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Correlations of π N partial waves for multireaction analyses
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In the search for missing baryonic resonances, many analyses include data from a variety of pion- and
photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering
Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance
matrices needed to perform correlated χ2 fits, in which the obtained χ 2 equals the actual χ 2 up to nonlinear
and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering,
this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The
influence of systematic errors is also considered.
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I. INTRODUCTION AND MOTIVATION

The existence and properties [1] of most N and �
resonances have been determined through elaborate analyses
[2–9] of πN elastic scattering data. More recently, however,
baryon spectroscopy has been driven by the progress made
in the measurement and analysis of meson photoproduction
reactions. These analyses often take a multichannel approach,
incorporating reactions with a variety of initial (πN , γN ) and
final (πN , ηN , K�, K�, ωN , ππN ) states.

In order to build on the progress made in the earlier πN
elastic analyses, multichannel analyses [10–22] have usually
fitted πN amplitudes, derived from previous studies [2–9],
together with reaction data. The fitted amplitude pseudodata
have either been taken from single-energy analyses (SE) or
energy-dependent (ED) fits covering the resonance region. The
SE analysis amplitudes, derived from fits to narrow energy
bins of data, have associated errors which have been used in
the multichannel fits or enlarged when these fits have become
problematic. The smoother ED amplitudes have also been
taken at discrete energies, typically with subjective errors not
derived from the fit to data.

There are several problems associated with fits to amplitude
pseudodata, which we have attempted to address in this work.
The most obvious of these is the fact that the goodness of fit
to these sets of amplitudes cannot be translated into a quality
of fit to the underlying dataset. The subsequent comparison to
experimental πN data may result [23] in poorer than expected
agreement. In addition, uncertainties on the SE amplitudes
[2–5] do not account for correlated errors, which can be
substantial in some cases.
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In baryon spectroscopy, based on multireaction analysis,
this has unwanted side effects. First, a statistical analysis
of fit results is difficult if one of the input channels is not
given by data. Second, as a consequence, the significance
of resonance signals, detected in such multireaction fits, is
difficult to quantify. Consider, for example, the situation in
which an additional resonance term leads to considerable
improvement in the description of kaon photoproduction data.
The description in the πN → πN reaction might then barely
change. Indeed, one of the main motivations for the baryon
photoproduction program is to search for missing states with
small πN resonance couplings. Yet, there will be a nonzero
impact in the description of the πN → πN reaction. As long
as that small change in χ2 cannot be tested in terms of statistical
criteria, based on πN data, the significance of the proposed
new state will be difficult to assess.

In a similar way, chiral perturbation theory (CHPT) and
its unitary extension (UCHPT) may profit from an improved
representation of SE amplitudes. The relevance of elastic πN
scattering partial waves for chiral dynamics, to study the πN σ
term or isospin breaking, or to obtain a quantitative measure
of low-energy constant (LEC) uncertainties, is reflected in the
literature [24–38]. Recently, several groups have begun to fit
low-energy πN data directly [39,40].

In UCHPT, the focus lies less on spectroscopy than on the
understanding of resonance dynamics and its nature in terms
of hadronic components. Usually, the S-wave amplitudes S11

and S31 are subjects of interest. For example, in Ref. [41]
the S11 and S31 partial waves were fitted up to the energy
of the N (1535)S11 resonance and the N (1650)S11 emerged.
Furthermore, with the same hadronic amplitude, pion and η
photoproduction could be predicted [42,43]. The role of chiral
dynamics in S-wave baryonic resonances, including fits to
πN partial waves, has been studied by many groups [44–53].
Other examples, in which fits to πN partial waves are crucial
to investigate chiral dynamics and to test models, include the
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D33 partial wave [54–57] and a family of JP = 1/2−, 3/2−
states [52,53,58]. Clearly, an improved representation of πN
data beyond SE amplitudes will lead to a more reliable
determination of LECs, and thus, to more reliable predictions
of other hadronic reactions within UCHPT.

In summary, SE πN amplitudes represent the test ground
for a wide range of theory and models from baryon spec-
troscopy and chiral resonance dynamics to tests of quark
models [59–61]. Attaching more statistical meaning to those
solutions would considerably advance the understanding of
hadron dynamics.

The aim of this paper is to provide an easy-to-implement
representation of the πN → πN data in terms of covariance
matrices and best χ2 values for each set of SE amplitudes. With
this, the πN → πN reaction can be included in multireaction
spectroscopy fits in a statistically more meaningful way
through correlated χ2 fits. The effect of systematic errors
associated with the underlying data provides a subtle difficulty
which we discuss in detail below.

Together with this study, numerical values for matrices and
χ2 values are provided on the Scattering Analysis Interactive
Database (SAID) [62] and JPAC [63] web pages for further use.

II. GENERATING SE AMPLITUDES

In the following, we restrict our attention to the single-
energy (SE) amplitudes, which are generated starting from a
global, energy-dependent (ED) fit, and give a better fit to data.
These amplitudes show more scatter than would appear in the
ED fit. This is preferable in a multichannel analysis which may
interpret apparently random fluctuations in the single-channel
fit as resonance signatures. Here, we use the most recent ED
fit of Ref. [2].

Data for each of the SE analyses have been taken from
the SAID database [62] with an energy interval depending
on the density of experimental measurements. This interval
varies from 2 MeV, for the low-energy region, to 50 MeV, at
the highest energies where data are sparse. A finite binning in
energy increases the number of data constraints but requires
an assumption for the energy dependence, which is taken to be
linear. The quoted amplitudes correspond to the central energy.
The χ2 fit to data is carried out, using the form

χ2 =
∑

i

(
N�i − �

exp
i

εi

)2

+
(

N − 1

εN

)2

, (1)

where �
exp
i is an experimental point in an angular distribution

and �i is the fit value. Here the overall systematic error,
εN , is used to weight an additional χ2 penalty term due
to renormalizaton of the fit by the factor N . The statistical
error is given by εi . It has been shown that the above
renormalization factors can be determined at each search step
and do not have to be explicitly included in the search [64].
Empirical renormalization factors have also been used in fits
to low-energy data based on chiral perturbation theory [40].

The search is stabilized in two ways. Clearly, one cannot
search an infinite number of partial waves. As a result, the
number of included waves is determined by their contribution
to the cross section, with all higher waves being taken from

the ED fit. In addition, ED amplitude pseudodata are included
in the fit, with large uncertainties, to keep the SE solution in
the neighborhood of the ED result. Clearly, with overly tight
constraints, one could generate an SE fit arbitrarily close to the
ED value. However, in practice, the constraints allow sufficient
freedom and contribute very little (less than 1%) to the total
χ2. The searched waves are elastic until their contribution to
the reaction cross section is significant, as determined in the
ED analysis.

III. USING THE ERROR MATRIX

A pion-nucleon partial wave fi is parametrized by two real
parameters. Here, we choose the phase shift δi and ρi , where

cos ρi = ηi, (2)

with elasticity parameter ηi and the scattering amplitude

Re fi = 1
2 cos ρi sin(2δi),

(3)
Im fi = 1

2 [1 − cos ρi cos(2δi)].

In the following, the set of parameters for a given set of partial
waves is called generically Ai , ordered in a vector A. The χ2 of
a SE solution can be expanded around the minimum at A = Â,

χ2(A) = χ2(Â) + (A − Â)T �̂−1(A − Â) + O(A − Â)3,

(4)

where Â is the estimate of the partial waves from data and
�̂ is the estimate of the covariance matrix. A correlated χ2

fit to a SE solution means the use of the same Eq. (4) for the
χ2 up to O(A2), in particular of the full covariance matrix
and not only its diagonal elements given by the partial-wave
variances (�Ai)2. Thus, using �̂ and χ2(Â) of this paper in a
correlated χ2 fit provides in principle the same χ2 as fitting to
the actual data up to O(A2), resolving the issues raised in the
introduction.

In an actual correlated χ2 fit, either (δi,ρi) may be fitted,
using the quoted covariance matrices, or, the possibly more
familiar scattering amplitudes (Re fi,Im fi) may be utilized,
requiring a transformation of the covariance matrices,

�̂f = QT �̂Q, (5)

where Q is a block-diagonal matrix Q = diag(Qj ) with

Qj =
(

cos ρi cos(2δi) cos ρi sin(2δi)
− 1

2 sin ρi sin(2δi) 1
2 sin ρi cos(2δi)

)
, (6)

for inelastic partial waves, with ρi �= 0, and

Qj = ( cos(2δi) sin(2δ)), (7)

for the elastic partial waves (note that Q is not necessarily
a square matrix). For groups accustomed to fitting the
amplitudes fi , it may be more convenient in practice to evaluate
(δi,ρi) using Eq. (2) and inverting Eqs. (3) to fit to the quoted
covariance matrices directly.

A. Format of covariance matrices

The format of covariance matrices �̂ and χ2 estimates
χ2(Â) are specified on the SAID web page [62]. At the time
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of publication, we quote the parameters corresponding to the
WI08 solution [2]. The web page will be updated as new
data are produced and analyzed. Along with the necessary
parameters to carry out correlated χ2 fits, simple subroutines
are provided to read the parameters into suitable variables.
The parameters to describe the χ2 are central W of the energy
bin of a given SE solution, ordering of partial wave δi and ρi

parameters according to isospin I , orbital angular momentum
L, total angular momentum J , and the actual values of Â,
χ2(Â) and �̂, in the given ordering. Additionally, the number
of data points in the bin is quoted.

B. Representation of the χ 2

As discussed, Â, χ2(Â), and �̂ for SE solutions provide the
necessary input for other groups to carry out fits with a χ2 that
represents, in principle, the χ2 of a direct fit to πN data. A
few remarks concerning the advantages and limitations of this
method are in order.

(1) Nonlinear contributions. As discussed following
Eq. (4), a correlated χ2 fit captures only the quadratic
terms in the expansion around the minimum. Nonlinear
corrections ofO(A3) are neglected. Testing selected co-
variance matrices, we found that nonlinear corrections
only become relevant far beyond the parameter region
over which a fit is considered to be good. In Sec. IV an
explicit example is discussed.

(2) Finite bin width. As mentioned, the bin widths become
up to 50 MeV wide at the largest energies. However,
partial-wave solutions have a smooth energy depen-
dence, and single-energy solutions are allowed to vary
linearly within a bin. The impact on the χ2 from the
finite bin width is not significant and only central values
of the bins are quoted.

(3) Electromagnetic corrections. As the SE solutions are
corrected using the method described in detail in
Ref. [5], other groups using the present results do
not have to implement electromagnetic corrections re-
quired to fit the data. Conversely, the implementation of
electromagnetic corrections cannot be altered without
a refit to the data.

(4) Renormalization. The SE solutions are obtained by
allowing for a multiplicative renormalization accord-
ing to Eq. (1). Any group using the present results
implicitly accepts the normalization obtained in the
SAID analysis of elastic πN scattering. Beyond this,
no additional renormalization can be performed in
correlated χ2 fits. The effect of renormalization be-
comes increasingly relevant when moving away from
the estimated χ2 minimum at A = Â. We discuss a
typical example in Sec. IV.
The effect from renormalizations seemingly frozen at
the SAID SE solution value at A = Â represents the
largest difference between the correlated and the actual
χ2, in which renormalization is dynamically adapted
for any A. Yet, as renormalization tends to be small to
moderate, and for A in the vicinity of Â, the effect can
be neglected.

In summary, there are advantages in using the present
fit method over a direct fit to data (no need to implement
electromagnetic corrections), but also limitations. Especially
if a correlated χ2 fit is poor, i.e., with parameters A far away
from Â, the correlated and actual χ2 can be quite different. In
that case, one can only resort to a direct fit to data, allowing
for dynamic renormalization. Then, the fit function must be
renormalized, rather than the data, to avoid the bias discussed
in Ref. [65]. See also Ref. [66] for a further discussion of the
topic.

With the limitations discussed, correlated χ2 fits still
represent a much improved treatment of the elastic πN
reaction, compared to uncorrelated fits to SE solutions, as
available up to now. This will be demonstrated in an example
in the next section.

IV. AN EXPLICIT EXAMPLE

Table I compares fits to data with laboratory pion kinetic
energies Tπ between 87 and 92 MeV. Quoted are the phase
shifts Âi = δ̂i(deg). The fit WI08 [2] is an ED parametrization
of data covering the full resonance region (second column).
It employs a normalization of the fit function. Smaller partial
waves, present in the ED solution but not searched in the SE
fit, are omitted from the table.

From this starting point, the most important partial waves
have been searched to fit data in the chosen energy bin. In this
case, S11, S31, P11, and P33 phase shifts have been searched
with other parameters held fixed at WI08 values. This is the
SE fit in the third column quoted with errors determined from
the corresponding diagonal elements of the covariance matrix.
As a simpler point of comparison, a second SE fit has been done
without allowing for renormalization of the fit (last column).
Here the fit is significantly worse.

Starting from this last SE fit, and its best χ2, we see
from Eq. (4) that the χ2 should increase quadratically as one
moves away from the minimum. In Fig. 1(a), we compare the
χ2 variation for the two S-wave amplitudes as given by the
corresponding error matrix and an actual fit to data (the other
two partial waves are held at their best values δ̂P 11 and δ̂P 33).
Shown is a region well beyond the �χ2 = 2.30 ellipse that
marks the 68% confidence region of a two-parameter fit (and
well beyond the �χ2 = 4.72 ellipse of a 4-parameter fit). The
parabolic behavior of the correlated χ2 predicts well the actual

TABLE I. Fits to data near Tπ = 90 MeV. Quoted are the phase
shifts δ̂i (deg). WI08 [2] is the energy-dependent (ED) fit; SE is the
single-energy fit, allowing renormalization, based on the ED fit. The
last column gives a SE fit without allowing renormalization of the fit
(see text).

90 MeV SE WI08 (ED) WI08 (SE) WI08 (SE-No Renorm)
(87–92) MeV

S11 8.43 8.11(0.11) 8.02(0.11)
S31 −8.21 −8.11(0.10) −7.68(0.10)
P11 −1.01 −0.71(0.09) −0.58(0.09)
P33 17.31 17.16(0.05) 16.68(0.05)
χ 2/data 150/121 124/121 301/121
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FIG. 1. The χ 2 without renormalization (last column of Table I).
(a) The χ 2 of the SES for Tπ ∈ [87,92] MeV as a function of δS11 and
δS31 with the values of all other partial waves fixed at the minimum.
The red (blue) surface shows the actual χ 2 (the χ 2 predicted from the
covariance matrix). (b) Contours of constant �χ 2 = 8 for the actual
χ 2 (solid red), for the χ 2 predicted from the full covariance matrix
(dashed blue), and from the covariance matrix neglecting correlations
(dash-dotted brown line). Parameter errors �S11, �S31 are indicated
with bars.

χ2 within the shown region. Thus, the O(A3) corrections of
Eq. (4) are indeed very small well beyond the region in which
a fit can be considered good.

In Fig. 1(b) we show the �χ2(�̂) = 8 ellipse from �̂
(solid, red) and compare with the actual �χ2 = 8 line (dashed,
blue). The figure shows again that the covariance matrix
predicts the rise of the χ2 well. For example, at (δS11,δS31) =
(8.42 deg, − 7.28 deg) the difference between �χ2(�̂) and
the actual �χ2 is only 2, compared to an absolute scale given
by χ2 = 359 at this point. Along the axes, the figure also shows

the parameter errors, given by the maximal extensions of the
�χ2 = 1 ellipse.

In addition, a �χ2 = 8 error ellipse is shown that is
obtained from the covariance �̂0 in which all off-diagonal
elements are set to zero, i.e., ignoring correlations (dash-
dotted, brown). The effect is sizable: At (δS11,δS31) considered
before one has �χ2(�̂) = 56 and �χ2(�̂0) = 31, i.e., only
55% of the correlated value. At higher energies, where param-
eters are generally more strongly correlated, this discrepancy
becomes much larger.

The breakdown of χ2 contributions is then as follows: the
χ2 at the minimum is χ2(Â) = 301, the contribution from
correlations amounts to �χ2 = 56, and the sum χ2 = 357 is
0.5% different from the actual χ2 found from a comparison
to data. In contrast, if one had mistakenly regarded the
SE solutions as uncorrelated data points (as done in some
analyses), a meaningless χ2 = 31 would have been obtained
at (δS11,δS31) = (8.42 deg, − 7.28 deg).

To conclude this section, the effects of normalization are
discussed. Recall that the minimum at A = Â in the standard
SE fit (third column of Table I) is obtained allowing for
renormalization of the minimizing function. The covariance
matrix is then numerically estimated from the Hessian, �̂ =
2H−1 with Hij = ∂2χ2/(∂Ai∂Aj ), using the penalized χ2

from Eq. (1), i.e., including the renormalization. To that end,
the covariance matrix includes information about the change in
normalization when moving away from the minimum, but with
a value frozen at the minimum. Moving away from the mini-
mum, both the fitted amplitudes and the fit function normaliza-
tion factors work to reduce the χ2, resulting in a nonquadratic
variation. However, if one is close to the minimum, the error
matrix should still give a reasonable estimate of the data χ2.

In Fig. 2(b), the �χ2 curves from the normalizable
SE solution (thick) lines are shown. The curves from the
previously discussed case (no normalization) are replotted for
comparison (thin lines). The thick solid red (thick dashed blue)
lines show the actual �χ2 values (the �χ2 values predicted
from the covariance matrix). We observe larger deviations of
the actual χ2 from the predicted one, which are a consequence
of the discussed dynamic normalization, changing at any point
in parameter space for the evaluation of the actual χ2. Note,
however, that this example has been chosen for the �χ2 = 8
contour, i.e., far away from the minimum. There, a maximal
deviation of actual and predicted χ2 of 5% is observed.

For further illustration, Fig. 3 shows a selection of data from
the considered Tπ = 87–92 MeV energy bin and the SE fit
obtained allowing normalization. The effect of normalization
is visible for the differential cross section, which acquires a
normalization factor of 0.98, constrained by the penalty term
in Eq. (1). The factor, not applied in the figure, shifts the curve
closer to the data, significantly reducing the χ2.

A. Fits with fewer parameters

Some theory or model approaches describe fewer partial
waves than provided in the covariance matrices. For example,
chiral unitary approaches are often restricted to the lowest
partial waves. How should one use the covariance matrices in
these cases?
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FIG. 2. The χ 2 with renormalization. Notation as in Fig. 1. (a)
The red (blue) surface shows the actual χ 2 with renormalization (the
χ 2 predicted from the covariance matrix). (b) Contours of constant
�χ 2 = 8 for the actual χ 2 with renormalization (thick solid red), the
χ 2 predicted from the covariance matrix (thick dashed blue), and the
case without renormalization from Fig. 1 (thin lines).

As an example, assume that model M describes δS11,
while the covariance matrix comprises δS11 and δS31 (see,
e.g., the figures of this section). Suppose δS11 in model M
takes the value δS11 = δ̂S11 + �S11. In the δS11,δS31 space, this
corresponds to the right vertical tangent to the �χ2 = 1 ellipse.
Then, there exists one value δS31 such that indeed �χ2 = 1.
On the other hand, by marginalizing the bivariate distribution
over δS31, one obtains a normal distribution with variance
(�S11)2, corresponding to a covariance matrix �̂ = (�S11)2.
According to that reduced covariance matrix, the �χ2 at
δS11 = δ̂S11 + �S11 has also increased by one, �χ2 = 1. In
summary, fitting the reduced covariance matrix is equivalent
to fitting the entire covariance matrix, with δS11 coming from

FIG. 3. (a) Differential cross section at Tπ = 91.7 MeV and π+p

data of Ref. [67]. (b) Polarization (P) at Tπ = 87.2 MeV and π+p

data of Ref. [68]. The 90 MeV SE fit is shown; the normalization N

from Eq. (1) acquires a value of N = 0.98 for the differential cross
section (not applied in figure).

model M, and optimizing all other parameters simultaneously.
(Within M one cannot make any statement about the size of
these other parameters or partial waves.)

The generalization to several parameters is straightforward.
It can be shown that the reduced covariance matrix after
marginalization is given by simply eliminating, from the full
covariance matrix, the rows and columns corresponding to the
marginalized parameters. Then, model M with fewer partial
waves is fitted to that reduced matrix, and the unchanged χ2(Â)
is added according to Eq. (4).

V. SUMMARY AND CONCLUSIONS

Covariance matrices and other fit properties of the SAID
SE solutions are provided to allow other groups to carry out
correlated χ2 fits to the elastic πN scattering reaction. In
principle, the obtained χ2 is then a good approximation to the
χ2 one would obtain if fitting directly to experimental data.
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This has various practical advantages: Coulomb corrections
are not an issue and normalization factors are included. How-
ever, the latter bear some subtleties as discussed. Furthermore,
when fitting to SAID SE solutions, in the proposed manner,
one implicitly accepts the chosen bin width and omission
of nonlinear contributions to the χ2 beyond the covariance
matrix. In practice, we found these effects to be negligible,
with the largest discrepancies coming from normalization.
However, it has been checked that, close to the minimum,
this effect is under control.

With correlated χ2 fits, it is now possible to fit the SAID
SE solutions in a statistically meaningful way. For baryon
spectroscopy, this is a prerequisite to quantify the significance
of resonance signals, usually performed in multireaction
fits in which, so far, the precise statistical impact of πN
partial waves has been unknown. Other approaches, such
as quark-model calculations, CHPT, or unitary extensions

thereof, can also benefit from the proposed fitting scheme,
allowing, e.g., for an improved determination of low-energy
constants. The numerical input needed to carry out correlated
χ2 fits is provided online.
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