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Consistency of electron scattering data with a small proton radius
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We determine the charge radius of the proton by analyzing the published low momentum transfer electron-
proton scattering data from Mainz. We note that polynomial expansions of the form factor converge for momentum
transfers squared below 4m2

π , where mπ is the pion mass. Expansions with enough terms to fit the data, but few
enough not to overfit, yield proton radii smaller than the CODATA or Mainz values and in accord with the
muonic atom results. We also comment on analyses using a wider range of data, and overall obtain a proton
radius RE = 0.840(16) fm.
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I. INTRODUCTION

Much remains to be learned about the proton. After a
half-century of study, we still do not know what its size is,
where its spin comes from, and how its mass is generated from
light quarks and gluons. Particularly troubling is the matter
of the proton’s charge radius RE . This was first measured
to be approximately 0.8 fm by Hofstadter and collaborators
in the 1950s via elastic electron scattering [1]. The value
of RE was steadily refined over the years through electron
scattering and hydrogen energy level measurements, recently
reviewed in Refs. [2,3]. The CODATA group [4,5], using
available electron-based data through 2014, quotes a com-
bined value of RE = 0.8751 ± 0.0061. The recent electron
scattering experiment in Mainz [6–8], which quotes a value
of RE = 0.879 ± 0.008, is included in this CODATA value.
For many years RE had remained relatively stable at about
0.88 fm, until this value was called into question by Lamb
shift measurements in muonic hydrogen, which yielded a
value of RE = 0.84087 ± 0.00039 fm [9,10]. This radius is
7 standard deviations away from the CODATA value. The
proton size puzzle leaves us with three options: The hydrogen
Lamb shift and elastic electron scattering experiments have
erred in extracting RE , the muon Lamb shift measurement
is precise, but inaccurate, or there is new physics that
affects the muon differently than the electron, rendering the
theory behind the muonic Lamb shift calculations incomplete
[11–16].

In this paper, we explore whether the published, high-
quality ep elastic scattering data at low-Q2 from Mainz could
be consistent with the muonic Lamb shift determination of RE .
Extracting RE from elastic electron scattering is as simple, or
as difficult, as measuring the slope of the electric form factor
GE(Q2) as a function of the squared four-momentum transfer
Q2 as Q2 goes to zero. However, because the differential
cross section diverges at small scattering angles (low Q2),
these measurements are very sensitive to beam alignment and
angle determination. No ep measurement extends to Q2 = 0,
although some get close. Mainz currently holds the record,
with measurements at Q2 as low as 0.0038 GeV2. This modern
data set, with 1422 data points in the range from the lower
limit to about 0.98 GeV2, is the best, most precise, and most
extensive available. Therefore, it is the Mainz data that we
choose to explore.

The charge radius is given by the second term in the
expansion of the electric form factor,

GE(Q2) = 1 − 1
6R2

EQ2 + a2Q
4 + · · · . (1)

Using data at very low Q2, where the curvature terms (Q4

and higher) give small contributions, the charge radius RE

can be reliably determined without having to model the shape
of GE over a wider range of Q2. In the past, the size of the
uncertainties on the data at very low Q2 has meant that one
could not extract an accurate charge radius without extending
the data range to include not-so-low Q2. The Q4 term then
can become noticeable, depending on how far the data range is
extended. There was an early example of Simon et al. data [17]
where the fitted coefficient of the Q4 term was small, albeit
with large uncertainty, and the extracted charge radius was also
small. Using this example, some workers (e.g., [18]) advocated
including data at still higher Q2 to obtain a larger curvature.
This also led to a larger extracted proton radius. Including
higher Q2 does not have to mean including data at all available
Q2, and we have the example of Ref. [19] using only data with
Q2 < 0.62 GeV2 (Q < 4 fm−1).

Sick and Trautmann [20], in fact, suggest that data from
0.014 to 0.056 GeV2 in Q2 (or Q from 0.6 to 1.2 fm−1) is most
crucial for finding the proton radius. The consideration of what
data range is sensitive to the proton size, given the foregoing
discussion, must depend on the accuracy and precision of the
data. As the data improve, the range of Q2 needed to obtain
the proton radius will decrease. With the new Mainz data now
available, we will explore the possibility that we can obtain
a good proton radius result using only data with a somewhat
low maximum Q2.

The Mainz data [6–8] data enjoy state-of-the-art radiative
and Coulomb corrections. One of the three spectrometers was
used as a luminosity monitor to control systematic uncer-
tainties, and the other two spectrometers measured separate
kinematic points simultaneously. The data are dominated by
point-to-point systematic uncertainties from background sub-
tractions, drift-chamber inefficiencies, normalization factors,
angle determinations, and the aforementioned corrections. The
slight leeway we have in fitting these data is to make small
rescalings of the 34 normalization sets in the experiment and
to enlarge the point-to-point error bars if the fluctuations of
the data indicate that the quoted uncertainties are too small.
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We limit our form factor fits to the Mainz data set because
the systematic differences between separate experiments can
introduce systematic effects in global fits, and the 1422 Mainz
points already dominate the sample of world data below
Q2 = 1 GeV2.

We shall advocate for fits using the 243 Mainz data
points with Q2 below 0.02 GeV2. In addition to the general
principle that using only very low Q2 will free us from
model dependence incurred in extending the fits to higher
Q2, we are also using only data from a limited number of
spectrometer settings. This substantially frees the data from
any drift arising from the normalization adjustments that
reconciled data from different spectrometer settings, and averts
overfitting of inflections or statistical fluctuations in the data
that can happen when using fit functions that contain many fit
constants.

In the following, Sec. II presents the formalism pertinent to
our discussion; Sec. III presents the extraction and discussion
of the proton radius using low Q2 data; Sec. IV presents a fit
based on the full Q2 range of the Mainz data; Sec. V highlights
our final results; and Sec. VI gives our conclusions.

II. FORMALISM

When an electron of energy E scatters from a proton at rest
through an angle θ and exits with energy E′, the 4-momentum
transfer squared is

Q2 = −q2 = 4EE′ sin2 θ

2
. (2)

In the Born approximation, the ep elastic scattering cross
section can be written in terms of the electric and magnetic
Sachs form factors, GE(Q2) and GM (Q2),

dσ

d�
=

(
dσ

d�

)
Mott

1

(1 + τ )

[
G2

E(Q2) + τ

ε
G2

M (Q2)

]
. (3)

The Mott cross section is(
dσ

d�

)
Mott

= 4α2 cos2 θ
2

Q4

E′3

E
, (4)

α is the fine structure constant,

ε =
(

1 + 2(1 + τ ) tan2 θ

2

)−1

, and

τ = ν2

Q2
= Q2

4M2
, (5)

where ν is the energy transferred by the virtual photon and M
is the proton mass. Further,

E′ = E

1 + (2E/M) sin2 θ
2

. (6)

The electric and magnetic form factors at Q2 = 0 are
normalized to correspond to the nucleon charge in units of
e and the nucleon magnetic moment in units of the proton
magneton μN = e/(2M), such that

GE(0) = 1, and GM (0) = μp ≈ 2.793. (7)

The dipole form factor,

GD = 1

(1 + Q2/0.71 GeV2)2
, (8)

suitably normalized, was used for many years as a benchmark
approximation for both GE and GM . The Mainz group presents
data on the cross section σ as its ratio to the cross section
calculated using the dipole form factors σD ,

σ

σD

= εG2
E + τG2

M

εG2
D + τμ2

pG2
D

. (9)

From this,

GE(Q2) = GD(Q2)

(
σ

σD

)1/2

×
[

1 + τμ2
p

G2
M/(μpGE)2 − 1

ε + τμ2
p

]−1/2

. (10)

For Q2 < 0.02 GeV2, the square-bracket term above (in-
cluding the exponent), for reasonable values of the GE :GM

ratio, differs from unity by no more than 140 parts per million,
which is only about 1% of the effect on the cross section
occasioned by the difference between the electronically and
muonically determined charge radii, and as such plays no
decisive role in the extraction of GE . For general Q2, we most
often will obtain GE using the GE :GM ratio obtained from
recoil polarization experiments, mostly at higher Q2. The data
from JLab indicate that at least for Q2 < 8 GeV2,

μp

GE

GM

≈ 1 − Q2

8 GeV2 . (11)

Returning to low Q2, one can use the radius expansion,

μp

GE

GM

= 1 − 1

6

(
R2

E − R2
M

)
Q2, (12)

where RM is the magnetic radius and

GE = GD

(
σ

σD

)1/2{
1 + μ2

pQ4

12M2

R2
E − R2

M

ε + τμ2
p

}−1/2

. (13)

Specifically, Bernauer et al. [6] obtain RE = 0.879 ± 0.008
fm and RM = 0.777 ± 0.017 fm from their fits. The latter is
significantly smaller than most other fits, where typically RM

is similar to RE , but none the less, the extraction of GE from
the data at low Q2 is unaffected by the spread of suggested
values for RM even at the high level of accuracy needed for
the present investigation.

III. ANALYSIS FOR Q2 < 0.02 GeV2

Looking only at data for Q2 below 0.02 GeV2, there are
a plethora of data points from the Mainz experiment. In
this Q2 range, the term in brackets in Eq. (10) is, for all
practical purposes, unity. Mainz has 243 data points for
Q2 < 0.02 GeV2. Limiting consideration to only spectrometer
B to minimize cross calibration uncertainties, still leaves
209 data points. Although the overall normalization may be
uncertain by 1%–2%, any relative systematic uncertainties that
could lead to a false Q2 dependence are thought to be small.

065207-2



CONSISTENCY OF ELECTRON SCATTERING DATA WITH . . . PHYSICAL REVIEW C 93, 065207 (2016)

0.000 0.005 0.010 0.015 0.020
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

( )

(
)

FIG. 1. Linear plus quadratic fit to all Mainz (2010) data with
Q2 < 0.02 GeV2.

We can fit the data using a linear plus quadratic in Q2 form
for GE ,

GE(Q2) = a1(1 + a2Q
2 + a3Q

4), (14)

where a2 = −R2
E/6. Using all available points below

0.02 GeV2 gives the result shown in Fig. 1. The χ2 per degree
of freedom (dof) for the fit is 1.00, the normalization constant
is 0.9992 ± 0.0003, RE = 0.850 ± 0.019 fm, consistent with
the Lamb shift results, and a3 = 4.5 ± 5.6 GeV−4. The central
value of a3 is positive as one might expect from a nonrelativis-
tic expansion of the form factor, but is statistically consistent
with zero.

We mimicked the data set in Fig. 1 by generating Monte
Carlo events with an exponentially falling distribution. Fits
using Eq. (14) generated the correct slope with an unbiased
statistical variation, but a3 was slightly low, absorbing the
contributions from higher-order curvature. This gives us
confidence that the extracted slope is not biased by the
curvature for samples with Q2 < 0.02 GeV2.

Without prior expectations, one could use a rule of thumb
for fitting, namely to discard terms in the fit that do not improve
the χ2/dof. A linear fit, GE(Q2) = a1(1 + a2Q

2), leads to
the same χ2/dof = 1.00, and values a1 = 0.9986 ± 0.0003
and RE = 0.835 ± 0.003 fm (using the diagonal term in the
error matrix). From a statistical viewpoint, a radius as large as
0.88 fm is unfavored. However, the correlations are such that
the more positive the curvature, the larger the extracted proton
radius.

Fits like the ones just presented have been criticized because
of expectations that the curvature could be larger than the
apparent results from the quadratic fit and certainly not zero
as in the linear fit. To investigate the effects of curvature when
fitting a low-Q2 data set, we expand the electric form factor as

GE(Q2) = 1 − 1

6
R2

EQ2 + b2

120
R4

EQ4 − b3

5040
R6

EQ6, (15)

χ2
/d

of

FIG. 2. χ 2/dof vs RE for polynomial fits to the data set, showing
fits with first-, second-, and third-order polynomials in Q2 using data
with 0.01 < Q2

max < 0.08 GeV2. The small numbers near each data
point gives Q2

max in multiples of 0.01 GeV2. A good fit should have a
good χ 2 and a sufficient but not oversufficient number of parameters,
as further discussed in the text. The quadratic fit “2” and the cubic fit
“4” satisfy the criteria.

where the coefficients are suggested by nonrelativistic models,
RE is the rms proton radius, R2

E = 〈r2〉, b2 = 〈r4〉/〈r2〉2, and
b3 = 〈r6〉/〈r2〉3. The coefficients can be calculated using ex-
ponential, Gaussian, and uniform model distributions ρ(r) =
ρ0e

−r/a , ρ(r) = ρ0e
−r2/b2

, and ρ(r) = ρ0θ (c − r). For these
three cases, respectively, b2 = 5/2, 5/3, and 25/21, and b3 =
35/3, 35/9, and 125/81. Although these coefficients were
calculated nonrelativistically and hence are approximate, they
do give a range of estimates of the effects of higher-order terms
on the extraction of RE . The fits using Q2 < 0.02 GeV2 data
yield RE = 0.859(3), 0.851(3), and 0.846(4) fm, respectively,
each with a χ2/dof = 1.00. One of these results is almost
neutrally between the muonic and electronic radius values,
while the Gaussian and uniform distributions, even with the
pre-chosen curvature terms, give results commensurate with
the muonic Lamb shift value.

The fit just discussed is one example. One may inquire what
results follow with different Q2

max (always with Q2
max < 4m2

π )
and different orders of polynomial. There will be two criteria
for an acceptable fit. One is that the χ2 is low enough, on the
order of 1 per degree of freedom. The other is that the highest
order term in the polynomial is not well determined, as judged
by the uncertainty limit on its coefficient, with the previous
terms well determined. This will imply that the fit has omitted
no important term, and is good. Figure 2 shows χ2/dof and
RE from a number of linear, quadratic, and cubic (in Q2) fits,
with the small numbers indicating Q2

max for each example in
multiples of 0.01 GeV2.

The linear fits cannot sensibly satisfy the second criterion
and still give a radius, but they are included to show what
happens when Q2

max increases and the number of terms in the
fit does not. The diagonal elements of the error matrix are
astonishingly small, but the fits are poor, as judged by χ2.
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Three quadratic fits are shown, with Q2
max indicated in the

figure. The lowest one is our prime example, which satisfies
all criteria. It has an acceptable χ2 and a small contribution
from the actual Q4 term in the polynomial. The next still
has an acceptable χ2, but the coefficient of the Q4 term is
stringently determined (circa 10% uncertainty), leading to
worries that a cubic expansion is not flexible enough for
this Q2

max, and so should not be trusted. The last point in
this series sees some rise in χ2, and with tightly determined
coefficients again indicating underfitting at this Q2

max. For the
two cubic fits shown, the one with lower Q2

max reasonably
satisfies the criteria, while the upper one has its Q6 coefficient
tightly determined, again indicating underfitting. Quartic fits
did not give suitable results with Q2

max limited by the ππ
threshold. Some Q2

max values, although happening to give
an RE that matches the muonic hydrogen results, leads to
fits with several poorly determined coefficients, and for other
Q2

max the sign pattern of the coefficients does not match the
alternation expected for smooth charge distributions and the
Fourier transform formula. The overall conclusion from further
examinations of fits to the low Q2 range of the data, is that
when the criteria for good fits are satisfied, the proton radius
accords with the muonic hydrogen value.

IV. THE FULL Q2 RANGE

We have so far concentrated on using low-Q2 data to obtain
the proton radius, but there is interest in considering the full
data set. There are several topics to discuss. Can a smooth
function, with relatively few parameters give an acceptable fit
to the data, and what is the radius that follows from such a fit?
What is the value and effect of fitting with more parameters?
With more parameters one can fit systematic deviations or
statistical fluctuations from what is really smooth data, which
can mar the overall fit and skew the extrapolation to the
proton radius. Also, with more parameters, there is a tendency
for extensions outside the fit region to rapidly deviate from
a properly smooth continuation of the data, with particular
impact on extracting the charge radius when the deviations are
in the low-Q2 region.

Another item to consider is that the polarization method
for obtaining the form factors has shown that GE falls relative
to GM with increasing momentum transfer, approximately as
μpGE/GM = 1 − Q2/(8 GeV2) [21–25]. We used this earlier
when obtaining GE from the cross section data. For low Q2

data the difference between GE obtained using the polarization
results and using scaling, μpGE = GM , is minor. However,
the full range of the Mainz data gives unexpected support
for the polarization result. This is surprising, considering
that it is a Rosenbluth experiment without hard two-photon
corrections, while all earlier Rosenbluth results gave scal-
ing (μpGE/GM ≈ 1). Also in the absence of two-photon
corrections, a reduced cross section at fixed Q2 should be
linear in ε [see Eq. (3)]. Two-photon corrections change
the slope in ε, and may also give some ε2 and higher
dependence, which will be sought in the data in the ensuing
subsections.

A. Full range fit

For our analysis of the full data set, we have chosen a
continued fraction (CF) form,

f (Q2) = c1

1 + c2Q2

1+ c3Q2

1+ c4Q2

1+···

, (16)

for GE(Q2), in which c2 = (RE/�c)2/6. A truncated contin-
ued fraction is a ratio of polynomials, and it resembles Padé
approximates. The continued fraction could be dangerous, be-
cause it can have singularities in the spacelike region whenever
one of the constants ci is negative. However, if singularities
do not occur within the fit range, the continued fraction is
acceptable, and it allows a wide range of shapes covering
several orders of magnitude with relatively few parameters. On
the other hand, fit functions with few parameters are unable
to capture small inflections in the data. Because there is no
theoretical restriction that forbids inflections, many people
believe that they should exist. We have looked for inflections
in the data, and we find no persuasive argument to include
them in our parametrization. The low-Q2 expansion of the
continued fraction is

flowQ(Q2) = c1[1 − c2Q
2 + c2(c2 + c3)Q4

− c2((c2 + c3)2 + c3c4)Q6 + · · · ]. (17)

We extracted GE vs Q2 using Eq. (10) and fit all data
to a four-parameter continued fraction form. Adding a fifth
parameter did not improve the fit, so we limited ourselves to
four parameters. The χ2/dof is 1.6, which is high, and we
shall have more to say about this later. However, the data
are well fit on average in all regions of Q2. From this fit
we obtain RE = 0.8389 ± 0.0004. The uncertainty on RE is
small because a constraining fit form introduces information
into the problem, in this case a belief in smoothness, which
is in turn reflected in the small diagonal uncertainties. Said
another way, if the form factor can be faithfully described with
a continued fraction with only a few terms, then RE is tightly
constrained. But does the limited freedom of the continued
fraction fit inappropriately force a small value of RE? We
shall also discuss choosing other forms that may drive RE

one way or the other, especially if we allow undulation in an
otherwise smoothly falling form factor. We note that our value
for RE is consistent with the analyses of the Mainz data by
Lorenz et al. using theoretically motivated analytic forms for
GE [26,27], although these fits have been criticized [50].

The coefficient of the Q4 term (7.06 GeV−4) from the CF
fit, obtained from Eq. (17), is in accord with the result of the
analysis using only low-Q2 data. Furthermore, the contribution
of the Q6 term from the CF fit is less than 0.00005 for Q2 below
0.02 GeV2, and so it has negligible impact there.

We are able to fit the residuals in Fig. 3 to a sum of eight
Gaussians, which reduces the overall χ2/dof from 1.6 to 1.3.
This shows the existence of 1–3σ systematic variations in the
data with respect to a smooth, monotonically falling function.
Given the small magnitude, the similar size, and the great
number of these deviations, we favor the hypothesis that they
are not real, and any fit should average over them.
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FIG. 3. Four-parameter continued fraction fit to the full Mainz
data set using μpGE/GM = 1 − Q2/(8 GeV2).

B. G E/GM

We have extracted GE assuming that μpGE/GM = 1 −
Q2/Q2

0 for Q2 = 8 GeV2, and now wish to investigate con-
sequences of different choices for GE/GM , a least to the
extent of considering other choices for Q2

0. Figure 4 shows the
resulting χ2/dof for various values of Q2

0 upon fitting the 1422
data points with a four-parameter CF function. The full data
set favors a value of Q2

0 ≈ 8 GeV2. This is bounded sharply
on the low side and weakly on the high side. The numbers
shown beside each point are the values of the extracted
radius RE which are only slightly influenced by the GE :GM

ratio used to extract GE from Eq. (9). Moreover, the radius
RE = 0.84 fm is stably reproduced for 4 < Q2

0 < 20 GeV2.
In particular, for steeper μpGE/GM slopes, the extracted
RE actually decreases slightly. This is a result somewhat

 1
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FIG. 4. Minimum χ 2/dof values for continued fraction fits of
GE extracted using μpGE/GM = 1 − Q2/Q2

0 with different values
of Q2

0, when using the Mainz data. Each point shows the value of RE

extracted for a given Q2
0. The quantity RE remains stable over the

wide range 4 < Q2
0 < 20 GeV2, indicating that RE is not sensitive to

the Ansatz for GE/GM .

FIG. 5. Fits to world polarization transfer data. The data are from
GEp I [21,24], GEp II [22,23], GEp III [25], Zhan et al. [30], Ron
et al. [28], Crawford et al. [34], RSS [35], Paolone et al. [36], and
Strauch et al. [37]. Some data with larger uncertainty limits have been
omitted. The solid orange line uses μpGE/GM = 1 − Q2/Q2

0 with
Q2

0 = 8.02 GeV2, the black dashed line is the Bernauer et al. [6–8] fit
up to about 0.3 GeV2 and a hybrid produced by other Mainz workers
beyond that [38], and the green dotted line is a fit from Punjabi
et al. [39].

different from Bernauer et al., who obtain a larger radius and
μpGE/GM = 1 − Q2/(1.4 GeV2) at very low Q2.

Figure 5 shows the world’s polarization transfer data
[21–25,28–33] for μpGE/GM on the proton (over a somewhat
wider range than we have considered in the bulk of this
paper). It also shows the fit we have used, and two other
fits. Incidentally, fitting the form g(Q2) = 1 − Q2/Q2

0 just
to the data gives Q2

0 = 8.02 ± 0.05 with χ2/dof = 2.3.
Although the recoil polarization method is the best way
we know to determine the electric to magnetic form factor
ratio, being relatively free of two-photon effects, the data
points below Q2 ≈ 0.8 GeV2 disagree with each other more
than their quoted uncertainties would allow. The variate
ui = [(μpGE/GM )i − g(xi)]/σi has a small mean of 0.02 and
a large standard deviation of 4.0. From this we conclude that a
linear fit acceptably represents the average of the data points,
despite their underestimated uncertainties.

That the Mainz data also prefer Q2
0 = 8 GeV2, consistent

with the recoil polarization data, leads to a conundrum. Earlier
Rosenbluth results gave scaling. The drop in GE/GM with
increasing Q2 was a great surprise when announced in 1999
and published in 2000 [21]. Why the Mainz data, without
full hard two-photon corrections, agree with the polarization
results is a mystery.

C. Epsilon dependence

Figure 6 shows GE versus ε, for the Mainz data, for varying
Q2. There are six sets of points corresponding to the different
beam energies of the experiment. Because GE is a function
of Q2 (and the GE obtained from data will reflect this if all
corrections are made), a horizontal line on this plot intersects
the values of ε represented by points at fixed Q2. Likewise, a
vertical line on the plot shows different values of Q2 at constant
ε. The large range in ε covered allows us to determine GE/GM ,
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FIG. 6. GE vs ε. The six sets, from top to bottom, correspond to
the six beam energies of the experiment, 180, 315, 450, 585, 720, and
855 MeV.

as discussed earlier. It is also possible that some of the apparent
ε dependence can be attributed to mismatches from systematic
effects in the data from different beam energies.

Figure 7 shows the data set plotted versus ε for 20 bins in
Q2. To ensure a common Q2 for each horizontal line in this
plot, data within a given Q2 bin were evolved to a central Q2
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FIG. 7. Dependence of the extracted GE values on ε for 20 bins
in Q2. The data show little or no dependence on ε within statistics. (If
desired, the actual Q2 values may be inferred from the next figure.)
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FIG. 8. ε slopes for 14 bins in Q2.

using the fit f (Q2):

GE

(
Q2

average

) = GE

(
Q2

measured

) f
(
Q2

average

)
f

(
Q2

measured

) . (18)

The lines in Fig. 7 look very flat, and the actual slopes of
the data in Fig. 7 are shown in Fig. 8. On average, these slopes
are zero, but there are small variations. At low Q2, GM barely
contributes to the cross section, so any ε slope there must
be an indication of mismatches in the data taken at different
beam energies. The slopes are never more than a fraction of
a percent, which can easily be accounted for by systematic
variations in the data. Two photon effects are not expected to
be appreciable at low Q2.

D. Two-photon contributions

A possible cause of real ε dependence stems from two-
photon exchange effects. Although the Mainz data set includes
Coulomb corrections following McKinley and Feshbach [40],
which are for the limit of very heavy pointlike protons, there
are further hard two-photon effects occasioned by the hadronic
structure of the proton [41–43].

Recent data on the cross section ratio of positron to electron
elastic scattering from the proton verifies the idea that the
Rosenbluth extraction of the GE :GM ratio receives significant
corrections from two-photon exchange [44,45].

A potential further consequence of two-photon exchange is
that in addition to changing the ε slope in the reduced cross
section G2

M (Q2) + (ε/τ )G2
E(Q2), there could also be terms

quadratic or higher in ε [46]. However, the data show that any
ε2 terms are small. We conclude that two-photon corrections,
although they have been demonstrated to exist [47,48], do not
induce strong curvature in the Rosenbluth plot or bias the data
in such a way as to change the radius RE if one does not have
data over the full range of ε.

E. Fitting with polynomials

The continued-fraction fit has only a few parameters and
may not accurately describe inflections, if there are physical
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FIG. 9. Differences between various fit forms and the standard
continued fraction fit. All the power-series fit forms show undulations
when enough parameters are included. The χ 2/dof drops accordingly
to about 1.37, but at the expense of erratic behavior at the origin and
above Q2 = 1 GeV2. The lower panel expands the low-Q2 region of
the upper panel.

inflections, of the measured form factor. In this subsection,
we experiment with other fits to the full range of the Mainz
data. We consider five different generic types of fit functions,
in addition to the CF fit already presented, and will show some
comparison of the different fits in Fig. 9. See also [49–54].

First, for reference, we fit the whole data set to a dipole
form a0(1 + Q2/a1)−2. Although the χ2/dof is larger than
acceptable at 2.28, the fit visually is remarkably good, and
RE = 0.8299 ± 0.0002 fm. The dipole is famous for giving a
small radius when fit to a long data set, although this value is
intriguingly close to the muonic hydrogen Lamb shift value of
0.841 fm.

Second, we have followed the lead of Bernauer et al. [6] and
fit to a double dipole fdd (Q2) = a0[a1(1 + Q2/a2)−2 + (1 −
a1)(1 + Q2/a3)−2]. The fit has χ2/dof = 1.6—the best, appar-
ently, that we can achieve with a smoothly and monotonically
falling fit function—and RE = 0.859 ± 0.001 fm.

Third, we consider polynomial fits. We do not advocate
using polynomial fits beyond the spacelike reflection of the
ππ threshold, because convergence of the fit is not assured
beyond this point. However, they have been used elsewhere,

and we would like to comment on the results. Polynomial fits
with sufficient terms offer flexibility to fit inflections in the
data, but they inevitably diverge outside any fit region, and
accuracy at the end points is often poor for global fits.

Fourth, we consider inverse polynomials a0/(1 +
�N

i=1aiQ
2i).

Fifth, we consider power series expansions in z(Q2),
fHP(z) = a0(1 + �N

i=1aiz
i), as advanced in this context by Hill

and Paz [55], where

z(Q2) =
√

4m2
π + Q2 − 2mπ√

4m2
π + Q2 + 2mπ

. (19)

The mapping to z is motivated because a polynomial expansion
of the form factor in z converges for all spacelike Q2, as long
as the cuts or poles in the form factor are at timelike q2 with
q2 � 4m2

π .
Figure 9 shows a visual comparison of five fits: the dipole

fit, the double dipole fit, and representatives of the other three
fit types. The curves correspond to the differences between
each model tested and the four-parameter continued fraction
(CF) fit described earlier. All polynomial fits show multiple
oscillations around the CF value. Moreover, the curves are
clearly unstable near Q2 = 0 and Q2 = 1 GeV2, that is to say,
just outside the region where the fitted data have support. With
sufficient parameters, the polynomial, inverse polynomial, and
z fits all start to reproduce inflections in the data, and they track
each other roughly. The large rise at Q2 = 0 is the reason these
fits give a larger radius than the CF fit. Although in absolute
terms, the fits differ from each other by less than the point-to-
point uncertainties on the data, and absolutely less than 0.001,
the precise behavior of the fit function at the origin significantly
influences the extracted value of RE . Fitting fluctuations with
high-order polynomials can spell trouble for extrapolations to
Q2 = 0, because a reduction in χ2 likely comes at the cost of
more strength in one or more of the higher-order terms, which
diverge quickly outside the fit region.

F. Systematic deviations between fit and data

The typical quoted uncertainty on each point is a few
tenths of a percent. Because these data represent 34 separately
normalized data sets taken with three spectrometers, it is not
unreasonable to suppose that some of the apparent undulation
could be modified or removed by relative renormalization.
Because absolute normalizations in each spectrometer are not
known to better than a percent, there is some freedom to do
this on the level of at least a few tenths of a percent.

These sorts of relative renormalizations were made by
Bernauer et al., with slightly different renormalizations for
the different fit functions they used. We did a similar process
using the continued fraction fit. For each normalization set
we formed the uncertainty-weighted average of the ratio
GE(Q2

i )/f (Q2
i ) for all points in each subset. The data were

then divided by this ratio. These factors are shown in Fig. 10
for the various data sets. Arrows indicate the beam energy of
the points to the left of the arrow. The overall renormalization
is unity, with a point-to-point variation of about 0.15%. This
indicates that the original normalizations were done well,
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FIG. 10. Renormalization constants for the 34 Mainz normal-
ization sets. Red inverted triangles, black dots, and purple upright
triangles correspond to spectrometers A, B, and C, respectively. The
numbers are the six beam energies in MeV, and the points to the left
of the corresponding arrow are the sets at that energy. The average
and standard deviation of these normalization constants are 1 and
0.015%, respectively.

although they could be modified a bit when using a different
fit function.

To make it easier to see any systematic effects within this
thicket of renormalization ratios, we combined points from
different spectrometer settings within the full data sample into
14 bins of Q2 with roughly 100 points in each bin. Figure 11
shows the results of this exercise before the renormalizations
were done (top) and after (bottom). Each plot shows the
uncertainty-weighted averages of GE(Q2) − f (Q2), in which
the uncertainties include both point-to-point statistical and sys-
tematic uncertainties. There are what appear to be statistically
significant variations in GE(Q2) − f (Q2) in the upper plot.
In fact, focusing on the low-Q2 behavior, the data show a
trend favoring a larger slope, and a bigger radius RE , than our
fits suggest. However, it is worth noting that these variations
are on the order of 0.1%, which is commensurate with the
point-to-point uncertainties. In the lower plot, the systematic
variations seen in the upper plot are reduced by half, but
renormalization cannot account for the remaining fluctuations
which are on the order of 0.001.

Figure 12 separates GE(Q2) − f (Q2) into plots for each
spectrometer individually. Here there is a gradual rise and
fall—albeit on the level of a tenth of a percent—in GE(Q2) −
f (Q2) for spectrometers A and C. For spectrometer B, which
is the workhorse at low Q2, there is no such variation. Any
deviations in the data from the continued fraction fit should
show up in all three spectrometers if they are real. Because this
is not the case, the observed fluctuations likely are not intrinsic
to GE .

We remind ourselves that the four-parameter continued
fraction fit to the full 1422-point Mainz data set is now
somewhat improved by the renormalizations. After the renor-
malizations, RE does not change appreciably, but the χ2/dof
decreases to about 1.4, which by some measure is still too
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FIG. 11. Average differences (GE)i − f (Q2
i ) for 14 Q2 bins

before (a) and after (b) renormalizing the 34 data sets.

large. Consequently, we need to consider increasing the size
of the uncertainty limits.

V. FINAL RESULTS

The systematic deviations from the CF fit shown in Fig. 12
differ considerably from spectrometer to spectrometer, sug-
gesting that they are not intrinsic to GE(Q2) and perhaps that
the point-to-point systematic uncertainties are underestimated.
Bernauer et al. themselves have rescaled the uncertainties per
normalization set by factors ranging from 1.07 to 2.3 [7].
Therefore, we repeated this exercise globally for GE(Q2),
and found that the uncertainties required rescaling by a
factor 1.15. Figure 13 shows the full data set including our
renormalizations of data sets and uncertainties. The resulting
new fit (Fig. 13) has a χ2/dof of unity for the full data set.
All of the modifications we have made to the data have
not changed RE more than a few parts per thousand. We
obtain the value RE = 0.8404 fm, from this procedure, with
a diagonal uncertainty of 0.00007 fm. The value of RE fm
remains consistent with the muonic hydrogen Lamb shift
measurements.
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FIG. 12. Differences, GE(Q2
i ) − f (Q2

i ), averaged over 14 Q2

ranges for spectrometers A (a), B (b), and C (c), individually, after
renormalizations of the 34 subsets.

Regarding the size and distribution of the uncertainties, the
across-the-board increase of the uncertainty limits on GE by
15% yields a normal distribution for [GE(Q2

i ) − f (Q2
i )]/σi .

Figure 14 shows the resulting histogram of this quantity for
all 1422 points in the data set. A Gaussian fit yields a mean
of zero and a standard deviation of 1 with a good χ2/dof, as
expected for Gaussian statistics.
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FIG. 13. Final global fit with the 34 data sets renormalized and
the point-to-point uncertainties on GE scaled up by 15%.

The statistical uncertainty from the χ2 fit is small, and
the overall uncertainty on RE is dominated by systematics.
We have estimated the systematic uncertainties by finding
the spread among a set of extracted radii: (1) Spectrometer
B, Q2 < 0.02 GeV2, fits to terms up to Q6 constrained
by assuming an exponential, Gaussian, or empirical charge
distribution: 0.836, 0.849, and 0.859 fm, respectively; (2)
Q2 < 1.0 GeV2, fits to the double dipole, continued fraction,
and inverse polynomial fit forms: 0.830, 0.840, and 0.870 fm,
respectively; and (3) a global fit to the 1422 points with
each of the 34 normalization constants as free parameters,
0.827 fm (not reported in detail here). The average and
standard deviation within this set are 0.844 and 0.016 fm. We
take this standard deviation as an estimate of the systematic
uncertainty on RE from fit-model dependence, and keeping
the central value from our previous analysis, conclude that
RE = 0.840 ± 0.001stat ± 0.016syst.
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FIG. 14. Distribution of [GE(Q2
i ) − f (Q2

i )]/σi for all data
points. Here the individual uncertainties on each point σi have all
been rescaled by a factor of 1.15.
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VI. CONCLUSIONS

The Mainz data set is of extremely high quality—expansive,
accurate, and self-consistent. We began with an analysis of the
low-Q2 part of the data set, where a polynomial expansion
of the form factors should converge, and which should and
does yield an accurate result for the proton radius. We found
a proton radius in agreement with the muonic hydrogen
Lamb shift results and significantly smaller than the CODATA
value.

We also analyzed the full data set, assuming that GE is
monotonically falling and inflectionless, and used a continued
fraction form to map this. We rescaled the different data sets on
a level that is smaller than the original normalization uncertain-
ties. We inflated the point-to-point systematic uncertainties by
15%, which is well within reasonable systematic uncertainties
for such an electron scattering experiment. We can then fit all
data nicely using only four parameters. This results in a χ2/dof
of unity, and with some further consideration of other ways to
fit the data, determine a proton radius RE = 0.840 ± 0.016 fm.

This result is in excellent agreement with the muonic Lamb
shift results. Our fit averages over the systematic meanderings
in the data set, which are different for each spectrometer.

Overfitting to accommodate them easily biases the extrapo-
lated slope at the origin. Solving this fitting conundrum will
require independent confirmation of the shape of GE from
other electron or muon scattering measurements, which are
underway or in planning [56–59]. In addition, a host of other
relevant experiments are also underway or under analysis,
including the completed but not yet published measurements
of nuclear radii in other muonic atoms [60], and new high
precision atomic level splitting experiments that will yield
new and precise measurements of the proton radius [61–64].
We eagerly await all the new measurements that can elucidate
the proton radius quandary.
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