mixed with various ( 1
2 ,0) nucleon fields.

case field g
(0)
A g

(1)
A SUL(2) × SUR(2) F D SUL(3) × SUR(3)

I N1 − N2 −1 +1
(

1
2 ,0

) ⊕ (
0, 1

2

)
0 +1 (3,3) ⊕ (3,3)

II N1 + N2 +3 +1
(

1
2 ,0

) ⊕ (
0, 1

2

) +1 0 (8,1) ⊕ (1,8)

III N
′
1 − N

′
2 +1 −1

(
0, 1

2

) ⊕ (
1
2 ,0

)
0 −1 (3,3) ⊕ (3,3)

IV N
′
1 + N

′
2 −3 −1

(
0, 1

2

) ⊕ (
1
2 ,0

) −1 0 (1,8) ⊕ (8,1)

0 ∂μ

(
N

μ
3 + 1

3 N
μ
4

) +1 + 5
3

(
1, 1

2

) ⊕ (
1
2 ,1

) + 2
3 +1 (6,3) ⊕ (3,6)

approach to saturate the electric dipole operator algebra and
calculate the nucleon’s anomalous magnetic moments and
charge radii. Moreover, other phenomenological applications
of the current algebra, e.g., to pion photoproduction can be
found in Ref. [53]. All of this was done in the framework
of collinear SU(3) ⊗ SU(3) algebra, but algebraically these
results must be the same as the chiral SU(3) ⊗ SU(3) algebra
ones. The construction of corresponding chiral multiplets in
the SU(3) ⊗ SU(3) chiral charge algebra is not as straightfor-
ward as in the collinear one, however (see our remarks about
interpolators, below).

There is no guarantee that all six of the above chiral
(not collinear) multiplets are allowed by the Pauli principle
in the ground state of the nucleon, as composed of three
Dirac quarks.3 The (formal) tool for this kind of study was
provided around 1980 [62–64], in the form of the so-called
nucleon-three-quark interpolating fields.

Studies, in Refs. [25,26,47–49], of local (S wave, there-
fore ground state candidates), bilocal (P wave and higher),
and trilocal (D wave and higher) three-quark interpolators
have shown that only [(3̄,3) ⊕ (3,3̄)] and [(8,1) ⊕ (1,8)] are
allowed in the local limit and that [(6,3) ⊕ (3,6)] appears
as a spin 1/2 “complement” to the local Rarita-Schwinger
spin-3/2 interpolator. Many other chiral multiplets appear
in the nonlocal case, where the Pauli principle is less
restrictive.

C. Isoscalar axial coupling

The nucleon has also a flavor singlet axial coupling g
(0)
A ,

that has not been measured directly from elastic parity-
violating lepton-nucleon scattering, as yet. Rather, it has
been extracted indirectly from spin-polarized lepton-nucleon
DIS data after 1988 as g

(0)
A = 0.28 ± 0.16 [7], or the more

recent value of 0.33 ± 0.03 ± 0.05 [16], which is in the
nonrelativistic quark model predicted to be unity. Our studies
of interpolating fields have shown that each SUL(3) × SUR(3)
multiplet carries definite UA(1) transformation properties and

3That aspect of the problem could be safely neglected in the
collinear approach, which allows arbitrary values of the orbital
angular momentum L and restricts only its z-projection Lz.

the corresponding UA(1) charge, see Table I. Then, the next
basic question becomes if the same set of chiral mixing an-
gle(s) can simultaneously explain this anomalously low value.
The answer, which is in the positive [39], manifestly depends
on the UA(1) chiral transformation properties of the admixed
nucleon fields, and leads to the so-called Harari scenario that
mixes [(6,3) ⊕ (3,6)], with [(3̄,3) ⊕ (3,3̄)], and its “mirror”
[(3,3̄) ⊕ (3̄,3)] field. No admixture of [(8,1) ⊕ (1,8)], or its
“mirror” [(1,8) ⊕ (8,1)] is preferred. This fact confirms the
Gatto-Harari scenario, Eq. (1), and eliminates the Gerstein-Lee
scenario, Eq. (2), from contention.

Moreover, we note that the above outlined program of
fitting the hadron/nucleon observables in order to obtain chiral
mixing angles is practically feasible only for the ground
state(s): e.g., there is no hope of ever (sufficiently accurately)
measuring the isovector axial coupling of the 	 resonance,
except, perhaps, on the lattice. The same comments hold for
the negative parity, and all of the higher-lying excited states.
In this sense, the present scheme is of limited scope, but its
potential to explain and illustrate the (fairly complex) QCD
physics of baryons is undeniable.

The above no-[(8,1) ⊕ (1,8)] or [(1,8) ⊕ (8,1)] selection
rule is in striking agreement with the results of so-called
QCD sum rules and lattice QCD calculations [62,63] that
indicate only weak coupling of the physical nucleon ground
state to the [(8,1) ⊕ (1,8)] and/or its “mirror” [(1,8) ⊕ (8,1)]
multiplet component. There is no dynamical, or symmetry-
based explanation of this fact, as yet.

Specific dynamical models such as the Faddeev-Bethe-
Salpeter-Schwinger-Dyson equation approach of Ref. [41], or
the Faddeev-Salpeter equation approach of Ref. [65], ought to
yield specific predictions for these mixing angles/parameters,
and perhaps also to a dynamical explanation of empirical
selection rules such as the above one.

Irrespective of specific dynamical model calculations, there
ought to exist an effective chiral Lagrangian description of the
corresponding hadron degrees of freedom. The task of con-
structing them was long drawn out: (a) the (1, 1

2 ) − (0, 1
2 ) chiral

representation mixing Lagrangian with SUL(2) ⊗ SUR(2)
chiral symmetry was first presented by Hara [31]; (b) the first
“naive”-“mirror” ( 1

2 ,0) − (0, 1
2 ) chiral-mixing Lagrangian with

SUL(2) ⊗ SUR(2) chiral symmetry was presented by Lee [20],
and further extended by a number of researchers [29,66–68],
and most recently by Nagata et al. [26,27,30,42]; (c) the
extension to SUL(3) ⊗ SUR(3) chiral symmetry has been
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accomplished in Refs. [32,34,35,37,38] and will be briefly
reviewed in Sec. III.

D. Consistency of chiral algebra

Before we do that, however, we must show that the
axial charges still obey the same SUL(3) ⊗ SUR(3) chiral
algebra even after chiral mixing has occurred. A problem
of the axial charge in the spontaneously broken vacuum
and in the chiral limit is that it leads to singularities in
matrix elements due to the massless pion pole. Once the
chiral symmetry is explicitly broken this problem generally
disappears, as the Nambu-Goldstone bosons acquire mass. In
the present context, the effect of the broken-symmetry vacuum
is included by the representation mixing, among other things.
It is therefore useful to show that the SUL(3) ⊗ SUR(3) chiral
algebra holds for the baryon axial and vector charge matrix
elements with chiral mixing included. That will ensure that
the chiral symmetry-breaking Dashen double commutator can
be straightforwardly calculated.

A basic feature of the linear chiral realization is that the
axial couplings are determined by the chiral representations. In
Ref. [47], we found that for the nucleon octet, the three-quark
chiral representations of SUL(3) × SUR(3), (8,1) ⊕ (1,8),
(3,3̄) ⊕ (3̄,3), and (6,3) ⊕ (3,6) provide the nucleon isovector
axial coupling g

(3)
A = 1, 1 and 5/3, respectively. Then in

Ref. [33], we found that the mixing of chiral (6,3) ⊕ (3,6),
(3̄,3) ⊕ (3,3̄), and (3,3̄) ⊕ (3̄,3) nucleons leads to the observed
axial couplings (the case III-I in Ref. [33]):

g
(3)
A = g

(3)
A (6,3) sin2θ

+ cos2θ
(
g

(3)
A (3,3̄)cos2ϕ + g

(3)
A (3̄,3)sin2ϕ

) = 1.267,

(3)
g

(0)
A = g

(0)
A (6,3) sin2θ

+ cos2θ
(
g

(0)
A (3,3̄)cos2ϕ + g

(0)
A (3̄,3) sin2ϕ

)
= 0.33 ± 0.08, (4)

where we used

〈N |Qa
5|N〉 = 〈N |Qa

5(6,3)|N〉 sin2θ

+ cos2θ
(〈N |Qa

5(3,3̄)|N〉cos2ϕ

+ 〈N |Qa
5(3̄,3)|N〉sin2ϕ

)
. (5)

Next we used Table I values of g
(3)
A (6,3) = 5

3 = −g
(3)
A

(3,6), g
(3)
A (3,3̄) = 1 = −g

(3)
A (3̄,3), and g

(0)
A (3,3̄) = −1 =

−g
(0)
A (3̄,3), to find

g
(3)
A = 5

3 sin2 θ + cos2 θ cos 2ϕ = 1.267, (6)

g
(0)
A = sin2 θ − cos2θ cos 2ϕ = 0.33 ± 0.08, (7)

whose solutions are

θ = 50.7o ± 1.8o, ϕ = 66.1o ± 2.9o. (8)

Of course, this mixing appears to affect the SUL(3) ⊗ SUR(3)
chiral algebra, as well, so we must first check that we did not
spoil this algebra. The main “problematic” part of the SUL(3)
⊗ SUR(3) chiral algebra is the double-axial commutator[

Qa
5,Q

b
5

] = if abcQc. (9)

We shall check this commutation rule in the nucleon subspace
of the full Hilbert space:

〈N |[Qa
5,Q

b
5

]|N〉 = 〈N |[Qa
5(6,3),Qb

5(6,3)
]|N〉 sin2 θ

+〈N |[Qa
5(3,3̄),Qb

5(3,3̄)
]|N〉 cos2 θcos2ϕ

+〈N |[Qa
5(3̄,3),Qb

5(3̄,3)
]|N〉 cos2 θsin2ϕ.

(10)

Next, we may use the commutators [Qa
5,Q

b
5] = if abcQc for

the (3,3̄) and the (6,3) chiral multiplets worked out in Ref. [33]
and listed in Appendix B, which all lead to the same SU(3)
vector charges Qc:[

Qa
5(3,3̄),Qb

5(3,3̄)
] = if abcQc(3,3̄) = if abcQc, (11)[

Qa
5(6,3),Qb

5(6,3)
] = if abcQc(6,3) = if abcQc. (12)

Thus we find

〈N |[Qa
5,Q

b
5

]|N〉
= if abc〈N |Qc|N〉(sin2 θ + cos2 θ (cos2ϕ + sin2 ϕ))

= if abc〈N |Qc|N〉, (13)

which confirms the chiral charge SUL(3) ⊗ SUR(3) algebra.
This ensures that the chiral symmetry-breaking Dashen double
commutator can be safely and reliably calculated in the chiral
mixing approach.

III. THE LINEAR σ MODEL FOR CHIRAL MIXING

The next step is to try and reproduce this phenomenological
mixing starting from a model interaction, rather than per
fiat. As the first step in that direction we must look for a
dynamical source of chiral mixing. One, perhaps the simplest,
such mechanism is the chirally symmetric nonderivative one-
(σ,π )-meson interaction Lagrangian, which induces baryon
masses via its σ -meson coupling. For this reason we need
to know the form of the most general such Lagrangian(s);
that problem was solved in Ref. [34] for three flavors and in
Refs. [30,42] for two flavors.

There is a significant difference between Nf = 2 and Nf =
3 chirally symmetric linear σ models of chiral mixing, as only
in the latter case there are strongly restrictive selection rules.

For example, most UA(1) symmetry-breaking and
SUL(3) × SUR(3) chiral symmetry-conserving interactions
are forbidden, see Tables II and III taken from Ref. [34]. In
particular only one SUL(3) × SUR(3) symmetric, but UA(1)
symmetry-breaking interaction (the [(3,3̄) ⊕ (3̄,3)]-[(8,1) ⊕
(1,8)] and its Hermitian conjugate [(1,8) ⊕ (8,1)][mir]-
[(3̄,3) ⊕ (3,3̄])[mir]) is allowed. These results stand in marked
contrast to the two-flavor case [30,42], where all of the
SUL(2) × SUR(2) symmetric interactions have both a UA(1)
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TABLE II. Allowed chiral invariant interaction Lagrangian with one pseudoscalar meson field, denoted by either M or M† as corresponding
to Eqs. (19) and (20). The symbol – indicates that chiral invariant construction is not allowed. All cases are both SUL(3) × SUR(3) and UA(1)
invariant except for the last (third) group where UA(1) is broken.

(1,8) ⊕ (8,1)[mir] (3̄,3) ⊕ (3,3̄)[mir] (6,3) ⊕ (3,6) (1,10) ⊕ (10,1)[mir]

(1,8) ⊕ (8,1)[mir] – M† M† –

(3̄,3) ⊕ (3,3̄)[mir] M† M M –

(6,3) ⊕ (3,6) M† M M M†

(1,10) ⊕ (10,1)[mir] – – M† –
(8,1) ⊕ (1,8) (3,3̄) ⊕ (3̄,3) (3,6) ⊕ (6,3)[mir] (10,1) ⊕ (1,10)

(8,1) ⊕ (1,8) – M M –

(3̄,3) ⊕ (3,3̄) M M† M† –

(3̄,6̄) ⊕ (6̄,3̄)[mir] M M† M† M

(10,1) ⊕ (1,10) – – M –
(8,1) ⊕ (1,8) (1,8) ⊕ (8,1)[mir]

(3̄,3) ⊕ (3,3̄) – M†; UA(1) broken

(3,3̄) ⊕ (3̄,3)[mir] M; UA(1) broken –

symmetry-conserving and a UA(1) symmetry-breaking ver-
sion. This is due to the fact that in the SUL(2) × SUR(2) limit
both the [(3̄,3) ⊕ (3,3̄]) and the [(8,1) ⊕ (1,8)] multiplet re-
duce to the same multiplet ( 1

2 ,0) ⊕ (0, 1
2 ), albeit with different

UA(1) symmetry properties.
Although, the SUL(3) × SUR(3) symmetry is rather badly

explicitly broken, we may expect that in the corresponding
π − N sector, the SUL(2) × SUR(2) symmetry may remain
more-or-less conserved. So, although we shall be primarily
interested in the pion-nucleon case, i.e., in Nf = 2, we shall
use the Nf = 3 selection rules for guidance.

A. A brief summary of N f = 3 interactions

In this section, we introduce a shorthand notation:

N(8m) ∼ [(1,8) ⊕ (8,1)][mir], N(9m) ∼ [(3̄,3) ⊕ (3,3̄)][mir],

N(18) ∼ (6,3) ⊕ (3,6), N(10m) ∼ [(1,10) ⊕ (10,1)][mir],

(14)

and similar for their mirror and naive representations. The
scalar (σ ) and pseudoscalar (π ) mesons are introduced and
transformed under the chiral transformations as

M = σ + iγ5π ∼ (3,3̄), M† = σ − iγ5π ∼ (3̄,3). (15)

Now the chiral structure of the Lagrangians for Yukawa-type
interactions is

N̄MN ′ + N̄ ′M†N ∼ N̄LMN ′
R + N̄ ′

RM†NL, (16)

where N and N ′ may belong to different chiral representations.
Our task is to form chiral singlet combinations for these
interactions. For instance,

N̄(9m)MN(18) ∼ (3̄,3) ⊗ (3,3̄) ⊗ (3,6) + (3,3̄) ⊗ (3̄,3) ⊗ (6,3)

(17)

can make the SUL(3) × SUR(3) chiral singlet (3 ⊗ 3 ⊗ 3 →
1,3̄ ⊗ 3̄ ⊗ 6 → 1). This corresponds to the cell at the second
row and third column of Table II. Contrary, a combination like

N̄(8m)MN(8m) ∼ (1,8) ⊗ (3,3̄) ⊗ (8,1) + (8,1) ⊗ (3̄,3) ⊗ (1,8)

(18)

cannot make the chiral invariant interaction as corresponding
to the cell at the first row and column of Table II. We can also
consider other possible combinations, all of which are listed
in Table II.

TABLE III. Allowed chiral invariant mass terms as denoted by 1, while the symbol – indicates that chiral invariant construction is not
allowed. All cases are both SUL(3) × SUR(3) and UA(1) invariant.

[SUA(3),UA(1)] (8,1) ⊕ (1,8) (3,3̄) ⊕ (3̄,3) (3,6) ⊕ (6,3)[mir] (10,1) ⊕ (1,10)

(1,8) ⊕ (8,1)[mir] 1 – – –

(3,3̄) ⊕ (3̄,3)[mir] – 1 – –

(6̄,3̄) ⊕ (3̄,6̄) – – 1 –

(1,10) ⊕ (10,1)[mir] – – – 1
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The results are also expressed explicitly in the form of the Lagrangian which is given by

L = (N (8m) N (9m) N (18) N (10m))

⎛
⎜⎜⎜⎝M

⎛
⎜⎜⎜⎝

08×8 08×9 08×18 08×10

09×8 g(9)Da
(9) g(9/18)Ta

(9/18) 09×10

018×8 g∗
(9/18)T

†a
(9/18) g(18/18)Da

(18) 018×10

010×8 010×9 010×18 010×10

⎞
⎟⎟⎟⎠

+M†

⎛
⎜⎜⎜⎜⎝

08×8 g(8/9)Ta
(8/9) g(8/18)Ta

(8/18) 08×10

g∗
(8/9)T

†a
(8/9) 09×9 09×18 09×10

g∗
(8/18)T

†a
(8/18) 018×9 018×18 g∗

(10/18)T
†a
(10/18)

010×8 010×9 g(10/18)Ta
(10/18) 010×10

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

N(8m)

N(9m)

N(18)

N(10m)

⎞
⎟⎟⎟⎠. (19)

Here 0A×B is the null matrix of dimension A × B, and Da
(A),T

a
(A/B) are flavor transition matrices of a dimension as indicated by

their subscripts, which are defined in Ref. [33]. Similarly the mirror counterparts are given as

L(m) = (N (8) N (9) N (18m) N (10))

⎛
⎜⎜⎜⎜⎝M†

⎛
⎜⎜⎜⎜⎝

08×8 08×9 08×18 08×10

09×8 g′
(9)D

a
(9) g′

(9/18)T
a
(9/18) 09×10

018×8 g′∗
(9/18)T

†a
(9/18) g′

(18/18)D
a
(18) 018×10

010×8 010×9 010×18 010×10

⎞
⎟⎟⎟⎟⎠

+M

⎛
⎜⎜⎜⎜⎜⎝

08×8 g′
(8/9)T

a
(8/9) g′

(8/18)T
a
(8/18) 08×10

g′∗
(8/9)T

†a
(8/9) 09×9 09×18 09×10

g′∗
(8/18)T

†a
(8/18) 018×9 018×18 g′∗

(10/18)T
†a
(10/18)

010×8 010×9 g′
(10/18)T

a
(10/18) 010×10

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

N(8)

N(9)

N(18m)

N(10)

⎞
⎟⎟⎟⎟⎠. (20)

Besides these, there is another single-term Lagrangian which
is also chiral invariant:

L(B) = g(B)N (8)M
†Ta

(B)N(9m) + H.c., (21)

together with its mirror counterpart

L(Bm) = g′
(B)N (8m)MTa

(B)N(9) + H.c. (22)

These correspond to the third (bottom) group in Table II.
We note that the Lagrangians (19) and (20) are also invariant

under UA(1) chiral transformation, while Eqs. (21) and (22)
are not. This is verified by counting the UA(1) charge g

(0)
A in

the interaction Lagrangian. Recall that the meson fields M and
M† carry g

(0)
A = −2 and +2, respectively. Therefore, for the

interaction (17) as an example, by using the result of Table I
we have the net UA(1) charge as

g
(0)
A = +1 − 2 + 1 = 0, (23)

where we have used the fact that the UA(1) charge of the
Dirac conjugate is the same as the original one because of the
interchange of the left and right components.

These results stand in marked contrast to the two-flavor
case [30,42]. Namely, for SUL(3) × SUR(3) chiral invariant
Lagrangians with a certain representation structure as given
in Table II [or to one term in Eqs. (19)–(22)] are either
UA(1) symmetry-conserving or UA(1) symmetry-breaking. In
contrast, for SUL(2) × SUR(2) chiral invariant Lagrangians
with the same representation structure have both a UA(1)

symmetry-conserving and a UA(1) symmetry-breaking ver-
sion. This is due to the fact that the two SUL(3) × SUR(3)
representations, (8,1) ⊕ (1,8) and (3,3̄) ⊕ (3̄,3) reduce to the
same ( 1

2 ,0) ⊕ (0, 1
2 ) representation of SUL(2) × SUR(2). Thus,

generally speaking, the three-flavor chiral symmetry is more
restrictive than the two-flavor one.

Besides the interaction Lagrangians (19)–(22), the so-called
“naive”-“mirror” mass terms are also chiral invariant:

L(mass) = m(8)N (8m)γ5N(8) + m(9)N (9m)γ5N(9)

+m(18)N (18m)γ5N(18) + m(10)N (10m)γ5N(10),

(24)

where m(8), . . . ,m(10) are the mass parameters. The chiral
structures of these terms are summarized in Table III.

B. Baryon masses in the chiral limit

Chiral symmetry is spontaneously broken through the
“condensation” of the σ field σ → σ0 = 〈σ 〉0 = fπ , which
leads to the dynamical generation of baryon masses, as
can be seen from the linearized chiral invariant interaction
Lagrangians (19)–(22).

In this section, we study the masses of the octet baryons.
There are altogether six types of octet baryon fields: N+ (N(8)),
N− (contained in N(9)) and Nμ (contained in N(18)), as well
as their mirror fields N ′

+ (N(8m)), N ′
− (contained in N(9m)), N ′

μ

(contained in N(18m)). The nucleon mass matrix is already in a
simple block-diagonal form when the nucleon fields form the
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TABLE IV. The values of the 	 and � baryon masses predicted from the isovector axial coupling g
(1)
Amix = g

(1)
A exp = 1.267 and g

(0)
Amix =

0.33 ± 0.08 due to [(6,3) ⊕ (3,6)] – [(3̄,3) ⊕ (3,3̄)] – [(3,3̄) ⊕ (3̄,3)] mixing.

No. g1 g2 g3 g4 g5 �P
1 (MeV) �P

2 (MeV) 	P (MeV)

1 −4.7 8.4 −3.4 2.9 9.8 1370− 1850+ 2170−

2 −7.2 4.6 7.9 9.1 −4.2 1940+ 2430− 1200−

following mass matrix:

M = 1√
6
N̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 fπg(8/9) fπg(8/18) m(8)γ5 fπgB 0

fπg∗
(8/9) fπg(9/9) fπg(9/18) fπg∗

B m(9)γ5 0

fπg∗
(8/18) fπg∗

(9/18) fπg(18/18) 0 0 m(18)γ5

m(8)γ5 fπg′
B 0 0 fπg′

(8/9) g′
(8/18)

fπg′∗
B m(9)γ5 0 fπg′∗

(8/9) fπg′
(9/9) fπg′

(9/18)

0 0 m(18)γ5 fπg′∗
(8/18) fπg′∗

(9/18) fπg′
(18/18)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N, (25)

where

N = (N ′
+,N ′

−,Nμ,N+,N−,N ′
μ)T . (26)

Since there are three nucleon fields as well as their mirror
fields, there can be a nonzero phase angle. However, for
simplicity, we assume all the axial couplings are real.

C. Masses due to [(6,3) ⊕ (3,6)]–[(3̄,3) ⊕ (3,3̄)]–
[(3,3̄) ⊕ (3̄,3)] mixing

As shown in Sec. II, the mixing of chiral (6,3) ⊕ (3,6),
(3̄,3) ⊕ (3,3̄), and (3,3̄) ⊕ (3̄,3) nucleons leads to the observed
axial couplings (case III-I in Ref. [33]). Accordingly, we
investigate the following three nucleon chiral multiplets:

(B2,	) ∈ (6,3) ⊕ (3,6),

(B1,�1) ∈ (3̄,3) ⊕ (3,3̄)[mir], (27)

(B3,�2) ∈ (3,3̄) ⊕ (3̄,3),

and one meson multiplet

(σ,π ) ∈ (3,3̄) ⊕ (3̄,3).

Here all baryons have spin 1/2, while the isospin of B1 and B2

is 1/2 and that of 	 is 3/2. The 	 field is then represented by
an isovector, Dirac-spinor field 	i , (i = 1,2,3), which should
not be confused with the spin- 3

2	(1232) resonance.
In writing down the Lagrangians (19), we have implicitly

assumed that the parities of B1,B2,�, and 	 are the same.
In principle, they are arbitrary, except for the ground state
nucleon, which must be even. For instance, if B2 has odd
parity, the first term in the interaction Lagrangian (19) must
include another γ5 matrix [67].

Having established the mixing interactions as well as the
diagonal terms in Ref. [34], we calculated the masses of
the baryon states, as functions of the pion decay constant
fπ and the coupling constants g1 ∼ g(9/9),g2 ∼ g(18/18), and

g3 ∼ g(9/18):

L(9) = −g1fπ (B̄1B1 − 2�̄�) + · · · ,

L(18) = −g2fπ (B̄2B2 − 2	̄i	i) + · · · , (28)

L(9/18) = −g3fπ (B̄1B2) + · · · ,

L′
(9) = −g4fπ (B̄3B3 − 2�̄1�1) + · · · ,

L(9/9) = −g5fπB̄1B3 − g5fπ�̄1�2 + · · · . (29)

We note that B1 and B3 couple with each other through the
naive combinations: m(9)N (9m)γ5N(9). Altogether we have

L = −fπ (B̄1,B̄3,B̄2)

⎛
⎜⎝

g1 g5 g3

g5 g4 0

g3 0 g2

⎞
⎟⎠

⎛
⎜⎝

B1

B3

B2

⎞
⎟⎠

− fπ (�̄1,�̄2)

(−2g1 g5

g5 −2g4

)(
�1

�2

)
+ 2g2fπ	̄i	i. (30)

Let us now diagonalize the mass matrix and express the
mixing angle in terms of diagonalized masses. We use the three
nucleon candidates N (940),N (1440), and N∗(1535) as well as
the two mixing angles θ = 50.7o and ϕ = 66.1o, and finally
find that there are two possibilities as shown in Table IV [34].
The odd-parity 	 option appears as the better one. Now, the
first flavor-singlet � lies at 1370 MeV, substantially closer to
1405 MeV. Flavor-singlet � lies at 1850 MeV, very close to the
(three star Particle Data Group [69]) P01(1810) resonance. This
is our best candidate in the [(6,3) ⊕ (3,6)]–[(3̄,3) ⊕ (3,3̄)]–
[(3,3̄) ⊕ (3̄,3)] mixing scenario.

A comment about the comparatively high value of the 	
mass is in order: In the mid-1960s Hara [31] noticed that
the chiral transformation rules for a (1, 1

2 ) multiplet impose a
strict and seemingly improbable mass relation among its two
members: m	 = 2mN . The mixing with the ( 1

2 ,0) multiplet
only makes things worse, i.e., it makes the 	 even heavier. For
this reason, the lowest-lying spin-1/2 	 resonance cannot be
a chiral partner of the lowest-lying nucleon N (940), whereas,
	(2150) seems to be a viable candidate for the N (940)’s chiral
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partner. Of course, 	(2150) may contain components of (i.e.,
mix with) other high-lying resonances that do not significantly
mix with N (940).

D. Chiral symmetry breaking

1. Chiral symmetry breaking: Bare quark masses

In QCD one expects HχSB to be determined solely by the
current quark masses m0

u,m
0
d ,m

0
s (modulo EM effects), i.e.,

HχSB = Hq
χSB :

Hq
χSB = m0

uūu + m0
d d̄d + m0

s s̄s

=
∑

i=u,d,s

q̄im
0
qi
qi =

∑
a=0,3,8

m0
a(q̄λaq), (31)

where

m0 = md + ms + mu√
6

,

m3 = 1

2
(mu − md ),

m8 = md − 2ms + mu

2
√

3
.

2. Chiral symmetry breaking: Bare baryon masses

We introduce, following Refs. [21,70], an explicit χSB
diagonal4 “bare” nucleon mass and the corresponding χSB
Hamiltonian density:

HN
χSB =

3∑
i=1

N̄iM
0
Ni

Ni + 	̄(1, 1
2 )M

0
	(1, 1

2 )
	(1, 1

2 ), (32)

where i stands for the three chiral multiplets (1, 1
2 ),( 1

2 ,0), and
(0, 1

2 ). A priori, we do not know the values of the “current”
nucleon masses, except for a lower limit—they cannot be
smaller than three isospin-averaged current quark masses:
M0

Ni
� 3m̄0

q = 3
2 (m0

u + m0
d ) � 23 MeV [71], or 14 MeV [72].

To see how this bound comes about, note that the isospin-
averaged “bare” nucleon mass term,

HχSB(0) = M0
NN̄N, (33)

where M̄0
N = 1

2 (M0
p + M0

n), can be readily expressed in terms
of the current quark mass term, Eq. (31), with M0

N = 3m̄0
q =

3
2 (m0

u + m0
d ).

It seems clear that the same “current” (or bare) nucleon
mass M0

N ought to hold for any of the three chiral multiplets
(1, 1

2 ),( 1
2 ,0), and (0, 1

2 ), so long as they all correspond to three-
quark interpolating fields. Of course, the same chiral multiplets
may arise as five-quark interpolators, in which case their bare
mass ought to be 5

2 (m0
u + m0

d ), i.e., larger than the above value
3
2 (m0

u + m0
d ). That explains the inequality in M0

Ni
� 3m̄0

q =
3
2 (m0

u + m0
d ).

For simplicity’s sake, we shall assume, as a first approxima-
tion, that all three chiral components have the same “current”

nucleon mass M0
N = M0

N(6,3) = m
(1, 1

2 )
N = m

(1, 1
2 )

	 = M0
N(3,3̄) =

m
( 1

2 ,0)
N = M0

N(3̄,3) = m
(0, 1

2 )
N = 3

2 (m0
u + m0

d ). In principle, the
nucleon bare mass value may differ from one chiral multiplet
to another, albeit not by much, e.g., in the three-flavor case it
may contain different F and D components, due to different
F and D structures of the chiral multiplets, see below. This
difference may be important in the three-flavor extension(s) of
the model, but not in the two-flavor case.

The model is easily extended to broken SU(3) symmetry
case: the explicit χSB “bare” nucleon mass and the corre-
sponding χSB Hamiltonian density are

HN
χSB =

3∑
i=1

B̄iM
0
Bi

Bi + 	̄(6,3)M
0
	(6,3)	(6,3), (34)

where i stands for the three chiral multiplets (6,3), (3̄,3), and
(3,3̄), and the nucleon-octet mass matrix M0

Bi
in the “physical”

basis reads

M0
Bi

= m3(d3 + f3) − 3

2
√

3
d8(M� − M�) + 2f8m8 +

√
6m0U, (35)

M0
Bi

= diagonal

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3(M�−M� )
4 + md + 2mu,

3(M�−M� )
4 + 2md + mu,

1
2 (md + 2ms + 3(−M� + M� + mu)) − 3M�

2 + 3M�

2 + md + ms + mu,
1
2 (−3M� + 3M� + 3md + 2ms + mu),
1
4 (3M� − 3M� + 2md + 8ms + 2mu),
1
4 (3M� − 3M� + 2md + 8ms + 2mu),

3(M�−M� )
2 + md + ms + mu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ off-diagonal. (36)

4Formally, one may include off-diagonal terms here, as well. Physi-
cally there are many open questions associated with such terms, how-
ever. For example: (1) What dependence of the off-diagonal nucleon
components on the current quark mass should one expect? (2) Would
it be (linearly) proportional to the average current quark mass, or to

the difference of up and down current quark masses? (3) Which chiral
multiplets would be admixed and why? There are many unknowns,
that we wish to keep at a minimum here, however, for the sake of
simplicity.

065208-9
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The off-diagonal term in Eq. (36), given by

off-diagonal =
(

mu − md

2
√

3

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

determines the � − �0 mixing and mass splitting. As we shall
not concern ourselves with hyperons in this paper, this term is
of no interest here.

IV. THE PION-NUCLEON �π N TERM

A. �π N at quark level—a brief review

The � operator, defined as the double commutator

� = 1
3δab

[
Qa

5,
[
Qb

5,HχSB(0)
]]

, (37)

was introduced by Dashen as a measure of explicit chiral
SUL(2) × SUR(2) symmetry breaking [73–76]. It is sensitive
to the flavor indices of the axial charges Qa

5 and the form of
the SUL(3) × SUR(3) chiral symmetry breaking Hamiltonian
densityHχSB : Other choices of summed over indices a,b probe
different parts of symmetry breaking Hamiltonian. Its nucleon
matrix element is the pion-nucleon �πN term

�πN = 1
3δab〈N |[Qa

5,
[
Qb

5,HχSB(0)
]]|N〉, (38)

is of importance for the determination of the flavor content,
in particular of the ss̄ content of the nucleon [1–3,73]. In
QCD one expects HχSB to be determined solely by the current
quark masses m0

u,m
0
d ,m

0
s (modulo EM effects) Eq. (31). Then,

the axial charges Qa
5 are then also constructed from the quark

fields:

Qa
5 =

∫
dxq†(x)γ5

1

2
λaq(x), (39)

which leads, after some basic algebraic manipulations, to

�πN = m0
u + m0

d

2
〈N |ūu + d̄d|N〉 + m0

s 〈N |s̄s|N〉, (40)

and thus the value of the πN�N term that is given by the sum
of the current quark masses in the nucleon. (This is reflected
in a nonzero “bare” or “current” nucleon mass on the hadronic
level.) Assuming the nucleon contains no, or little strange
quark component, i.e., 〈N |s̄s|N〉 ∼ 0, one has

�πN = m0
u + m0

d

2
〈N |ūu + d̄d|N〉. (41)

The matrix element 〈N |ūu + d̄d|N〉 counts the number of u
and d quarks and/or antiquarks in the nucleon, so that �πN �
3
2 (m0

u + m0
d ) = 3m̂0 � 23 MeV (with the current quark mass

estimates that were valid at the time in PDG1998 [71]; these

have dropped in the meantime significantly down to roughly
3m̂0 � 14 MeV in PDG2012 [72]). At the same time the
nucleon mass shift due to the SU(3)-breaking Hamiltonian
was evaluated at the baryonic level, assuming the contribution
of strange quark to be zero, as

�πN = 3m̂0

m0
s − m̂0

(M� − M�) � 26 MeV, (42)

where M�,M� are the hyperon ground state masses. As
these two essentially independent estimates yielded basically
one and the same number, any deviation of �πN from the
value of 25 MeV seemed to indicate some s̄s content in
the nucleon (this agreement between these two methods has
disappeared with time, however: with the PDG2012 [72]
values one finds �πN = 3m̂0

m0
s −m̂0 (M� − M�) � 22 MeV vs.

�πN � 3
2 (m0

u + m0
d ) � 13 MeV). But, all estimates of �πN

from the πN scattering data yielded substantially larger values,
ranging from 55 MeV to 80 MeV [77–80]. Consequently, the
importance of the �πN term cannot be exaggerated for the ss̄
content of the nucleon. These arguments go back to 1976 [1],
and have, by now, found their way into textbooks on particle
physics [14,15].

In the meantime there has been a large number of attempts
at a theoretical explanation, most of which rely on the enlarged
ss̄ content of the nucleon. More recently a number of lattice
calculations with (almost physical) pions have also reached
an enlarged value of �πN [81–84]. But, there have also been
many experimental searches for the ss̄ contributions to the
nucleon observables, none of which produced a significant
result (meaning larger than 1% of the uū and dd̄ contributions;
otherwise they are compatible with isospin violating correc-
tions) thus making ss̄ effectively negligible [11–13]. Thus the
enigma deepens: how is it possible to have such a large �πN

term without ss̄ content?

B. �π N at the baryon level

The results obtained at the quark level are not always the
same as those obtained at the hadronic level, however. The
purpose of this study is to lay bare the dependence of the �πN

term on the mixing of chiral multiplets, i.e., on the isovector
axial coupling g

(3)
A , and the flavor-singlet axial coupling

g
(0)
A .

The axial current coupling constants of the baryon flavor
octet are well known [58]. The zeroth (time-like) components
of these axial currents are generators of the SUL(3) × SUR(3)
chiral symmetry of QCD. The general flavor SUF (3) sym-
metric form of the nucleon axial current contains two free
parameters, called the F and D couplings, that are empir-
ically determined as F = 0.459 ± 0.008 and D = 0.798 ±
0.008 [58]. The nucleon also has a flavor singlet axial coupling
g

(0)
A , that has been estimated from spin-polarized lepton-

nucleon DIS data as g
(0)
A = 0.28 ± 0.16 [7], or more recently

as 0.33 ± 0.03 ± 0.05 [9,16], subject to certain assumptions
about hyperon decays (the axial F and D values).

In the chiral mixing approach the value gA �= 1 is achieved
naturally by way of mixing different chiral multiplets, with-
out derivative couplings. We shall display the �πN term’s
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dependence on g
(3)
A and show that a large value of �πN is easily

obtained even with the present day (significantly smaller)
current quark masses and with a vanishing ss̄ component of
the nucleon.

In order to show this, we must first evaluate and discuss
the nucleon �πN term as obtained from the � double
commutators. That will be done in Sec. IV B 1. We shall adopt
different chiral symmetry breaking [χSB] terms, in accordance

with Refs. [45,46]. Then in Sec. IV B 2 we evaluate the �πN

term in the chiral mixing approach.

1. Chiral double commutators

In order to evaluate the double commutators of chiral
charges with the Hamiltonian, we shall use the single com-
mutator results from Appendix C:

[
Qb

5,
[
Qa

5,N̄(1, 1
2 )N(1, 1

2 )

]] =
(

5

3

)2

δabN̄(1, 1
2 )N(1, 1

2 ) +
(

5

3

)
1√
3

(
N̄(1, 1

2 )τ
bT a	(1, 1

2 ) + 	̄(1, 1
2 )T

†aτ bN(1, 1
2 )

)

+
[
Qb

5,
2√
3

(
N̄(1, 1

2 )γ5T
a	(1, 1

2 ) + 	̄(1, 1
2 )γ5T

†aN(1, 1
2 )

)]

=
(

25 + 16

9

)
δabN̄(1, 1

2 )N(1, 1
2 ) +

(
4

3

)
	̄(1, 1

2 )

(
3

2
δab − 1

3

{
ta(3/2),t

b
(3/2)

})
	(1, 1

2 ) + · · · , (43)

where · · · stands for the off-diagonal terms, such as
N̄(1, 1

2 )(· · · )	(1, 1
2 ), and their Hermitian conjugates. Similarly

for the 	-field double commutator
[
Qb

5,
[
Qa

5,	̄(1, 1
2 )	(1, 1

2 )

]]
= (

16
9

)
δabN̄(1, 1

2 )N(1, 1
2 ) + 2δab	̄(1, 1

2 )	(1, 1
2 )

− (
2
9

)
	̄(1, 1

2 )

{
ta(3/2),t

b
(3/2)

}
	(1, 1

2 ) + · · · , (44)

where · · · again stands for the off-diagonal terms. The ( 1
2 ,0)

and (0, 1
2 ) chiral multiplets double commutators are much

simpler

[
Qb

5,
[
Qa

5,N̄( 1
2 ,0)N( 1

2 ,0)

]] = δabN̄( 1
2 ,0)N( 1

2 ,0), (45)

[
Qb

5,
[
Qa

5,N̄(0, 1
2 )N(0, 1

2 )

]] = δabN̄(0, 1
2 )N(0, 1

2 ). (46)

Finally, we contract these equations (43)–(46) with 1
3δab

(where summation over repeated indices is understood) to find
1
3δab

[
Qb

5,
[
Qa

5,N̄(1, 1
2 )N(1, 1

2 )

]]
= (

41
9

)
N̄(1, 1

2 )N(1, 1
2 ) + (

8
9

)
	̄(1, 1

2 )	(1, 1
2 ) + · · · , (47)

and similarly

1
3δab

[
Qb

5,
[
Qa

5,	̄(1, 1
2 )	(1, 1

2 )

]]
= (

16
9

)
N̄(1, 1

2 )N(1, 1
2 ) + (

13
9

)
	̄(1, 1

2 )	(1, 1
2 ) + · · · , (48)

where · · · again stands for the off-diagonal terms. Here we
have used the identity ta(3/2)t

a
(3/2) = 15

4 14×4. Similarly, from
Eqs. (45) and (46) we find

1
3δab

[
Qb

5,
[
Qa

5,N̄( 1
2 ,0)N( 1

2 ,0)

]] = N̄( 1
2 ,0)N( 1

2 ,0), (49)

1
3δab

[
Qb

5,
[
Qa

5,N̄(0, 1
2 )N(0, 1

2 )

]] = N̄(0, 1
2 )N(0, 1

2 ), (50)

which are all the double commutators that we need for the
evaluation of �πN .

2. Nucleon matrix elements of chiral double commutators

As shown in Sec. II B the physical nucleon field is an
admixture of (at least) three chiral multiplet components:

|N〉 = sin θ |(6,3)〉 + cos θ (cos ϕ|(3,3̄)〉 + sin ϕ|(3̄,3)〉).
(51)

We use the identities

N(1, 1
2 )|N (p)〉 = N(1, 1

2 )(sin θ |(6,3)〉 + cos θ (cos ϕ|(3,3̄)〉 + sin ϕ|(3̄,3)〉)) = u(p)(1, 1
2 ) sin θ, (52)

N( 1
2 ,0)|N (p)〉 = N( 1

2 ,0)(sin θ |(6,3)〉 + cos θ (cos ϕ|(3,3̄)〉 + sin ϕ|(3̄,3)〉)) = u(p)( 1
2 ,0) cos θ cos ϕ, (53)

N(0, 1
2 )|N (p)〉 = N(0, 1

2 )(sin θ |(6,3)〉 + cos θ (cos ϕ|(3,3̄)〉 + sin ϕ|(3̄,3)〉)) = u(p)(0, 1
2 ) cos θ sin ϕ, (54)

and their Dirac conjugates

〈N (p)|N̄(1, 1
2 ) = (sin θ〈(6,3)| + cos θ (cos ϕ〈(3,3̄)| + sin ϕ〈(3̄,3)|))N̄(1, 1

2 ) = ū(p)(1, 1
2 ) sin θ, (55)

〈N (p)|N̄( 1
2 ,0) = (sin θ〈(6,3)| + cos θ (cos ϕ〈(3,3̄)| + sin ϕ〈(3̄,3)|))N̄( 1

2 ,0) = ū(p)( 1
2 ,0) cos θ cos ϕ, (56)

〈N (p)|N̄(0, 1
2 ) = (sin θ〈(6,3)| + cos θ (cos ϕ〈(3,3̄)| + sin ϕ〈(3̄,3)|))N̄(0, 1

2 ) = ū(p)(0, 1
2 ) cos θ sin ϕ, (57)
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which lead to

〈N (p)|N̄(1, 1
2 )N(1, 1

2 )|N (p)〉 = ū(p)(1, 1
2 )u(p)(1, 1

2 ) sin2 θ = Ep

m
sin2 θ, (58)

〈N (p)|N̄( 1
2 ,0)N( 1

2 ,0)|N (p)〉 = ū(p)( 1
2 ,0)u(p)( 1

2 ,0) cos2 θ cos2 ϕ = Ep

m
cos2 θ cos2 ϕ, (59)

〈N (p)|N̄(0, 1
2 )N(0, 1

2 )|N (p)〉 = ū(p)(0, 1
2 )u(p)(0, 1

2 ) cos2 θ sin2 ϕ = Ep

m
cos2 θ sin2 ϕ, (60)

which in the p → 0 limit implies

lim
p→0

〈N (p)|N̄(1, 1
2 )N(1, 1

2 )|N (p)〉 = sin2 θ, (61)

lim
p→0

〈N (p)|N̄( 1
2 ,0)N( 1

2 ,0)|N (p)〉 = cos2 θ cos2 ϕ, (62)

lim
p→0

〈N (p)|N̄(0, 1
2 )N(0, 1

2 )|N (p)〉 = cos2 θ sin2 ϕ. (63)

Now take the definition

�i
πN = 1

3δab〈Nα|[Qa
5,

[
Qb

5,HχSB(0)
]]|Nα〉, (64)

and evaluate it with the chiral symmetry breaking Hamiltonian
HχSB(0) in Eq. (32) and using Eqs. (47)–(50), for different
chiral representations denoted by i = (1, 1

2 ),( 1
2 ,0),(0, 1

2 ), to
find

�
(1, 1

2 )
πN = (

41
9 m

(1, 1
2 )

N + 16
9 m

(1, 1
2 )

	

)
,

�
( 1

2 ,0)
πN = m

( 1
2 ,0)

N , (65)

�
(0, 1

2 )
πN = m

(0, 1
2 )

N .

Thus we find

�πN = 1
3δab〈N |[Qa

5,
[
Qb

5,HχSB(0)
]]|N〉

= sin2 θ�
(1, 1

2 )
πN + cos2 θ

(
cos2 ϕ�

( 1
2 ,0)

πN + sin2 ϕ�
(0, 1

2 )
πN

)
= sin2 θ

(
41
9 m

(1, 1
2 )

N + 16
9 m

(1, 1
2 )

	

)
+ cos2 θ

(
cos2 ϕm

( 1
2 ,0)

N + sin2 ϕm
(0, 1

2 )
N

)
, (66)

which is our basic result here.
If we make a simplifying assumption now (for a justification

see Sec. III D 2), viz. that all three chiral components have

the same “current” nucleon mass M0
N = M0

(6,3) = m
(1, 1

2 )
N =

m
(1, 1

2 )
	 = M0

(3,3̄) = m
( 1

2 ,0)
N = M0

(3̄,3) = m
(0, 1

2 )
N , then finally one

finds

�πN = (
57
9 sin2 θ + cos2 θ

)
M0

N = (
1 + 16

3 sin2 θ
)
M0

N. (67)

Note that the factor (1 + 16
3 sin2 θ ) in front of the current

nucleon mass is always larger than unity (for real values of
the mixing angle θ ).

C. Comparison with experiment

As most “measurements” of �πN have yielded values
ranging from 55 MeV to 75 MeV,5 that are substantially
larger than the naively expected 25 MeV, it has consequently
appeared that the ss̄ content of the nucleon must be (very)
large.

The nucleon current mass is M0
N = 3m̄0

q = 3
2 (m0

u + m0
d ) �

14.4 MeV, i.e., 1
2 (m0

u + m0
d ) � 4.79 MeV in PDG2012 [72].

We note that here m0
u = 2.3 × 1.35 MeV and m0

d = 4.8 × 1.35
MeV, where 1.35 is the rescaling factor due to the change of
the energy scale from 2 GeV down to 1 GeV [72], yielding
1
2 (m0

u + m0
d ) � 4.79 MeV, substantially lower than 7.6 MeV

in PDG1998 [71].
The constraint on the mixing angle θ by the experimental

values of the axial couplings has been discussed in Sec. II,
which gives θ = 50.7o and ϕ = 66.1o. Inserting these values
into Eq. (67), one finds �πN = 60.3 MeV.

The � operator, Eq. (37), is often identified with the chiral
symmetry breaking (χSB) Hamiltonian itself. In Eq. (34) the
nucleon � term is a measure of the χSB in the nucleon. In
such a case it equals the shift of the nucleon mass δM due to
the χSB terms in the Hamiltonian. This reasoning underlies
the standard interpretation of the nucleon � term as being a
measure of the strangeness content of the nucleon Ref. [3].

A large value of �πN , such as 65 MeV, has often been
interpreted as a sign of a substantial ss̄ content of the nucleon.
We have shown that in the chiral-mixing approximation large
values of �πN can be obtained without any strangeness degrees
of freedom in the nucleon as a natural consequence of the rather
substantial chiral [(6,3) ⊕ (3,6)] multiplet component in the
nucleon field.

V. THE KAON-NUCLEON �K N TERM

A. SU(3) quark level

To calculate the kaon-nucleon �KN term, we use the �ab

operator defined as the double commutator

�ab = [
Qa

5,
[
Qb

5,HχSB
]]

, (68)

5Phenomenologically, the σ term is related to the πN scattering
amplitude at a certain nonphysical kinematical point, (at the so-called
Cheng-Dashen point t = +2m2

π ). Its extracted value is typically in the
range �CD = 70–90 MeV. After the corrections for the finite value
of t are taken into account, which roughly amount to −15 MeV, one
obtains �πN = 55–75 MeV.
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of the axial charges Qa
5 and the chiral symmetry breaking

Hamiltonian HχSB .6 It was introduced by Dashen [74] as a
way of separating out the explicit chiral SUL(3) × SUR(3)
symmetry breaking part HχSB from the total Hamiltonian.

Its (diagonal) nucleon matrix element �KN =
1
4

∑7
a=4〈N |�aa|N〉 is due to the (explicit) chiral symmetry

breaking current quark masses [74,75]. Then the kaon-nucleon
� terms are

�44 =
⎛
⎝2(ms + mu) 0 0

0 0 0
0 0 2(ms + mu)

⎞
⎠,

�55 =
⎛
⎝2(ms + mu) 0 0

0 0 0
0 0 2(ms + mu)

⎞
⎠,

�66 =
⎛
⎝0 0 0

0 2(md + ms) 0
0 0 2(md + ms)

⎞
⎠,

�77 =
⎛
⎝0 0 0

0 2(md + ms) 0
0 0 2(md + ms)

⎞
⎠.

Summing them up and dividing by 4, we find

�KN = 1

4

7∑
a=4

�aa

=

⎛
⎜⎝

ms + mu 0 0

0 md + ms 0

0 0 md + 2ms + mu

⎞
⎟⎠.

If we assume that mu = md , then

�KN = (ms + mu/d ).

B. SU(3) hadron level

Double commutator of the axial charges Qa
5 for a = 4,5,6,7

and the current/bare nucleon mass Hamiltonian HχSB (also)
gives the kaon � term operator

�K = 1

4

∑
a=4,5,6,7

[
Qa

5,
[
Qa

5,HχSB
]]

.

Kaon-nucleon �KN term—matrix element �KN =
1
4

∑
a=4,5,6,7〈N |[Qa

5,[Q
a
5,HχSB(0)]]|N〉 = 〈N |�K |N〉—is

also a chiral mixture:

�KN = sin2 θ�KN(6,3) + cos2 θ (cos2 ϕ�KN(3,3̄) + sin2 ϕ�KN(3̄,3)).

Thus, we need three double commutators:

1. The (6,3) and (3,6) chiral multiplets

1

4

7∑
i=4

[
Qi

5,
[
Qi

5,N̄(6,3)MNN(6,3)
]] = 1

4
N̄(6,3)

(
70
9 mu + 41

9 md + 5
3ms 0

0 41
9 mu + 70

9 md + 5
3ms

)
N(6,3),

1

4

7∑
i=4

[
Qi

5,
[
Qi

5,	̄(6,3)M		(6,3)
]] = 1

4
N̄(6,3)

(
20
9 mu + 4

9md + 4
3ms 0

0 4
9mu + 20

9 md + 4
3ms

)
N(6,3),

thus leading to

�KN(6,3) = 1
4 (10mu + 5md + 3ms).

2. The (3̄,3) and (3,3̄) chiral multiplets

1

4

7∑
i=4

[
Qi

5,
[
Qi

5,N̄(3̄,3)MNN(3̄,3)

]] = 1

4
N̄(3̄,3)

(
26
3 mu + 11

3 md + 5
3ms 0

0 11
9 mu + 26

9 md + 5
3ms

)
N(3̄,3),

1

4

7∑
i=4

[
Qi

5,
[
Qi

5,�̄(3̄,3)M��(3̄,3)

]] = 1

4
N̄(3̄,3)

(
4
3mu + 4

3md + 4
3ms 0

0 4
3mu + 4

3md + 4
3ms

)
N(3̄,3),

thus leading to

�KN(3̄,3) = 1
4 (10mu + 5md + 3ms).

6For normalization and notational conventions see Ref. [21].

065208-13
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3. The (8,1) and (1,8) chiral multiplets

1

4

7∑
i=4

([
Qi

5,
[
Qi

5,N̄(8,1)MNN(8,1)
]] = 1

4
N̄(8,1)

(
10mu + 5md + 3ms 0

0 5mu + 10md + 3ms

)
N(8,1),

thus leading to

�KN(8,1) = 1
4 (10mu + 5md + 3ms).

C. Numerical results

One can see that the kaon-nucleon �KN terms are iden-
tical in these three chiral multiplets, �KN(6,3) = �KN(3̄,3) =
�KN(8,1), so that the �KN term of their admixture also equals
the same number:

�KN = �KN(6,3)( sin2 θ + cos2 θ (cos2 ϕ + sin2 ϕ))

= �KN(6,3) = �KN(3̄,3) = �KN(8,1)

= 1
4 (10mu + 5md + 3ms).

The 2012 edition of the Particle Data Group, Ref. [72]
has m0

u = 2.3 × 1.35 MeV and m0
d = 4.8 × 1.35 MeV, i.e.,

1
2 (m0

u + m0
d ) = 4.79 MeV and m0

s = (93.5 ± 2.5) × 1.35 =
(126.225 ± 3.375) MeV, yielding

�KN = 111 MeV.

Note that these values are substantially lower than before, see,
e.g., the PDG1998 values, Ref. [71].

One would like to compare this value with the “experi-
mental” one. In this case, the status of “experimental” �KN is
even worse than that of “experimental” �πN : the kaon-nucleon
scattering data are nowhere near of pion-nucleon ones in terms
of overall quality, abundance, kinematic range, precision, and
accuracy.

Only some very old “experimental” estimates are available:
(1) �KN � 170 MeV from 1970, Ref. [85], (2) �KN =
−370 ± 110 MeV from 1972, Ref. [86], �KN � 170 MeV,
from 1973, Ref. [87], (3) �KN = 540 ± 160 MeV, from 1973,
Ref. [88], (4) �KN = 246 MeV, from 1976, Ref. [1]. The
most recent reviews, Refs. [3,89] have calculated �KN at
zero strangeness content yN = 0 of the nucleon as being 170
MeV, but with the 1987 values of current quark masses. Their
formulas translate to the value of 110 MeV with the 2012
values of masses, Ref. [72]. This is (very) close to our predicted
value (111 MeV) of the same quantity.

VI. SUMMARY AND CONCLUSIONS

In this paper we have calculated the pion-nucleon �πN

term in the chiral mixing approach, first with two light
(u,d) flavors, and then we extended it to the case with
three light (u,d,s) flavors, i.e., to SUL(3) × SUR(3) multiplet
mixing, which we then used to calculate the kaon-nucleon σ
term �KN . We based our calculations on the chiral mixing
formalism and the phenomenology developed previously in
Refs. [33,34,43,44,47].

The physical significance of our present work is that it
shows that there is no need to introduce ss̄ components in addi-
tion to the three-quark “core”, so as to agree with the observed

values of the pion-nucleon � term, the baryon axial couplings,
and the nucleon magnetic moments: the phenomenologically
necessary [(6,3) ⊕ (3,6)] chiral component and the [(3̄,3) ⊕
(3,3̄)] “mirror” component exist as bilocal three-quark fields,
Refs. [39,48]. Thus, we have shown that there is no need for
“meson cloud”, or (nonexotic) “pentaquark” components in
the Fock expansion of the baryon wave function, to explain
(at least) the axial currents, magnetic moments, and the
pion-nucleon � term, contrary to established opinion, Ref. [2].
This goes to show that the algebraic complexity of three Dirac
quark fields is such that it can mimic the presence of qq̄ pairs,
at least in certain observables. For us this was a surprise.

The present formalism and phenomenology can be used
to attack other outstanding issues of baryon chiral dynamics:
the hyperon radiative decays, for example, have been a long-
standing unsolved problem.
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APPENDIX A: ISOSPIN- 3
2 GENERATORS

From Ref. [27] we take

δ
a3
5 φ

μ
3
2 , 3

2
= iγ5a3φ

μ
3
2 , 3

2
, (A1)

δ
a3
5

⎛
⎝φ

μ
1
2 , 1

2

φ
μ
3
2 , 1

2

⎞
⎠ = iγ5a3

(
5
3

4
√

2
3

4
√

2
3

1
3

)⎛
⎝φ

μ
1
2 , 1

2

φ
μ
3
2 , 1

2

⎞
⎠ (A2)

with the familiar [“SUFS(6)”] value 5
3 for its “nucleon”

component Nμ. In order to read off the value of gA, it is
convenient to express this as

δ�a
5	μ = i γ5

(
1

3
t ( 3

2 ) · a 	μ + 2√
3

a · T † Nμ

)
, (A3)

where ti
( 3

2 )
are the isospin- 3

2 generators of the SU(2) group

and Ti are the so-called isospurion (4 × 2) matrices, see
Appendix B of Ref. [27].
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The t i
( 3

2 )
are defined as

t1
( 3

2 ) =

⎛
⎜⎜⎜⎜⎝

0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎟⎠,

t2
( 3

2 ) = i

⎛
⎜⎜⎜⎜⎝

0 −
√

3
2 0 0√

3
2 0 −1 0

0 1 0 −
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎟⎠, (A4)

t3
( 3

2 )
=

⎛
⎜⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎟⎠,

which leads to the conventional normalization of the SU(2)
Casimir operator. The Ti are defined by

T1 =
(

− 1√
2

0 1√
6

0

0 − 1√
6

0 1√
2

)
,

T2 = i

(
− 1√

2
0 − 1√

6
0

0 − 1√
6

0 − 1√
2

)
, (A5)

T3 =
⎛
⎝0

√
2
3 0 0

0 0
√

2
3 0

⎞
⎠

with the properties

i t ( 3
2 ) · a = 3

2 Ti†(iτ · aδik)Tk = − 3
2 Ti†(εijkaj )Tk,

TiTk† = P ik
3
2

. (A6)

APPENDIX B: CLOSURE OF THE CHIRAL
SUL(3) × SUR(3) ALGEBRA

The SU(3) vector charges Qa = ∫
dxJ a

0 (t,x) defined as

−2b · Jμ =
∑

i

∂L
∂∂μBi

δ
�bBi, (B1)

together with the axial charges Qa
5 = ∫

dxJ a
05(t,x), defined as

−2a · Jμ5 =
∑

i

∂L
∂∂μBi

δ�a
5Bi, (B2)

ought to close the chiral algebra

[Qa,Qb] = if abcQc, (B3)[
Qa

5,Q
b
] = if abcQc

5, (B4)[
Qa

5,Q
b
5

] = if abcQc, (B5)

where f abc are the SU(3) structure constants. Equations (B3)
and (B4) usually hold automatically, as a consequence of the
canonical (anti)commutation relations between Dirac baryon
fields Bi , whereas Eq. (B5) is not trivial for the chiral multiplets

that are different from the [(8,1) ⊕ (1,8)], because of the
(nominally) fractional axial charges and the presence of the
off-diagonal components. When taking a matrix element of
Eq. (B5) by baryon states in a certain chiral representation,
the axial charge mixes different flavor states within the same
chiral representation. This is an algebraic version of the
Adler-Weisberger sum rule [90]. In the following we shall
check and confirm the validity of Eq. (B5) in the three
multiplets of SU(3)L × SU(3)R .

1. Closure of the chiral SUL(3) × SUR(3) algebra
in the (8,1) ⊕ (1,8) multiplet

Due to the absence of fractional coefficients in the (8,1) ⊕
(1,8) multiplet’s axial charge Qa

5 = ∫
dxJ a

05(t,x) defined by
the current given in

Ja
μ5 = Nγμγ5Fa

(8)N, (B6)

the vector charge Qa = ∫
dxJ a

0 (t,x) defined by the current
given in

Ja
μ = Nγμ Fa

(8) N, (B7)

and the axial charge close the chiral algebra defined by
Eqs. (B3)–(B5). The same comments holds for the (10,1) ⊕
(1,10) chiral multiplet for the same reasons as in the example
shown above.

2. Closure of the chiral SUL(3) × SUR(3) algebra
in the (3,3) ⊕ (3,3) multiplet

The vector charge Qa = ∫
dxJ a

0 (t,x) defined by the current
given in

Ja
μ = Nγμ Fa

(8) N, (B8)

together with the axial charge Qa
5 = ∫

dxJ a
05(t,x), defined by

the current given in

Ja
μ5 = Nγμγ5

(
DaN +

√
2

3
Ta†

1/8�1

)
+ �1γμγ5

√
2

3
Ta

1/8N,

(B9)

ought to close the chiral algebra defined by Eqs. (B3)–(B5).
Equations (B3) and (B4) hold here, whereas Eq. (B5) is the
nontrivial one: the diagonal D charge of N [Qa

5D(N )] axial
charge,

Qa
5D(N ) =

∫
dx (Nγ0γ5 Da N ), (B10)

Qa
D(N ) =

∫
dx (Nγ0 Da N ), (B11)

lead to[
Qa

5D(N ),Qb
5D(N )

] =
∫

dx(Nγ0 (DaDb − DbDa)N ).

(B12)

It turns out that the off-diagonal terms in the axial charge,

Qa
5(N,�) =

∫
dx

(√
2

3

(
Nγ0γ5 Ta†

1/8 � + �γ0γ5 Ta
1/8 N

))
,

(B13)
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play a crucial role in the closure of the chiral commutator
Eq. (B5). The additional terms in the commutator add up to[

Qa
5(N,	),Qb

5(N,	)
]

= 2

3

∫
dxNγ0

(
Ta†

1/8Tb
1/8 − Tb†

1/8Ta
1/8

)
N, (B14)

which provide the “missing” factors due to the following
properties of the off-diagonal isospin operators Ti

1/8 and Di

matrices:

i f ijk
(
Fk

(8)

) = (DiDj − Dj Di) + 2
3

(
Ti†

1/8Tj
1/8 − Tj†

1/8Ti
1/8

)
.

(B15)

Therefore, the chiral algebra Eqs. (B3)–(B5) close.

3. Closure of the chiral SUL(3) × SUR(3) algebra
in the (3,6) ⊕ (6,3) multiplet

The vector charge Qa = ∫
dxJ a

0 (t,x), defined by the
current in

Ja
μ = (

Nγμ Fa
(8) N

) + (
	γμ Fa

(10) 	
)
, (B16)

together with the axial charge Qa
5 = ∫

dxJ a
05(t,x), defined by

the current in

Ja
μ5 = Nγμγ5

((
Da + 2

3
Fa

(8)

)
N + 2√

3
Ta	

)

+	γμγ5

(
2√
3

Ta†N + 1

3
Fa

(10)	

)
, (B17)

ought to close the chiral algebra defined by Eqs. (B3)–(B5).
Equations (B3) and (B4) hold here, whereas Eq. (B5) is once
again the nontrivial one: the fractions 2

3 and 1
3 in the diagonal

F charge of N [Qa
5(N )] and 	 axial charges, respectively, and

the diagonal D charge of N [Qa
5(N )]:

Qa
5F (N ) = 2

3

∫
dx

(
Nγ0γ5 Fa

(8) N
)
, (B18)

Qa
5F (	) = 1

3

∫
dx

(
	γ0γ5 Fa

(10) 	
)
, (B19)

Qa
5D(N ) =

∫
dx (Nγ0γ5 Da N ), (B20)

lead to[
Qa

5D+F (N ),Qb
5D+F (N )

]
=

∫
dx

(
Nγ0

((
Da + 2

3
Fa

(8)

)(
Db + 2

3
Fb

(8)

)

−
(

Db + 2

3
Fb

(8)

)(
Da + 2

3
Fa

(8)

))
N

)
, (B21)

[
Qa

5F (	),Qb
5F (	)

] = if abc 1

9
Qc(	), (B22)

lead to “only” part of the N and 	 vector charges, respectively,
on the right-hand side of Eqs. (B21) and (B22).

Once again, it turns out that the off-diagonal terms in the
axial charge

Qa
5(N,	) =

∫
dx

(
2√
3

(
Nγ0γ5 Ta

10/8 	 + 	γ0γ5 Ta†
10/8 N

))
,

(B23)

play a crucial role in the closure of the chiral algebra, Eq. (B5).
The additional terms in the commutator add up to[

Qa
5(N,	),Qb

5(N,	)
]

= 4

3

∫
dx

(
Nγ0

(
Ta

10/8Tb†
10/8 − Tb

10/8Ta†
10/8

)
N

+	γ0
(
Ta†

10/8Tb
10/8 − Tb†

10/8Ta
10/8

)
	

)
, (B24)

which provide the “missing” factors due to the following
properties of the off-diagonal flavor operators Ti and Di

matrices:

i f ijk
(
Fk

(8)

) = ((
Di + 2

3 Fi
(8)

)(
Dj + 2

3 Fj
(8)

)
− (

Dj + 2
3 Fj

(8)

)(
Di + 2

3 Fi
(8)

))
+ 4

3

(
Ti

10/8Tj†
10/8 − Tj

10/8Ti†
10/8

)
, (B25)

i 2
3 f ijkFk

(10) = Ti†
10/8Tj

10/8 − Tj†
10/8Ti

10/8. (B26)

Therefore, the chiral algebra, Eqs. (B3)–(B5), closes in spite,
or perhaps because of the apparent fractional axial charges ( 2

3

and 1
3 ).

APPENDIX C: EVALUATION OF THE CHIRAL
SUL(3) × SUR(3) COMMUTATORS

1. Chiral SUL(3) × SUR(3) commutators

We note that the matrix calculation [Qb
5,N ] is equivalent (up

to a multiplicative factor) to the SU(3)A chiral transformation
which we have found in our previous papers: Eqs. (11) and (13)
in Ref. [33], lead to

[
Qa

5,N(6,3)
] = γ5

((
Da

(8) + 2

3
Fa

(8)

)
N(6,3) + 2√

3
Ta

(8/10)	(6,3)

)
,

(C1)[
Qa

5,	(6,3)
] = γ5

(
2√
3

T†a
(8/10)N(6,3) + 1

3
Fa

(10)	(6,3)

)
,

[
Qa

5,N(3,3̄)

] = γ5DaN(3,3̄), (C2)[
Qa

5,N(3̄,3)

] = −γ5DaN(3̄,3).

These SU(3)-spurion matrices Ta (sometimes we use Ta
10/8)

and Fa
(10) have the following properties:

Fa
(10) = − i f abcTb†

10/8Tc
10/8,

Ta
10/8Ta†

10/8 = 5
2 × 18×8,

Ta†
10/8Ta

10/8 = 2 × 110×10. (C3)

The octet generators (Da
(8) + 2

3 Fa
(8)), the transition matri-

ces Ta
10/8 and the decuplet generators Fa

(10) are listed in
Appendices A1, A2, and A3, respectively, of Ref. [33].
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2. Chiral SUL(2) × SUR(2) commutators

For the chiral SUL(2) × SUR(2) subgroup of the SUL(3) ×
SUR(3) group, i.e., for a = 1,2,3 values of index a, Eqs. (C1)
and (C2) lead to

[
Qa

5,N(1, 1
2 )

] = γ5

(
5

3

τ a

2
N(1, 1

2 ) + 2√
3
T a	(1, 1

2 )

)
,

[
Qa

5,	(1, 1
2 )

] = γ5

(
2√
3
T †aN(1, 1

2 ) + 1

3
ta(3/2)	(1, 1

2 )

)
,

[
Qa

5,N( 1
2 ,0)

] = γ5
τ a

2
N( 1

2 ,0),

[
Qa

5,N(0, 1
2 )

] = −γ5
τ a

2
N(0, 1

2 ), (C4)

where a = 1,2,3, ti
( 3

2 )
are the isospin- 3

2 generators of the SU(2)

group and Ti are the so-called isospurion (4 × 2) matrices, see
Appendix A.

Consequently,

[
Qa

5,N̄(1, 1
2 )N(1, 1

2 )

] = 5

3
N̄(1, 1

2 )γ5τ
aN(1, 1

2 ) + 2√
3

(
N̄(1, 1

2 )γ5T
a	(1, 1

2 ) + 	̄(1, 1
2 )γ5T

†aN(1, 1
2 )

)
,

[
Qa

5,N̄( 1
2 ,0)N( 1

2 ,0)

] = N̄( 1
2 ,0)γ5τ

aN( 1
2 ,0), (C5)[

Qa
5,N̄(0, 1

2 )N(0, 1
2 )

] = −N̄(0, 1
2 )γ5τ

aN(0, 1
2 ),

and similarly for the 	-field commutator[
Qa

5,	̄(1, 1
2 )	(1, 1

2 )

] = 2

3
	̄(1, 1

2 )γ5t
a
(3/2)	(1, 1

2 ) + 2√
3

(N̄(1, 1
2 )γ5T

a	(1, 1
2 ) + 	̄(1, 1

2 )γ5T
†aN(1, 1

2 )). (C6)
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