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Simple model for rapidity fluctuations in the initial state of ultrarelativistic heavy-ion collisions
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Two-particle pseudorapidity correlations are analyzed in a simple model, where in the initial stage of the
reaction multiple sources, extended in rapidity, are created. We show how the fluctuations of the length of the
sources in rapidity generate correlations in the initial entropy deposition, which later contribute to the observed
longitudinal correlations in hadron production. Our analysis, which is analytic and leads to straightforward
formulas, allows us to understand the structure of the correlations, in particular to identify the component related
to the fluctuation of the numbers of sources and the component from the length fluctuations. We also present
the results in terms of the expansion in the basis of the Legendre polynomials. A number of further effects
are discussed, such as smearing of the pseudorapidity distributions or resonance decays. Our results reproduce
qualitatively and semiquantitatively the basic features of the recent measurements at the LHC.
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I. INTRODUCTION

Recently, new data for the pseudorapidity correlations in
Pb-Pb, p-Pb, and p-p collisions at the Large Hadron Collider
energies were released by the ATLAS Collaboration [1,2].
These studies continue the longstanding experimental [3] and
theoretical [4–8] efforts aimed at understanding this important
phenomenon, sensitive to the dynamics of the collision in its
earliest stages.

This paper presents an attempt to understand the newest
experimental results [1,2] concerning rapidity correlations.
Our study is based on what we call the longitudinally extended
source model. The initial entropy distribution in the longitudi-
nal direction originates from the decay of strings or flux tubes
connected to excited charges in the two colliding nuclei. The
charges can be thought of as the wounded nucleons [9] or
wounded quarks [10], thus are associated (attached) to a given
colliding nucleus (cf. Fig. 1).

The concept of independent production from sources has
a long history. Its most important role in the phenomenology
of heavy-ion collisions is to serve as a reference model to
identify deviations form a simple superposition scenario in
particle production. The idea is very useful, as experimentally
it is well confirmed that independent superposition of sources
is a good approximation for the global properties of the system,
such as the average multiplicity. It is then natural to generalize
this approach to predict correlations between multiplicity in
different rapidity domains.

The Glauber model, based on the superposition of contri-
butions from wounded nucleons (or quarks), is the basis of the
centrality definition used in most of the experiments [11–16].
Multiplicity distributions or particle density in pseudorapidity
can be reproduced using models assuming an independent
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superposition of initial sources, i.e., wounded nucleons or
quarks. The study of multiplicity correlations in rapidity
can give independent predictions in this approach. Possible
deviations of the data could indicate a possible importance of
nonlinear effects in the very stage of the collisions, as in the
color glass condensate [17,18]. We note that further evolution
of the system, e.g., hydrodynamic expansion, is approximately
linear. The estimate given in this paper presents a prediction for
the multiplicity correlations based on the independent source
model, but still yields nontrivial correlations in rapidity. It
serves as a simple analytic calculation that can be compared to
experiment to confirm the underlying assumptions or to find
possible deviations from expected scalings. Such information
is important in understanding the initial correlations and in the
search for a microscopic description of the early dynamics.

A crucial aspect of our model is that the longitudinal
position of the other end-point of the longitudinally extended
source is random, uniformly distributed in the central rapidity
range. The use of the uniform distribution is a simplification,
justified for the relatively narrow interval where the correla-
tions are presently measured (pseudorapidity range [−2.4,2.4]
in the ATLAS experiment [1,2]). Moreover, it allows for a
straightforward analytic evaluation of the two-particle corre-
lation function. This simple model grasps the essential features
of realistic Monte Carlo models implementing the QCD string
decays in the first stage of the collisions [19]. The idea that
entropy deposition originates from stringlike objects whose
other end point is randomly distributed in pseudorapidity η is
related to the Brodsky-Gunion-Kuhn mechanism [20]). It was
also discussed in the description of the fragmentation region
in high energy collisions [21].

The study of multiplicity correlations can be conveniently
done by projecting the two-particle correlations function on
a two-dimensional basis of orthogonal polynomials [4]. This
method was applied to p-p, p-Pb, and Pb-Pb collisions by
the ATLAS Collaboration [2] and was a subject of theoretical
studies [4,7,8,22–24].
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FIG. 1. Sources of fluctuating length, extending along the spatial
pseudorapidity. The cartoon shows the situation in the early stage,
right after the collision.

The analytic formulas obtained for the two-particle corre-
lation functions allow us to understand the structure of the
correlation function and to identify various components. As
noticed in Ref. [4], the fluctuations of the numbers of sources
alone generate nontrivial longitudinal correlations. We show,
however, that the dominant effect comes from the correlation
from the emission of two particles from the same source, which
is caused by the length fluctuations. This effect leads to the pair
emission probability with a relatively long range in rapidity.

We find generically that the magnitude of the coefficients
of the projection of the two-particle correlation functions
on orthogonal polynomials is inversely proportional to the
number of sources. With a natural proportionality relation
between the number of sources and the final multiplicity,
it can explain the experimentally observed scaling of these
coefficients with the inverse number of observed hadrons, and
the universality in A-A, p-A, and p-p collisions [2].

We recall that the presence of the long-range fluctuations of
the entropy density in the longitudinal direction is also visible
in the experimental data for the event-plane decorrelation
in pseudorapidity [25]. The mechanism of the flow angle
decorrelation was discussed in a number of papers [26–32].
Fluctuations in the entropy deposition at different space-
time rapidities lead to a relative torque of the elliptic and
triangular flow angles at the forward and backward rapidities.
The fluctuating end-point mechanism discussed here was
applied numerically in Ref. [32] to describe the event-plane
decorrelation (the torque effect [26]) reported by the CMS
Collaboration [25], where it was essential to describe the p-Pb
data. A conceptually similar model for the formation of the
initial state for the hydrodynamic evolution, based on wounded
quarks, was introduced in Ref. [8].

II. EXPERIMENTAL MEASURES

The preliminary experimental results of Ref. [1,2] refer to
correlations of two different charged hadrons of pseudorapidi-
ties η1 and η2, measured in a given centrality class. The relevant
quantity is defined as

C(η1,η2) = 〈ρ(η1,η2)〉
〈ρ(η1)〉〈ρ(η2)〉 = S(η1,η2)

B(η1,η2)
, (1)

where ρ(η1,η2) and ρ(η1,2) are the distributions of pairs and
single particles, with 〈.〉 denoting the averages over events. In
the experiment, the quantity is estimated by taking the ratio of
the signal histogram S with physical pairs over the histogram
B formed of mixed-event pairs. The ATLAS Collaboration [1]

uses a measure obtained from C(η1,η2) by dividing it by its
marginal distributions, namely

CN (η1,η2) = C(η1,η2)

Cp(η1)Cp(η2)
, (2)

with

Cp(η1) =
∫ Y

−Y

dη2 C(η1,η2), Cp(η2) =
∫ Y

−Y

dη1 C(η1,η2),

(3)

where [−Y,Y ] is the acceptance range for pseudorapidities
η1,2. In the ATLAS setup Y = 2.4. This transformation
reduces the effects of the overall multiplicity fluctuations
on the shape of the correlation function. In addition, the
correlation functions are conventionally normalized to 1, i.e.,
one introduces

C(η1,η2) = C(η1,η2)∫ Y

−Y
dη1

∫ Y

−Y
dη2 C(η1,η2)

, (4)

and similarly CN (η1,η2).
The anm coefficients are defined via the expansion of the

correlation functions in a basis of orthonormal functions [4]:

anm =
∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y
C(η1,η2)Tn

(
η1

Y

)
Tm

(
η1

Y

)
,

aN
nm =

∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y
CN (η1,η2)Tn

(
η1

Y

)
Tm

(
η1

Y

)
. (5)

The choice made in Refs. [1,2,7] is

Tn(x) =
√

2n + 1

2
Pn(x), (6)

where Pn(x) are the Legendre polynomials. The normalization
is such that the functions Tn(x) satisfy the orthonormality
condition

∫ 1
−1 dxTn(x)Tm(x) = δnm.

III. CORRELATION FUNCTION IN THE
LONGITUDINALLY EXTENDED SOURCE MODEL

In a wide class of approaches, the initial stage of the
ultrarelativistic A + B reaction comprises individual colli-
sions between nucleons or their constituents. As a result,
local deposition of entropy takes place. In our analysis we
assume that these sources of entropy may be associated
with the A or B nuclei. The prototype is the wounded
nucleon model [9,11,33], but one may also think of wounded
constituent quarks [10,34,35] or diquarks [36]. The approach
was successful in describing the transverse dynamics, were
the distribution of the initial sources in the transverse plane at
mid-rapidity was relevant [37].

For the multiplicity distributions, the considered approach
can be applied both to elementary collisions, where no
substantial final state interaction occurs, and to nuclear
collisions, where particle production happens after a collective
expansion stage. In the former case, the source distribution
in rapidity are directly related to probabilities of particle
production at a given rapidity, with a possible shift in rapidity
at hadronization. In the latter case, the rapidity distribution
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from elementary sources forms the initial condition for the
subsequent dynamical evolution of the system. The space-time
dynamics of high-energy collisions is expected to follow the
inside-outside cascade [38], with particle production occurring
around a common longitudinal proper time

√
t2 − z2. Particles

with rapidity y are produced approximately at the space-time
rapidity 1

2 log ( t+z
t−z

) � y. If an intermediate collective evolution
of matter occurs, a similar argument applies for the initial
conditions of the fluid, where the Bjorken scaling flow may
be assumed. Subsequent longitudinal and transverse evolution
of the medium influences strongly the transverse momentum
spectra. The longitudinal dynamics is less pronounced, es-
pecially if the longitudinal pressure is reduced because of
nonequilibrium corrections [39,40].

In the following, we study the initial conditions in space-
time rapidity, assuming that they are close to the final rapidity
distribution of matter just before hadronization (or thermal
hadron emission from the fluid). Moreover, we assume that the
observed pseudorapidity distributions are close to the rapidity
distribution of the emitting sources. The effect of smearing
of the distribution in the process of hadronization or thermal
hadron emission, followed with resonance decays, is estimated
explicitly and found to reduce the correlations.

For the present goal of describing the longitudinal corre-
lations, one needs sources that extend along the space-time
rapidity. One may think here of strings or flux tubes, which are
pulled by a nucleon or its constituent from nucleus A or B. The
model is depicted in Fig. 1, where the longitudinally extended
sources have fluctuating length. Our approach includes the
following components.

(1) Each source may be associated with a nucleon (or its
constituent) belonging to nucleus A or B. In a given
collision we have NA sources associated with A and NB

sources associated with B. We introduce the short-hand
notation,

N+ = NA + NB, N− = NA − NB, (7)

for the total number of sources and their difference
between A and B.

(2) The entropy deposition (particle emission) from differ-
ent sources is independent from one another.

(3) In the rapidity range between the end points, the
entropy deposition from a given source is uniformly
distributed in rapidity.

(4) The end point of the longitudinally extended source
is randomly fluctuating, with the distribution adjusted
in such a way that the phenomenological [41] average

distribution from a source is reproduced. In the mid-rapidity
region it leads to a uniform distribution of the end point in
space-time rapidity (cf. Appendix B).

(5) In addition, we may overlay a distribution of strength
over the sources [42], described by the random variable
ω. A statistical measure that appears in our formulas is

s(ω) = var(ω)

〈ω〉2
. (8)

(6) As mentioned before, the role of a possible intermediate
evolution stage (hydrodynamics, transport) is solely
to provide an event-by-event mapping between the
original distribution of entropy in spatial rapidity and
the final distribution of hadrons in pseudorapidity.

(7) In the late stage, we also discuss the effects of
hadronization or thermal hadron emission and reso-
nance decays.

Assumptions 1 and 2 are the basis of the wounded
picture [9] of the soft particle production and lead to
successful phenomenology based on the Glauber model
approach [33,43]. The extension to the rapidity distributions
is supported by the analysis of d-Au data from PHOBOS [44]
presented in Ref. [41], followed with an extension to AA
collisions [5,45,46].

One should bear in mind that the independent source
model is phenomenological and up to now was not derived
microscopically. More fundamental QCD-based approaches,
such as the color glass condensate [47–50], offer a different
picture of the quantum fluctuations [51–53] in the initial state,
where the scaling advocated in this work is not apparent
because of inherent nonlinearity of the underlying theory.
In this approach the fluctuations from the distribution on
nucleons in the transverse plane are amended by fluctuations
at a subnucleonic level. Yet, the linear scaling of multiplicities
with the number of wounded quarks advocated in [54,55]
and recently confirmed in Refs. [56–59], provides a strong
phenomenological evidence for assumptions 1 and 2.

The details of the derivation of the correlation function
C(η1,η2) are given in Appendixes A–C. Because we compare
the results for the model with and without the length fluctu-
ations, we introduce a parameter r into our formulas, with
r = 1 and r = 0 corresponding to present or absent length
fluctuations, respectively. We also introduce the short-hand
notation,

u1,2 = η1,2/yb, (9)

with yb denoting a parameter close to the rapidity of the beam
(cf. Appendix B). We find the following analytic expression
for the correlation function (1) in the mid-rapidity region:

C(η1,η2) = 1 + 1

[〈N+〉 + 〈N−〉u1][〈N+〉 + 〈N−〉u2]
{〈N+〉[r(1 − u1u2 − |u1 − u2|) + s(ω)(1 + r + (1 − r)u1u2 − r|u1 − u2|)]

+〈N−〉s(ω)(u1 + u2) + var(N+) + var(N−)u1u2 + cov(N+,N−)(u1 + u2)}, (10)

where the statistical moments are evaluated over the events. We note the obvious symmetry η1 ↔ η2 (particles are not
distinguishable).
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The correlations originate from three kinds of effects.

(1) The event-by-event fluctuation of the number of
sources (the last three terms in curly brackets).

(2) The overlaid fluctuation of strength of sources
[the terms including s(ω)].

(3) The length fluctuations (entering when r = 1).

The following structures appear: u1u2,u1 + u2 (only for
asymmetric collisions A �= B), and |u1 − u2| (only when the
length fluctuations are present).

For the symmetric case A = B Eq. (10) simplifies into

C(η1,η2) = 1 + 1

〈N+〉2
{〈N+〉[r(1 − u1u2 − |u1 − u2|) + s(ω)(1 + r + (1 − r)u1u2 − r|u1 − u2|)] + var(N+) + var(N−)u1u2},

(11)

where we note the additional symmetry (η1 → −η1,η2 → −η2). For the strongly asymmetric case (NA 	 NB) we get

C(η1,η2) = 1 + var(NA)

〈NA〉2
+ s(ω)

〈NA〉 + r
[1 + s(ω)][1 − u1u2 − |u1 − u2|]

〈NA〉(1 + u1)(1 + u2)
+ O(NB/NA). (12)

In the limiting case of no length fluctuations (r = 0) and no
overlaid distribution [s(ω) = 0] for symmetric collisions, we
recover from Eq. (11) the result by Bzdak and Teaney [4],

C(η1,η2) = 1 + var(N+) + var(N−)u1u2

〈N+〉2
, (13)

which demonstrates that the fluctuation of NA vs NB induces
the η1η2 structure in C(η1,η2).

We remark that in the Glauber model one has approximately
var(N+) ∼ 〈N+〉 and var(N−) ∼ 〈N+〉, hence Eq. (11) leads
to the approximate 1/〈N+〉 scaling of C(η1,η2) − 1 for the
symmetric case. Similarly, from Eq. (12) we get the scaling
1/〈NA〉 for the strongly asymmetric case.

IV. LONGITUDINAL CORRELATIONS IN THE WOUNDED
NUCLEON MODEL

To see the importance of the length fluctuations, we have
carried out a GLISSANDO [60] simulation in the wounded
nucleon model for Pb+Pb collisions at 2.76 TeV. In this
case NA and NB are the wounded nucleons in the A and B
nuclei. The simulation is needed solely to obtain the statistical
averages 〈N+〉,var(N+), and var(N−), as the dependence on
η1 and η2 is analytic.

Some explanation is needed concerning the overlaid distri-
bution of ω. The quantity

∫ Y

−Y
dη1

∫ Y

−Y
dη2C(η1,η2) measures

the overall multiplicity fluctuation in the experimental pseudo-
rapidity coverage. Therefore, when comparing the models with
and without length fluctuations we should make this quantity
equal. This requirement yields, with the help of Eq. (11), the
condition,

s(ω)length fl. =
3s(ω)no length fl. + 2 Y

yp
− 3

6 − 2 Y
yp

. (14)

This equation shows, according to the expectations, that
without the length fluctuations we must add more fluctuations
in ω to obtain the same amount of the overall multiplicity
fluctuations. In Refs. [32,42] we have checked that the overlaid
� distribution describes properly the multiplicity distribution
in p-Pb collisions at 5.02 TeV. The parameters for the model
without the length fluctuations yield s(ω) ∼ 1, hence we

take s(ω)no length fl. = 1, and, correspondingly to Eq. (14),
s(ω)length fl. = Y/(3yp − Y ) � 0.1. Such a low value for the
model with the length fluctuations present is consistent with
the observation made in Ref. [8], where no overlaid distribution
was needed to reproduce the multiplicity spectra.

The result for the normalized correlation function (4) for
Pb-Pb collisions at 2.76 TeV for a sample centrality c = 30%–
40% is shown in Fig. 2. We note a vivid difference between the
models without and with the length fluctuations. Whereas the
former case shows a rather flat structure, including the η1η2

term, the latter displays an elongated maximum, because of
the |η1 − η2| structure resulting from the length fluctuations.

In Fig. 3 we show the corresponding function CN (η1,η2).
We note the generation of the ridge with a saddle. The
shape is simply caused by the definition (2); as the marginal
distributions Cp(η) have a maximum at η = 0, the denominator
in Eq. (2) relatively enhances the part of the plot at larger values
of η1 and η2. Hence the generation of the saddle in the ridge
(as seen in the experiment [1]) is natural from our expressions.

We note that the shape of the correlation functions with the
length fluctuations displayed in Figs. 2 and 3 is qualitatively

FIG. 2. Correlation function C(η1,η2) for Pb-Pb collisions at
2.76 TeV for centrality c = 30%–40%, obtained from Eqs. (4), (11).
The flat (light color) sheet corresponds to the case without the length
fluctuations, whereas the sheet with the elongated maximum (darker
color) corresponds to the model with the length fluctuations.
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FIG. 3. Same as Fig. 2 but for the function CN (η1,η2).

very similar to the experimental results; cf. Figs. 1 and 3 in
Ref. [1]. Also, the values are comparable. At other centralities
the shape of our correlation functions is as in Figs. 2 and 3,
but the size reflects the approximate 1/〈N+〉 scaling.

To focus on the contribution from the length fluctuations,
in Fig. 4 we display the difference of the cases including
and excluding this effect. We note that the half-width of the
ridge structure in the η1-η2 coordinate is about 2 units of
pseudorapidity. The effect is clearly seen in Fig. 5, where we
show the sections of Fig. 3 along the line η1 + η2 = 0.

V. THE anm COEFFICIENTS

Simple analytic expressions for the anm coefficients for
symmetric collisions may be obtained from Eq. (11). We find
(for n,m > 0)

ann =
var(N−)
〈N+〉 + (1 − r)s(ω) − r

6〈N+〉
Y 2

y2
b

δn1

+ r
s(ω) + 1

(2n − 1)(2n + 3)〈N+〉
Y

yb

,

(15)
an,n+2 = an+2,n

= −r
s(ω) + 1

2(2n + 3)
√

(2n + 1)(2n + 5)〈N+〉
Y

yb

,

FIG. 4. The difference of the correlation function from Fig. 3
with and without length fluctuations.

FIG. 5. Sections of CN (η1,η2) along the line η1 + η2 = 0. The
solid (dashed) lines correspond to the model with (without) the length
fluctuations plotted in Fig. 3. The dot-dashed curve shows the result
of smearing of the model with the length fluctuations with ση = 1, as
described in Sec. VI.

with all remaining combinations of n and m yielding anm = 0.
The first two terms in ann originate from the η1η2 piece, while
the other terms come from |η1 − η2|. We note several facts.

(1) In the model without length fluctuations (r = 0) we
only have a11 �= 0, which complies to Eq. (13).

(2) The coefficients scale as 1/〈N+〉. For a11 there may
be slight departures from this scaling from the term
var(N−)/〈N+〉, whereas for other coefficients the scal-
ing is exact.

(3) The coefficients drop with the value of the rank n, with
the behavior 1/n2 at large n.

Analogous analytic expressions for the aN
nm coefficients are

lengthy, so we present them numerically. Their values are close
to the anm coefficients, with larger departure at low values of
〈N+〉. This feature is seen for a11 and aN

11 from Fig. 6. We note
that the difference between the model with and without length
fluctuations is large (about a factor of 2).

From the occurrence of η2 in Eq. (C3) it is clear that in
the symmetric case the coefficients aN

nm are no longer limited
to the tridiagonal structure of Eq. (15), but all combinations
with n and m different by multiples of 2 are possible. However,
the coefficients with |n − m| > 2 are strongly suppressed with
powers 1/〈N+〉|m−n|/2.

FIG. 6.
√

a11 and
√

aN
11 (thin and thick lines, respectively) in the

wounded nucleon model for Pb+Pb collisions at 2.76 TeV.

064910-5
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For the asymmetric case all combinations of n and m are
possible, with a similar effect of suppression as one departs
from the diagonal. For a11 we find

a11 = r(s(ω) + 1)yp

×
3yp

(
Y 2 − yp

2
)
arctanh

(
Y
yp

) + 3yp
2Y − 2Y 3

2〈NA〉Y 4

= r
(s(ω) + 1)Y

5〈NA〉yp

+ r
3(s(ω) + 1)Y 3

35〈NA〉yp
3

+ O(
Y 4/y4

p

)
. (16)

A. Universal scaling

We notice that to leading order in Y/yp, i.e., for small
acceptance compared to the beam rapidity, we have for both
the symmetric and asymmetric cases the universal behavior,

a11 = r
(s(ω) + 1)

5

Y

yp

1

〈N〉 + · · · , (17)

where the dots indicate higher-order terms in Y/yp. Here N
denotes N+ for the symmetric case, and NA for the asymmetric
case, i.e., the total number of sources. Because for the ATLAS
coverage Y/yp ∼ 30%, higher-order terms can be neglected
and the universal (i.e., reaction independent) 1/〈N〉 scaling of
Eq. (17), with the same prefactor, holds to a good accuracy.

In the scaling equation (17) the quantity 〈N〉 represents
the average number of independent longitudinally extended
sources (strings, flux tubes), emitting particles in the experi-
mental acceptance window. In the illustrative calculation of the
preceding section we have used wounded nucleons as sources.
However, it should be noted that the same expressions apply
if wounded quarks are connected to the decaying flux tubes.
The ATLAS experiment finds the 1/Nch scaling for the anm

coefficients [2], where Nch denotes the number of observed
charged hadrons, with approximately the same prefactor
for Pb-Pb, p-Pb, and p-p collisions when the short-range
correlations are removed (cf. Fig. 14 of Ref. [2]). If the scaling
between the number of sources and the multiplicity of charged
particles is linear,

N ∼ Nch, (18)

then the scaling anm ∝ 1/〈N〉 is transformed into the scaling
anm ∝ 1/〈Nch〉, exactly as observed in the experimental data.

We note that the proportionality (18), with N as the number
of wounded quarks, was checked [54,56] to hold well at the
RHIC energies. On the other hand, this proportionality does
not hold when N stands for the number of wounded nucleons.
Thus we conclude that Eq. (17) together with the experimental
1/Nch scaling for the anm coefficients conforms to the wounded
quark picture of the high-energy nuclear reactions.

B. Model vs data

We now pass to comparing our model results to the data.
Because the later ATLAS analysis [2] removes the short-
distance component from the correlation function with a rather
involved procedure, difficult to repeat in a model calculation,
we resort to the preliminary data from Ref. [1] for the pair of

FIG. 7. The anm coefficients evaluated in the model (open sym-
bols) and compared to the preliminary ATLAS data (filled symbols)
for the same-charge hadron pairs, takes from Fig. 7 of Ref. [1]
for Nch = 100–120. The experimental values of a11 were used to
determine the proportionality between 〈Nch〉 and the average number
of sources 〈N〉 for each reaction.

particles of the same charge. These correlation functions are
not strongly sensitive to resonance decays.

We can use the experimental values for the a11 coefficients
to fix the proportionality constant in Eq. (18). To reproduce the
data for a11 in Fig. 7 we have assumed that 〈Nch〉 = 4.7〈N+〉
for Pb-Pb collisions at 2.76 TeV, 〈Nch〉 = 5.1〈NA〉 for p-Pb
collisions at 5.02 TeV, and 〈Nch〉 = 8.1〈N+〉 for p-p collisions
at 13 TeV. These coefficients have the interpretation of the
average number of observed charged hadrons per source, and
have reasonable values. They roughly reflect the growth of the
multiplicity in p-p collisions with energy. Moreover, it should
be noted that the same multiplicity classes in different collision
systems correspond to a different percentile of the inelastic
cross section. In high multiplicity p-p events one triggers on
events with a higher multiplicity of hadrons per source. A
detailed description of the multiplicity classes would require a
Monte Carlo modeling and additional assumptions concerning
the distribution of sources and the number of charged particles
per source. These issues are outside the scope of the analytic
calculation presented in this paper.

We note from Fig. 7 that the higher-rank coefficients are
predicted to be significantly smaller than a11. Whereas the case
of Pb-Pb is well reproduced for higher n and m, the splitting
between Pb-Pb and p-Pb or p-p is too small. The higher-order
coefficients are expected to be more sensitive to the details
of production mechanism that are not taken into account in
our analytic calculation, such as a nonuniform distribution of
flux-tube ends, matter evolution in rapidity, difference between
rapidity and pseudorapidity, or hadronization effects. A strong
sensitivity of higher order anm coefficients to the details of the
dynamics was noticed in Ref. [8].

VI. FROM INITIAL STATE TO FINAL HADRONS

Our analytic model uses several simplifying assumptions.
We comment shortly about these issues and make an estimate
of the most important effect.

The dynamics of particle creation acts differently in
elementary collisions and in nuclear collisions. Hadronization
in a small system is severely constrained by the local energy
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and charge conservation requirement [61], which leads to
modifications of the correlation functions. Charge conserva-
tion generates a peak in the two-particle correlation as small
pseudorapidity separations [62]. The energy conservation in
the string fragmentation mechanism gives a reduction of the
emission probability for particles with similar rapidities. If
a large collectively expanding source is created, the energy
conservation effects are reduced. On the other hand, the
longitudinal expansion of the fireball may induce a rescaling
of the rapidity variable between the initial state and the
matter at freeze-out. This would lead to some reduction of
the correlation coefficients anm in the final state as compared
to the initial state.

The transformation from the density ρ(η1,η2) into observed
particles involves a hadronization mechanism. In elementary
processes, it could be modeled as string decay or quark
coalescence. In nuclear collisions, individual hadrons appear
at freeze-out through thermal emission from fluid elements. In
the first case, particle emission requires color and momentum
exchanges with the rest of the system to fulfill the local
conservation laws. In the case of the emission from a hot
fireball, hadron rapidities are washed out as compared to the
fluid rapidity from the thermal component in the momenta. A
similar washing out of the distribution is expected from the
decays of resonances.

Irrespective of the details of the mechanism of particle
production, the pseudorapidity distribution of the observed
particles is different than the two-particle density discussed
so far. The effects can be approximately estimated as a
convolution of the numerator of Eq. (1) with Gaussian form
factors,

Ssm(η1,η2) =
∫

dη′
1

∫
dη′

2g(η1,η
′
1)g(η2,η

′
2)S(η′

1,η
′
2), (19)

and similarly for the denominator B(η1,η2). We take the
following form of the smearing function:

g(η,η
′
) = 1√

2πση

e
− (η−η

′
)2

2σ2
η , (20)

with ση = 1, which corresponds to a rather large smearing
width of

√
2 for the difference η1 − η2. We notice from the

FIG. 8. Square root of the anm coefficients evaluated in the model
without smearing (filled symbols) and with a Gaussian smearing of
with ση = 1 (empty symbols). Pb-Pb collisions at 2.76 TeV, wounded
nucleon model with GLISSANDO, centrality c = 30%–40%.
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FIG. 9. Contribution to the correlation function CN (η1,η2) from
the resonance decays, reprinted from Fig. 2 of Ref. [22].

results shown in Fig. 8 that the smearing reduces the values
of the anm coefficients. As expected, the effect is stronger for
higher-rank coefficients.

Finally, resonance decays are a significant source of two-
particle correlations among produced hadrons of opposite
charge. In Fig. 9 we recall the result of our analysis of Ref. [22]
carried out in the wounded nucleon model without fluctuating
ends. Comparing Fig. 9 to Fig. 3, we note a significant relative
size of the component from resonance decays.

VII. CONCLUSIONS

The mechanism of energy deposition and particle cre-
ation in high-energy collisions in the longitudinal direction
was a subject of many recent studies. In this paper, we
have investigated the two-particle correlations in rapidity as
measured by the ATLAS Collaboration [1,2]. A nice aspect
of the proposed correlation measures is that they may be
obtained analytically in a simple model based on independent
longitudinally extended sources. Our model exemplifies the
most important characteristics of a broad class of realistic
models based on the decays of strings or flux tubes, while
remaining simple enough to allow for the derivation of analytic
formulas for the correlation function and for the coefficients
of its expansion in orthogonal polynomials.

Our model of the initial energy (or entropy) deposition from
flux tubes is a mechanism describing the formation of the
initial state in the collisions, with the distribution involving
two-particle correlations. The model was shown previously
to describe fairly well the decorrelation of the harmonic
flow event planes at different pseudorapidities, also in p-Pb
collisions [32]. The correlations in the energy deposition
from the early stage of the collision can be transmitted into
final hadron distribution via different scenarios. In elementary
collisions, the flux tubes decay directly into hadrons at
hadronization, with subsequent resonance decays. In nuclear
collisions (or, perhaps, highest-multiplicity p-p collisions), a
fireball is formed that expands collectively and hadrons are
emitted at freeze-out. To a good approximation, our analysis
applies to both scenarios, as the hydrodynamic evolution of
the fireball in the longitudinal direction for central rapidities
is moderate.
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The flux tubes are formed independently from one another
from excited color charges in the target and the projectile. Our
model explicitly reveals the two basic mechanism of generat-
ing fluctuations in rapidity: First, an event-by-event asymmetry
of the number of excited charges in the target and projectile
leads to event-by-event fluctuations of the density and gives a
correlation function of the form C(η1,η2) = 1 + Aη1η2 + · · · ,
as already noticed by Bzdak and Teaney [4]. The second
mechanism originates from the random positions in rapidity
of the end points of the decaying sources (length fluctuations).
We find that this effect generates the dominant contribution
to the correlation function, roughly two times larger than
the Bzdak-Teaney term. Both terms scale approximately as
1/〈N〉, i.e., are inversely proportional to the number of sources.
With the feature that the number of sources is proportional to
the final multiplicity of charged hadrons, the model explains
the experimental observation of a similar value of the a11

coefficients in different systems at the same multiplicity [2],
as well as its 1/〈Nch〉 scaling,

Our analytic expressions for the correlation function and
the anm coefficients display the dependence on statistical
measures of the sources and the overlaid distribution, on the
assumed model of the end-point fluctuation, on the width of
the experimental acceptance window in pseudorapidity, and on
the indices n and m. One should bear in mind that the derived
formulas are modified by a number of omitted and potentially
relevant effects, in particular hadronization and resonance
decays. We have crudely estimated these effects by smearing
the correlation function with Gaussian form factors, which
leads to a sizable reduction of the anm coefficients, stronger
for larger n and m. Our smearing procedure may be thought
of as a way to remove some of the short-distance correlations.
The resonance decays, analyzed via numerical simulations
in Ref. [22], form a significant explicit contribution to the
correlation function. It may be significantly reduced when the
correlations of pairs of the same charge are considered.

Although the formulas derived in this paper are specific
to the assumptions listed in Sec. III, the applied formalism
may be straightforwardly adopted to other cases where the
assumptions are modified. For instance, one might include
the contribution from binary collisions, providing another
term proportional to 〈NANB〉, or use different models of
microscopic correlations.
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APPENDIX A: DERIVATION OF C(η1,η2) IN THE
LONGITUDINALLY EXTENDED SOURCE MODEL

Our model assumes independent production of entropy
in the initial stage of the collision from the longitudinally
extended. As in the spirit of the wounded nucleon or wounded
quark models the strings are associated with the A or B nuclei,
for the event-by-event averaged one-body density we simply

have

〈ρ(η)〉 = 〈NA〉〈fA(η)〉 + 〈NB〉〈fB(η)〉, (A1)

where fA,B(η) are the longitudinal emission profiles. Equa-
tion (A1) finds a remarkable phenomenological support in the
analysis of d-Au collisions at RHIC [41], followed with an
extension to AA collisions [5,45,46].

For the two-body density the extension is straightforward,
with very simple combinatorics. The production of entropy
at η1 and η2 may occur from the same string, whence it is
correlated and described with the distribution fA,B(η1,η2), or
it may come from different strings, thus is uncorrelated and the
distribution is a product of two one-body functions fA,B(η1)
and fA,B(η2). Furthermore, the strings may may be associated
with nucleus A or B. Collecting all possibilities we arrive
at the following expression for the event-averaged two-body
distribution:

〈ρ(η1,η2)〉
= 〈NA〉〈fA(η1,η2)〉 + 〈NA(NA − 1)〉〈fA(η1)〉〈fA(η2)〉

+ 〈NB〉〈fB(η1,η2)〉 + 〈NB(NB − 1)〉〈fB(η1)〉〈fB(η2)〉
+ 〈NANB〉[〈fA(η1)〉〈fB(η2)〉 + 〈fB(η1)〉〈fA(η2)〉].

(A2)

According to the above discussion, the first term corresponds
to the situation where both bins at η1 and η2 are fed from
the production from the same source associated with nucleus
A, the second term corresponds to production from two
different sources belonging to A [NA(NA − 1) is the number of
possible pairs], the third and fourth term describe the analogous
emission from the sources associated with B, and, finally,
the last term corresponds to the emission from one source
belonging to A and the other to B. The average one-body and
two-body emission profiles 〈fA,B(η)〉 and 〈fA,B(η1,η2)〉 are
constructed explicitly below in our specific model.

With a simple rearrangement one may rewrite Eq. (A2) in
the form,

〈ρ(η1,η2)〉
= 〈NA〉covA(η1,η2) + 〈

N2
A

〉〈fA(η1)〉〈fA(η2)〉
+ 〈NB〉covB(η1,η2) + 〈

N2
B

〉〈fB(η1)〉〈fB(η2)〉
+ 〈NANB〉[〈fA(η1)〉〈fB(η2)〉 + 〈fB(η1)〉〈fA(η2)〉],

(A3)

where

covi(η1,η2) = 〈fi(η1,η2)〉 − 〈fi(η1)〉〈fi(η2)〉, i = A,B.

(A4)

In the reference frame where the A and B nuclei move
with equal and opposite velocities, we may decompose the
emission profiles into parts symmetric and antisymmetric in
spatial pseudorapidity.

〈fA(η)〉 = 〈fs(η)〉 + 〈fa(η)〉, 〈fB(η)〉 = 〈fs(η)〉 − 〈fa(η)〉,
〈fs(η)〉 = 〈fs(−η)〉, 〈fa(η)〉 = −〈fa(−η)〉. (A5)
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Then, after elementary transformations,

C(η1,η2) = 1 + 1

[〈N+〉〈fs(η1)〉 + 〈N−〉〈fa(η1)〉][〈N+〉〈fs(η2)〉 + 〈N−〉〈fa(η2)〉] {〈NA〉covA(η1,η2) + 〈NB〉covB(η1,η2)

+ var(N+)〈fs(η1)〉〈fs(η2)〉 + var(N−)〈fa(η1)〉〈fa(η2)〉 + cov(N+,N−)[〈fs(η1)〉〈fa(η2)〉 + 〈fa(η1)〉〈fs(η2)〉]},
(A6)

where cov(N+,N−) = var(NA) − var(NB). For the special case of symmetric collisions, where 〈NA〉 = 〈NB〉 and var(NA) =
var(NB), Eq. (A6) simplifies into

C(η1,η2) = 1 + 1

〈N+〉2fs(η1)fs(η2)
{〈NA〉covA(η1,η2) + 〈NB〉covB(η1,η2)

+ var(N+)〈fs(η1)〉〈fs(η2)〉 + var(N−)〈fa(η1)〉〈fa(η2)〉}. (A7)

Another limiting case is for NA 	 NB , when

C(η1,η2) = 1 + 1

〈NA〉2〈fA(η1)〉〈fA(η2)〉 {〈NA〉covA(η1,η2) + var(NA)〈fA(η1)〉〈fA(η2)〉} + O(NB/NA). (A8)

A general remark may be made here. We note from
Eqs. (A6)–(A8) that the correlations originate from two kinds
of effects: the correlations from the emission off a single
source [the terms with covA,B(η1,η2)] and the fluctuations of
the numbers of sources (the terms with variances). Therefore,
as noticed already in Ref. [4], even if covA,B(η1,η2) = 0, we
have a nontrivial correlation function C(η1,η2).

APPENDIX B: FLUCTUATING ENDS

Białas-Czyż [41] have shown that d+Au collisions at RHIC
may be understood within the wounded nucleon model if the
average emission profiles have the form,

〈fA(η)〉 = h(η)t(η; yb), 〈fB(η)〉 = h(η)t(−η; yb), (B1)

where yb is a parameter of the order of the rapidity of the beam,

t(η; yb) =

⎧⎪⎨
⎪⎩

0 for η < −yb

yb+η
2yb

for − yb � η � yb

1 for yb < η

, (B2)

and h(η) is a suitable chosen function, symmetric in η, which
turns out to be flat near the origin [63],

h(η) � const for − 2.4 < η < 2.4, (B3)

at the LHC collision energies [as we work up to a multiplicative
constant, we may take h(η) = 1]. Note the presence of the
antisymmetric part in t(η; yb) which describes the fact that
the source from A deposits entropy mostly forward, and the
source from B mostly backward in η. Parametrization (B1)
was later used in numerous papers [64] as a working model
for the initial distributions.

We now step up in the model building and investigate
models where the sources have randomly distributed ends. The
constraint is that they must reproduce the phenomenologically
successful Eq. (B1).

1. Single-end fluctuations

We consider first a simple model where the source has
one end attached to the nucleus A or B (it is placed at

pseudorapidity yb or −yb, respectively), and the other end
is fluctuating from source to source in the range [−yb,yb]. We
assume a uniform production of entropy from a source with a
random end point y, i.e.,

fA(η; y) = θ (y < η < yb),
(B4)

fB(η; y) = θ (−yb < η < y),

where θ is a step function equal 1 when the argument is true,
and 0 otherwise. The random end y is generated according
to a suitably chosen distribution g(y). Averaging over events
involves averaging over y, therefore

〈fA(η)〉 =
∫ yb

−yb

dy g(y)fA(η; y)

=
∫ η

−yb

dy g(y) = G(η) − G(−yb),

(B5)

〈fB(η)〉 =
∫ yb

−yb

dy g(y)fB(η; y)

=
∫ yb

η

dy g(y) = G(yb) − G(η),

with G′(y) = g(y). Therefore, to match to Eq. (B1) we must
simply take for the length distribution function,

g(y) = d/dy〈fA(y)〉 = −d/dy〈fB (y)〉. (B6)

Because in the experimental coverage of the ATLAS
experiment [2] h(η) is flat within the range of Eq. (B3) [we
may take h(η) = 1 as normalization is not relevant], we find

g(y) = 1

2yb

, (B7)

i.e., a uniform distribution of the end point, valid in the central
pseudorapidity region.
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FIG. 10. The covariance from single-end fluctuations, Eq. (B10).

The length fluctuations induce correlations, as we have

〈fA(η1,η2)〉 =
∫ yb

−yb

dy g(y)fA(η1; y)fA(η2; y)

=
∫ min(η1,η2)

−yb

dy g(y) = 〈fA(min(η1,η2))〉,

〈fB(η1,η2)〉 =
∫ yb

−yb

dy g(y)fB(η1; y)fB (η2; y)

=
∫ yb

max(η1,η2)
dy g(y) = 〈fB(max(η1,η2))〉. (B8)

In the central region with Eq. (B7) we have

〈fA(η1,η2)〉 = t[min(η1,η2)],

〈fB(η1,η2)〉 = t[−max(η1,η2)]. (B9)

Consequently, we find

covA(η1,η2) = covB(η1,η2) = y2
b − η1η2 − yb|η1 − η2|

4y2
b

,

(B10)

where we have used max(a,b) = (a + b + |a − b|)/2 and
min(a,b) = (a + b − |a − b|)/2. Formula (B10) is illustrated
in Fig. 10.

Note that we have obtained correlation, although the
emission was independent in the sense that we have used
the product fi(η1; y)fi(η2; y) in the integrand in Eq. (B8).
The correlation is from the common limit on emission of both
particles from the fluctuating end point y.

We also remark that the assumed formula (B2) simul-
taneously fixes the symmetric and antisymmetric parts in
Eq. (A5). In a more general situation this need not be the case,
for instance, we might have a larger symmetric component,
replacing

t(η; yb) → t(η; yb) + α, (B11)

where α > 0. The presence of an extra symmetric component
would reduce the correlations coming from the fluctuating end
points, because fs(η1)fs(η2) appears in the denominator of
C(η1,η2).

FIG. 11. The covariance from double-end fluctuations, Eq. (B15).

2. Double-end fluctuations

The derivation of the previous section may be straightfor-
wardly extended to the case where both ends fluctuate. Then

fA(η; y1,y2) = θ (y1 < η < y2), (B12)

and

〈fA(η)〉 =
∫ yb

−yb

dy1 g1(y1)
∫ yb

−yb

dy2 g2(y2)fA(η; y1,y2)

=
∫ η

−yb

dy1 g1(y1)
∫ yb

η

dy2 g2(y2)

= [G1(η) − G1(−yb)][G2(yb) − G2(η)] (B13)

[similar expressions hold for 〈fB(η)〉]. In the present case,
in general, we cannot uniquely obtain G1(y) and G2(y) by
matching to 〈fA(y)〉. However, in the case where one end of
the source is close to the fragmentation region (as expected of
wounded quarks, for example), its fluctuations do not enter the
central region (B3) and effectively, for that domain, we get the
model with single-end fluctuations of Appendix B 1.

In the special case where both end points fluctuate uni-
formly, we get from Eq, (B13) the symmetric component,

fs(η) = y2
b − η2

4y2
b

, (B14)

as well as the contribution to the covariance,

covi(η1,η2) = y2
b − min(η1,η2)2

4y2
b

− y2
b − η2

1

4y2
b

y2
b − η2

2

4y2
b

.

(B15)

Equation (B15) is illustrated in Fig. 11. We note that the shape
of the obtained covariance is qualitatively similar to the case
of Fig. 10, with the size smaller by 25%, and a faster fall-off
in |η1 − η2| for the case of double-end fluctuations.

APPENDIX C: FLUCTUATING STRENGTH

In Glauber-like models, a common ingredient is the
overlaid distribution, i.e., on top of the sources we superpose
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a random distribution [60]. This describes the possibility
that the sources may have randomly varying strength. The
superposition is necessary to properly describe the multiplicity
distributions of produced hadrons when the conventional
Glauber model is used [42].

In our framework, for the model with single-end fluctua-
tions, the fluctuating strength is incorporated as a generaliza-
tion of Eq. (B4), namely

fA(η; y) = ωθ (y < η < yb),
(C1)

fB(η; y) = ωθ (−yb < η < −y),

where ω is a random variable giving the strength of the
source. With these extra fluctuations we have the following
generalization of Eqs. (B5) and (B10):

〈fA,B (η)〉 = 〈ω〉t(±η; yb),

covA,B(η1,η2) = 〈ω2〉y
2
b − η1η2 − yb|η1 − η2|

4y2
b

+ var(ω)
y2

b + η1η2 ± yb(η1 + η2)

4y2
b

. (C2)

The formulas for the correlation functions are given in
Eqs. (10)–(12). For the marginal projections of Eq. (3) we

find for the symmetric case,

Cp(η) = 1 + var(N+)

〈N+〉2
+ s(ω)

〈N+〉

+ r[1 + s(ω)]
(2yb − Y )Y − η2

2〈N+〉ybY
, (C3)

and for the asymmetric case,

Cp(η) = 1 + var(NA)

〈NA〉2
+ s(ω)

〈NA〉

+ r[1 + s(ω)]
η(yb − Y ) + yb(η + yb) log

(
Y+yb

η+yb

)
〈NA〉(η + yb)Y

,

(C4)

where r is defined above Eq. (9).

APPENDIX D: GAUSSIAN SMEARING

The application of the Gaussian smearing procedure of
Eq. (19) is very simple for the considered model. In the
numerator of C(η1,η2) it amounts to replacing

|η1 − η2| → 2σηe
− (η1−η2)2

4σ2
η

√
π

+ (η1 − η2) erf

(
η1 − η2

2ση

)
, (D1)

with the other terms (η1,η2,η1η2) unchanged.
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Phys. Polon. B 8, 855 (1977).
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