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Proposal of a directly measurable parameter quantifying the halo nature of one-neutron nuclei
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We propose a measurable parameterH quantifying the halo nature of one-neutron halo nuclei (a) and investigate
the properties of H, assuming the core + neutron (c + n) model for a. The parameter H is defined by H =
[σabs(a) − σabs(c)]/σabs(n) with directly measurable absorption cross sections σabs of a, c, and n scattering at the
same incident energy per nucleon. It varies with the one-neutron separation energy Sn in a range of 0 � H � 1,
and the halo structure is most developed when H = 1. This situation is realized only for s-wave halo nuclei in
the Sn = 0 limit. We consider 11Be and 15,19C as s-wave halo nuclei, 31Ne and 37Mg as p-wave halo nuclei, and
17C as an example of d-wave nonhalo nuclei. For each of halo nuclei, the value of H is deduced at a measured Sn

from measured total reaction cross sections for c, n, and a scattering at intermediate and high incident energies
where projectile breakup effects are negligible. The location of the resulting (Sn,H) is plotted in the Sn-H plane.
The empirical values of H at the measured Sn are extrapolated to small Sn with model calculations based on the
eikonal + adiabatic approximation. In the Sn-H plane, the model lines are well separated into three groups of
s-wave halo, p-wave halo, and d-wave nonhalo particularly in the vicinity of Sn = 0, and the s-wave halo lines
are always above the other lines, since only the s-wave halo lines can reach a point (Sn,H) = (0,1) independently
of the concrete form of the interaction between c and n. The relation among the three kinds of lines may be
universal for any halo nucleus with small Sn. The point (Sn,H) = (0,1) can be regarded as a scale-invariant
point in the sense that the z-integrated neutron density characterizing halo structure is invariant under the scale
transformation there.
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I. INTRODUCTION

Neutron-rich nuclei near the neutron dripline have exotic
properties not seen in stable nuclei because of the weak-
binding nature. In particular, some nuclei have the halo
structure in which a core nucleus is surrounded by a so-called
halo of orbiting extra neutron(s). For example, 11Be and
15,19C are s-wave one-neutron halo nuclei [1–4], while 6He,
11Li, 14Be, and 22C are Borromean nuclei with two-neutron
halos [5–8]. The halo structure was first discovered by Tanihata
et al. through a sudden enhancement in measured interaction
cross sections σI for lighter isotopes [1,5]. After that, σI and
total reaction cross sections σR were systematically measured
to find halo nuclei [9,10]. Very recently, the measurements
were done for relatively heavier nuclei like Ne and Mg
isotopes [11,12], and it was reported in Refs. [11–15] that 31Ne
and 37Mg are p-wave one-neutron halo nuclei. The sudden
enhancement of measured σR is a good indicator of finding
of halo nuclei experimentally, but the relation between the
enhancement and the binding energy (ε) of halo nucleon is not
well understood, particularly in the vicinity of ε = 0, as shown
below.

Let us discuss the relation for one-neutron halo nuclei. The
halo nuclei (a) are described by the core + nucleon (c + n)
two-body model, and the scattering of a from a target T is well
explained by the c + n + T three-body model. The three-body
system is illustrated in Fig. 1. We assume that the projectile
(a = c + n) has no bound excited state in order to simplify
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our discussion. The total reaction cross section σR(a) for a +
T scattering is related to the corresponding absorption cross
section σabs(a) as

σR(a) = σabs(a) + σbr(a). (1)

In σabs(a), n and/or c are absorbed into T, and in the
elastic-breakup cross section σbr(a), the projectile a is broken
up into c and n with no excitation of T; see, for example,
Refs. [16–18] for the derivation of Eq. (1). For incident
energies higher than 80 MeV/nucleon and lighter targets
like 12C, projectile breakup effects on σR are small. In fact,
this was confirmed by the continuum-discretized coupled-
channels method (CDCC) [19–21] for 31Ne +12C at Ein/AP =
240 MeV [13] and for 15C +12C scattering at Ein/AP =
83 MeV [22]. For the scattering, we can identify measured
σR(a) with σabs(a) and can determine the matter radius r̄a of a
from measured σR(a) by assuming the black-sphere scattering:

σR(a) ≈ σabs(a) ∝ π [r̄a + r̄T]2. (2)

Note that the matter radius r̄T of T is known. The radii r̄a and r̄T

are the root mean square (rms) matter radii: r̄a =
√

〈r2〉a and
r̄b =

√
〈r2〉T. It is well known that 〈r2〉a is divergent for s- and

p-wave one-neutron halo nuclei with zero binding energy [23].
If this result is simply applied to Eq. (2), one can reach the
conclusion that σabs(a) diverges. However, this conclusion is
not true, as clarified below.

Glauber showed that the absorption cross section σabs(d)
of deuteron (d) scattering is smaller than the sum of the
absorption cross sections, σabs(p) and σabs(n), of proton (p)
and neutron (n) scattering [24]: σabs(d) < σabs(p) + σabs(n).
He considered high-energy nucleon-deuteron scattering as a
concrete example. In his calculation, he took the eikonal and

2469-9985/2016/93(6)/064609(10) 064609-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.93.064609


YAHIRO, WATANABE, TOYOKAWA, AND MATSUMOTO PHYSICAL REVIEW C 93, 064609 (2016)

Target (T)

FIG. 1. Three-body system.

adiabatic approximations and assumed

ρd (r) = (
4πr2

0

)−1
δ(|r| − r0), (3)

for the deuteron density ρd , where r denotes the separation
of two nucleons and r0 means the range of ρd (r). He showed
that Eq. (3) is a rather good approximation for high-energy
nucleon-deuteron scattering. Taking the same procedure for
the scattering of one-neutron halo nucleus (a = c + n), one
can get

σabs(a) ≈ σabs(c) + σabs(n) − 〈r−2〉
2π

σabs(c)σabs(n), (4)

where σabs(P) denotes an absorption cross section for a
projectile P(=a,c,n), r stands for the separation between n and
c, and 〈r−2〉 means the expectation value of an operator r−2

for the ground state φ(r) of the c + n system. The formula (4)
shows that σabs(a) has an upper bound σabs(c) + σabs(n); i.e.,
the enhancement of σabs(a) from σabs(c) has an upper bound
σabs(n). This is an interesting result, but the accuracy of Eq. (4)
should be checked. In particular, it should be investigated
whether the assumption

ρ(r) = (
4πr2

0

)−1
δ(|r| − r0) (5)

for the neutron density ρ(r) is valid.
In this paper, we first propose a parameter H quantifying

the halo nature of one-neutron halo nuclei a, assuming the
c + n model for a. The halo parameter

H = σabs(a) − σabs(c)

σabs(n)
(6)

represents an enhancement of σabs(a) from σabs(c) relative to
σabs(n) and is a function of one-neutron separation energy Sn.
The relation between H and Sn is clarified both analytically
and phenomenologically, particularly in the vicinity of Sn = 0.
In the c + n two-body model, the neutron binding energy ε is
often identified with Sn. We take the same assumption also in
this paper.

Applying the eikonal + adiabatic approximation for a + T
scattering, we will show the inequality

σabs(c) � σabs(a) � σabs(c) + σabs(n), (7)

and prove that the upper bound of σabs(a) is realized only
for s-wave halo nuclei in the Sn = 0 limit, independently of
the concrete form of the interaction V (r) between n and c.
Equation (7) shows that H can vary with Sn in a range of
0 � H � 1.

As a similar concept of H, the parameter P was introduced
in Ref. [23] to estimate the probability of finding a halo neutron
beyond the range of the potential between c and n. The P is
defined as

P = O

I + O
(8)

with

I =
∫ rb

0
R(r)r2dr, (9)

O =
∫ ∞

rb

R(r)r2dr (10)

for the radial wave function R(r), where rb is the border
parameter between the inner and outer regions of the potential.
The probability parameter P is easy to understand, but cannot
be measured directly. Meanwhile,H corresponds to the ratio of
a cross section of a extra neutron existing beyond the effective
range of σabs(c) into σabs(n). The parameters P and H are
conceptually close to each other. However, as an important
advantage of H compared to P , the parameter H is directly
measurable, since so are the cross sections. We can then discuss
the behavior of H by comparison with the experimental data
as shown below.

We consider 11Be and 15,19C as s-wave halo nuclei, 31Ne
and 37Mg as p-wave halo nuclei, and 17C as an example of
d-wave nonhalo nuclei. For each a, we deduce an empirical
value of H at the measured value of Sn from measured σR(a),
σR(c), and σR(n) at intermediate and high energies, in which σR

can be regarded as σabs since σbr is negligibly small compared
with σR. The location of (Sn,H) thus obtained is plotted in the
Sn-H plane. The empirical values of H at the measured Sn

are extrapolated to the vicinity of Sn = 0 with the c + n + T
model. We show that only the s-wave halo lines can reach a
point (Sn,H) = (0,1) in the Sn-H plane, independently of the
concrete form of V (r). As a result of this property, in the Sn-H
plane, the s-wave halo lines are always above the p-wave halo
and d-wave nonhalo lines at least in Sn < 1 MeV. Particularly
in the vicinity of Sn = 0, the lines are well separated into three
groups of s-wave halo, p-wave halo, and d-wave nonhalo.
This property may be universal for any a. We also show that
the point (Sn,H) = (0,1) can be regarded as a scale-invariant
point, since the z-integrated neutron density characterizing
halo structure is invariant under the scale transformation there.

In the Sn = 0 limit, it is well known that 〈r2〉 is divergent
for s- and p-wave halos [23]. This result is independent of
the concrete form of V (r). Meanwhile, 〈r−2〉 is zero only
for s-wave halos in the limit, as shown later. This result
is also independent of the concrete form of V (r). These
interesting properties are understood from the viewpoint of
scale invariance.

We derive the Glauber formula (4) with an approximation
more reasonable than Eq. (5), and show from the viewpoint
of scale invariance that the Glauber formula is valid only for
s-wave halos in the vicinity of Sn = 0.

In Sec. II A, Eq. (7) is derived with the eikonal and
adiabatic approximations. In Sec. II B, it is proven that H = 1
is realized only for s-wave halos with no binding energy. In
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Sec. II C, we investigate properties of physical quantities in
the Sn = 0 limit from the viewpoint of scale invariance. In
Sec. III, the location of s-wave halo, p-wave halo, and d-wave
nonhalo nuclei is plotted in the Sn-H plane. The empirical
points are extrapolated to the vicinity of Sn = 0 with the
c + n + T model. The validity of the Glauber formula (4) is
also investigated. Section IV is devoted to a summary.

II. THEORETICAL ANALYSES

A. Absorption cross section

We consider the three-body system composed of a core
nucleus (c) of mass mc, a neutron (n) of mass mn, and a target
nucleus (T) of mass mT. The three-body system is illustrated
in Fig. 1; here, R = (B,Z) stands for the coordinate of a
projectile (a = c + n) from T, while r = (b,z) corresponds to
the coordinate of n from c.

Using the eikonal + adiabatic approximation [25], one
can describe the absorption cross section σabs(a) for a + T
scattering as [26–28]

σabs(a) =
∫

d B
[

1 −
∫

d r|ScSn|2ρ(r)

]
(11)

with the S matrices of c + A and n + A scattering

Sc(bc) = exp

[
1

i�v

∫ ∞

−∞
dzcUc(rc)

]
, (12)

Sn(bn) = exp

[
1

i�v

∫ ∞

−∞
dznUn(rn)

]
, (13)

and the neutron density

ρ(r) = 1

2� + 1

∑
m

∣∣∣∣u�(r)

r
Y�m(r̂)

∣∣∣∣
2

= 1

4π

∣∣∣∣u�(r)

r

∣∣∣∣
2

, (14)

where φ�m(r) = u�(r)Y�m(r̂)/r is the normalized ground-state
wave function of the c + n subsystem with the angular
momentum � and its z component m, and rc = R − mnr/ma

and rn = R + mcr/ma for ma = mc + mn. Here, Ux(rx) is the
optical potential between x(=c,n) and T, and rx = (bx,zx) is
the coordinate between x and T. The velocity v is related to the
incident energy Ein in the laboratory system as Ein = mav

2/2,
since the present model is formulated under nonrelativistic
kinematics. For x + T scattering with the same v as a + T
scattering, the reaction and absorption cross sections, σR(x)
and σabs(x), are obtained by

σR(x) = σabs(x) =
∫

dbx[1 − |Sx(bx)|2]. (15)

Note that the incident energies per nucleon are common among
a, n, and c scattering.

Using the identity

1 − |Sc|2|Sn|2 = (1 − |Sc|2) + (1 − |Sn|2)

− (1 − |Sc|2)(1 − |Sn|2), (16)

one can easily show from Eqs. (11) and (15) that

σabs(a) = σabs(c) + σabs(n) − 	 (17)

for

	 =
∫

dbn(1 − |Sn(bn)|2)
∫

dbρ̄(b)(1 − |Sc(bc)|2) (18)

with the z-integrated neutron density

ρ̄(b) =
∫ ∞

−∞
dzρ(r) = 1

4π

∫ ∞

−∞
dz

∣∣∣∣u�(r)

r

∣∣∣∣
2

. (19)

The optical potential Ux(rx) has a finite range νx , and hence the
b integration in Eq. (18) has an upper bound bmax ∼ νc + νn.
Thus, 	 is determined by ρ̄(b) in a finite range 0 � b � bmax.
Inserting Eq. (17) into (6) leads to

H = σabs(n) − 	

σabs(n)
. (20)

This indicates that H is sensitive to ρ̄(b). Ein dependence
of H is almost canceled between the numerator and the
denominator, so that H little depends on Ein, as shown in
Sec. III C.

Because of 	 � 0, we have the inequality

σabs(a) � σabs(c) + σabs(n). (21)

The equality is realized only for s-wave halos in the zero-
binding limit, as shown in Sec. II B.

Because of 0 � |Sn|2 � 1, we have the inequality

1 − |Sc|2 � 1 − |Sc|2|Sn|2. (22)

Using Eq. (22) in Eq. (11) and making the variable trans-
formation from B to bc, one can obtain the lower bound of
σabs(c),

σabs(c) � σabs(a), (23)

where c is assumed to be inert. The equality σabs(a) = σabs(c)
is realized for example for a proton target in lower-incident
energy, since Un is a nucleon-nucleon potential with no
imaginary part. If σabs(a) < σabs(c), it means that c is shrunk
by an extra neutron (n). Such an effect is seen for isotopes 16C
and 32Ne next to halo nuclei 15C and 31Ne [22,29]. However,
this effect is considered to be small for halo nuclei themselves,
since n is far from c. Combining Eq. (23) with Eq. (21) leads
to Eq. (7).

Particularly at b = 0, ρ̄(b) is related to the expectation value
〈r−2〉 for the ground state as

ρ̄(0) =
∫ ∞

−∞
dzρ(z) = 1

2π

∫ ∞

0
dr

∣∣∣∣u�(r)

r

∣∣∣∣
2

= 1

2π

∫
d r

∣∣∣∣u�(r)

r
Y�m(r̂)

∣∣∣∣
2 1

r2
= 1

2π
〈r−2〉. (24)

If ρ̄(b) has no b dependence in a range of 0 � b � bmax, 	
becomes

	 ≈ 1

2π
〈r−2〉σabs(c)σabs(n). (25)

Thus we can obtain Eq. (4) without the approximation (5).
However, the b dependence of ρ̄(b) is not negligible in a range
of 0 � b � bmax, as shown later in Sec. III. An exception is s-
wave halos in the zero-binding limit. In this case, ρ̄(b) vanishes
for any value of b; see Sec. II B for the proof. Equation (4) is
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thus useful for s-wave halos in the vicinity of the weak-binding
limit.

B. Halo state in the weak-binding limit

For later convenience, we consider the unnormalized
ground-state wave function ũ�(r) of the c + n system. It is
governed by the Schrödinger equation(

− �
2

2μ

d2

dr2
+ �

2

2μ

�(� + 1)

r2
+ V (r)

)
ũ�(r) = −εũ�(r) (26)

with the reduced mass μ = mnmc/(mn + mc) and a nuclear
potential V (r). Here we assume that V (r) has a finite range rv

and then V (r) = 0 at r � rm for a value rm somewhat larger
than rv.

We start with the case of � = 0. The magnitude of ũ0(r) is
set to 1 at r = rm, and ũ0(r) is divided into the internal wave
function ũint

0 (r) in a range of 0 � r < rm and the external one

ũext
0 (r) = exp (−κr)

exp (−κrm)
(27)

in a range of r � rm. The norm F0 of ũ0(r) is obtained by

F0 =
∫ ∞

0
dr|ũ0(r)|2 = F int

0 + F ext
0 (28)

with

F int
0 =

∫ rm

0
dr

∣∣ũint
0 (r)

∣∣2
, (29)

F ext
0 =

∫ ∞

rm

dr
∣∣ũext

0 (r)
∣∣2 = 1

2κ
. (30)

Obviously, F int
0 is finite for any κ , but F ext

0 diverges at κ = 0.
Using ũ0(r) and F0, one can get

ρ̄(b) = 1

4πF0

∫ ∞

−∞
dz

∣∣∣∣ ũ0(r)

r

∣∣∣∣
2

. (31)

In Eq. (31), the z integration is finite even in the limit of κ = 0,
because of the factor 1/r2. Hence, ρ̄(b) is zero in the κ = 0
limit for any b, since F ext

0 diverges in the limit. Therefore, 〈r−2〉
and 	 become zero in the limit; note that ρ̄(b) contributes to
	 only in a finite range of 0 � b � bmax. This result does not
depend on the concrete form of V (r), as far as it is short ranged.
The equality in Eq. (21) is thus realized for s-wave halos with
zero binding energy. This is true not only for a lowest-energy
state but also for excited states, if the binding energy is zero. In
fact, for the case of 11Be, the 0s state is a forbidden state, and
the 1s state is the ground state with a small binding energy. The
equality in Eq. (21) is realized also for the case of a deformed
core nucleus, if the last neutron is dominated by the s-wave
component in the weak binding limit [30].

Next we consider the case of � � 1. Again, we consider
the unnormalized wave function ũ�(r) that is 1 at r = rm. The
wave function can be divided into the internal part ũint

� (r) at
0 � r < rm and the external part

ũext
� (r) = iκrh

(1)
� (iκr)

iκrmh
(1)
� (iκrm)

(32)

at r � rm, where h
(1)
� (x) is the spherical Hankel function of

the first kind. The norm F� of ũ�(r) is given by

F� =
∫ ∞

0
dr|ũ�(r)|2 = F int

� + F ext
� (33)

with

F int
� =

∫ rm

0
dr

∣∣ũint
� (r)

∣∣2
(34)

and

F ext
� =

∫ ∞

rm

dr
∣∣ũext

� (r)
∣∣2 → rm

2� − 1
(35)

for κrm 	 1, because of

ũext
� (r) →

(
rm

r

)�

(κr 	 1). (36)

The z-integrated neutron density is described by

ρ̄(b) = 1

4πF�

∫ ∞

−∞
dz

∣∣∣∣ ũ�(r)

r

∣∣∣∣
2

. (37)

In the κ = 0 limit, F� is finite in Eq. (37), so that ρ̄(b), 〈r−2〉,
and 	 become finite.

C. Scale invariance

As shown in Sec. II B, ρ̄(b), 〈r−2〉, and 	 are zero for
s-wave halos with zero binding energy. This result does not
depend on the concrete form of V (r). Similarly, it is well
known that 〈r2〉 is divergent for s- and p-wave halos with
zero binding energy, independently of the concrete form of
V (r) [23]. In this subsection, we consider these properties
from the viewpoint of scale invariance, since it is shown as an
important result of the nuclear effective field theory that scale
invariance is an essential concept in the limit of ε = 0 [31].

We then perform the scale transformation r → λr in the
Schrödinger equation (26) and multiply the resulting equation
by a factor λ2:(

− �
2

2μ

d2

dr2
+ �

2

2μ

�(� + 1)

r2
+ λ2V (λr)

)
ũ�(λr)

= −�
2(λκ)2

2μ
ũ�(λr), (38)

where λ is a positive number. Equation (38) shows that ũ�(λr)
is an eigenstate generated by a potential λ2V (λr) and the
binding energy is ε = (�λκ)2/(2μ). We now consider the
following scale transformation

ũ�(r) → ũ�(λr), V (r) → λ2V (λr), κ → λκ (39)

instead of the original one r → λr , where note that r is not
scaled in the new scale transformation (39). Particularly in the
κ = 0 limit of our interest, ũ�(λr) is an eigenstate with ε = 0
for any λ. In other words, once V (r) generates an eigenstate
with ε = 0, the scaled potential λ2V (λr) can do so for any
λ. Thus, there are an infinite number of potentials generating
eigenstates with ε = 0.

The range of λ2V (λr) is rv/λ. Hence one should divide
ũ�(λr) into the internal part ũint

� (λr) at r < rm/λ and the
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external one ũext
� (λr) at r � rm/λ. The Schrödinger equation

for the external part is

(
− �

2

2μ

d2

dr2
+ �

2

2μ

�(� + 1)

r2

)
ũext

� (λr) = 0 (40)

in the zero-binding limit. The kinetic operator does not include
any λ. This means that we can derive a λ-independent external
wave function Iext

� (r) by multiplying ũext
� (λr) by a λ-dependent

factor. This will be done below. If the expectation value
of an operator is determined only from Iext

� (r) and thereby
independent of λ2V (λr), the value is obviously scale invariant.
Therefore, if the expectation value of some operator does not
depend on the concrete form of V (r), the expectation value is
scale invariant.

The scaled wave function ũ�(λr) is 1 at r = rm/λ, because

ũext
� (λr) = iκλrh

(1)
� (iκλr)

iκrmh
(1)
� (iκrm)

(41)

at r � rm/λ. The external wave function ũext
� (λr) tends to

[rm/(λr)]� in the κ = 0 limit. If we consider I�(r) = λ�ũ�(λr)
in the limit, the external part Iext

� (r) = λ�ũext
� (λr) = (rm/r)�

becomes independent of λ (scale invariant), although the
internal part I int

� (r) = λ�ũint
� (λr) does not. Thus, the fact that

physical quantities are independent of the concrete form of
V (r) in the κ = 0 limit means that the quantities are scale
invariant in the limit.

Let us consider a dimensionful operator rn for n being −2
or a positive integer, and calculate the expectation value 〈rn〉λ
with the ground-state wave function λ�ũ�(λr)Y�m(r̂)/r . For
finite κ , the value is finite and has the relation

〈rn〉λ =
∫ ∞

0 drλ2�|ũ�(λr)|2rn∫ ∞
0 drλ2�|ũ�(λr)|2 = λ−n〈rn〉, (42)

where 〈rn〉 denotes the expectation value at λ = 1. The rela-
tion (42) is true also in the κ = 0 limit. Thus, the expectation
value of dimensionful operator becomes scale variant, when
the value is finite. In other words, scale invariance is realized
only when the value is either zero or infinity. Therefore,
when the expectation value of dimensionful operator is scale
invariant in the κ = 0 limit and hence becomes independent
of the concrete form of V (r), the value becomes either zero or
infinity.

Now we explicitly evaluate the scaled expectation values
〈r−2〉λ and 〈r2〉λ and the scaled neutron density ρ̄λ(b). Since
the overall factor λ� of the wave function λ�ũ�(λr)Y�m(r̂)/r
does not affect the values, we consider ũ�(λr)Y�m(r̂)/r for
simplicity.

Making the same discussion as in Sec. II B, one can obtain
the norm F0(λ) = F int

0 (λ) + F ext
0 (λ) with

F int
0 (λ) =

∫ rm/λ

0
dr

∣∣ũint
0 (λr)

∣∣2 = F int
0 (1)

λ
, (43)

F ext
0 (λ) =

∫ ∞

rm/λ

dr
∣∣ũext

0 (λr)
∣∣2 = 1

2κrm

rm

λ
(44)

for � = 0. As for � � 1, we have the norm F�(λ) = F int
� (λ) +

F ext
� (λ) with

F int
� (λ) =

∫ rm/λ

0
dr

∣∣ũint
� (λr)

∣∣2 = F int
� (1)

λ
, (45)

F ext
� (λ) =

∫ ∞

rm/λ

dr
∣∣ũext

� (λr)
∣∣2 → rm

λ(2� − 1)
(46)

for κrm 	 1.
For s-wave halos in the limit of κ = 0, F ext

0 diverges
independently of λ, so that

ρ̄λ(b) = 1

4πF0(λ)

∫ ∞

−∞
dz

∣∣∣∣ ũ0(λr)

r

∣∣∣∣
2

= 0 (47)

for any finite λ and b, where we note that the κ = 0 limit
is taken after the z integration. Equation (47) is true also for
infinite b, as shown in the Appendix. Consequently, ρ̄(b) and
〈r−2〉 = 2πρ̄(0) are scale invariant in the κ = 0 limit. For
� � 1, meanwhile, ρ̄(b) are finite and scale variant in the κ = 0
limit, since so is F�.

As for 〈r2〉λ, direct calculations for � = 0 show that

〈r2〉λ → 1

F0(λ)

[∫ rm/λ

0
drr2

∣∣ũint
0 (λr)

∣∣2 + 1

4

1

(κrm)3

r3
m

λ3

]

→ 1

2

1

(κrm)2

r2
m

λ2
(48)

for κrm 	 1. As for � = 1, we get

〈r2〉λ → 1

F1(λ)

[∫ rm/λ

0
drr2

∣∣ũint
1 (λr)

∣∣2 + 5

4

1

κrm

r3
m

λ3

]
(49)

for κrm 	 1. For s- and p-wave halos in the limit of κ = 0,
〈r2〉λ are thus divergent for any λ, and hence 〈r2〉 becomes
scale invariant in the κ = 0 limit. Note that the κ = 0 limit is
taken after integration.

III. PHENOMENOLOGICAL ANALYSES

A. Derivation of halo parameter

For later convenience, we define the mass numbers of
projectile (P) and T as AP and AT, respectively. The halo
parameter H is obtainable from measured σR(c), σR(n), and
σR(a) for lighter targets like 12C and Ein/AP > 80 MeV where
projectile-breakup effects are small on σR [13,22], since the
measured σR can be regarded as σabs there with good accuracy.

We consider 11Be and 15,19C as s-wave halo nuclei and 31Ne
and 37Mg as p-wave halo nuclei. For comparison, 17C is also
considered as an example of nonhalo nuclei with small ε; in
the simple shell-model picture with no residual interaction,
the last neutron is in a 0d orbital. We take 12C as a target
nucleus, since experimental data on σR are richest for this
target. As for σR(c) and σR(c + n), the experimental data
are available at Ein/AP = 790 MeV for 10,11Be, at Ein/AP ∼
960 MeV for 16−19C, and at Ein/AP = 240 MeV for
30,31Ne [11] and 36,37Mg [12]; for the systems 30,31Ne, σI were
measured, but σI were confirmed to be very close to σR [14].

For 14C +12C scattering, the experimental data are available
on σR at Ein/AP = 83 MeV and σI at Ein/AP = 965 MeV,
whereas, for 15C +12C scattering, the data are available on
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FIG. 2. Total reaction cross sections for p + 12C scattering as a
function of Ein.

σR at Ein/AP = 83 and σI at Ein/AP ∼ 740 MeV. It is
confirmed with the Glauber model that σR little depends on
Ein/AP in a range of 700 � Ein/AP � 1000 MeV for 12C +12C
scattering [32]. We then assume that σI at 740 MeV is identical
with σI at 965 MeV, and deduce empirical values of H for
Ein/AP = 83 and 965 MeV.

In general, σR(n) is not available at the same Ein/AP as
σR(c) and σR(c + n). We then use the single-folding (SF)
model to evaluate the σR(n). In the SF model, Un is obtained
by folding an effective nucleon-nucleon (NN) interaction
with the phenomenological 12C density [33] determined from
electron scattering. In the present formulation of Sec. II A for
nucleon-nucleus and nucleus-nucleus scattering, nonrelativis-
tic kinematics is assumed. Hence, the effective NN interaction,
i.e., the NN t matrix, should be determined from NN data with
nonrelativistic kinematics. In this case, all relativistic effects on
NN scattering are implicitly included in the t matrix itself. This
t matrix can be easily obtained by modifying the Franey-Love
(FL) t matrix [34] slightly to reproduce NN data. This t matrix
is referred to as the modified FL t matrix in this paper.

The SF model is now applied to p + 12C scattering, and the
total reaction cross section σR(p) is calculated with Eq. (15).
Figure 2 shows Ein dependence of σR(p). The solid line
denotes the model result, while the closed circles and open
squares stand for experimental data since and before 1970,
respectively. In the lower-energy region Ein < 150 MeV, the
SF model overestimates the experimental data sizably. This
may come from the fact that nuclear-medium effects are not
included in the present t-matrix SF model. Meanwhile in the
higher-energy region Ein � 230 MeV of our interest, the newer
data have smaller error bars than the older ones, and the newer
data tend to be larger than the older ones. We then respect
the newer data. The SF model well reproduces the newer
data in Ein = 231–552 MeV, although it overestimates the
older data at Ein = 860 MeV slightly. This good agreement
with the newer data may indicate that the present t-matrix SF
model is reliable in the higher-energy region. The total reaction
cross section σR(n) for n + 12C scattering is then calculated
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FIG. 3. Location of halo nuclei in the parameter Sn-H plane.
Experimental or empirical data on Sn are taken from Refs. [35–37].
See the text for the derivation of H.

with the t-matrix SF model without introducing any adjustable
parameter.

An exception is the derivation of σR(n) at Ein = 83 MeV.
The t-matrix SF model for p + 12C scattering overestimates
the newer data at Ein = 33–61 MeV. We then multiply
the folding potential Up by the normalization factor fN to
reproduce the data. The resulting factor fN = 0.6 is used
for Un, since the model calculation shows that the difference
between σR(n) and σR(p) is small. Eventually, the value of fN

is 0.6 for Ein = 83 MeV and 1 for Ein � 240 MeV.
Figure 3 shows the location of discovered one-neutron halo

nuclei in the Sn-H plane. For comparison, 17C is also plotted
as an example of nonhalo nuclei with small Sn. Two results are
presented for 15C; one is determined from σR(n), σR(c), and
σR(c + n) at Ein/AP = 83 MeV and the other is from those at
Ein/AP = 960 MeV. The two results are consistent with each
other within the 2σ deviation, but non-negligible difference
between the mean values of the two results shows that the
value of H is ambiguous for 15C. For the other nuclei, the
resulting H have error bars small enough to make qualitative
discussions. For this reason, we mainly consider the nuclei
except 15C. The Ein dependence of H for 15C will be discussed
in Sec. III C. As seen in Fig. 3, p-wave halo nuclei 31Ne and
37Mg have smaller H than s-wave halo nuclei 11Be and 19C,
and H is even smaller for a d-wave nonhalo nucleus 17C.

B. Halo parameter in the vicinity of the weak-binding limit

No halo nucleus is discovered at extremely small Sn such as
Sn 	 0.01 MeV. We then do the following c + n + T model
calculation to see the behavior of H in the vicinity of Sn =
0. The ground state u�(r) of the c + n system is described
with the Woods-Saxon potential determined by the well-depth
method; namely, the depth parameter V0 is tuned to measured
Sn with the radius and diffuseness parameters fixed at the
standard values 1.27A

1/3
c fm and 0.67 fm [38], where Ac is

the mass number of c. The potential Uc between c and T is
obtained by folding the modified FL t matrix with the densities
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FIG. 4. Root mean square (rms) matter radii of core and halo
nuclei. The open squares stand for the results of the present model,
while the closed circles, closed triangles, and closed squares denote
the experimental data deduced from σR and σI with the optical-limit
Glauber model based on harmonic-oscillator projectile densities
(OL-HO), the optical-limit Glauber model based on few-body model
densities (OL-FB) [9,10], and the double-folding model based on
Woods-Saxon model densities (DF-WS) [15]. For 12C, the closed
circle represents the phenomenological density [33] determined from
electron scattering.

of c and T. In the double-folding model, the density of c is
calculated with the spherical Hartree-Fock (HF) method with
the Gogny-D1S interaction [39] for 10Be and 14,16,18C and with
antisymmetrized molecular dynamics (AMD) with the Gogny-
D1S interaction for 30Ne and 36Mg. In the AMD calculations,
deformation effects are taken into account [13,15]. The folding
potential Uc is normalized to reproduce the corresponding data
on σR(c). The normalization factors fc are 0.69 for 10Be, 0.54,
0.71, and 0.70 for 14,16,18C, 0.65 for 30Ne, and 0.66 for 36Mg.

In order to confirm the accuracy of the present model, we
calculate rms matter radii r̄c and r̄a of c and a. The results are
shown in Fig. 4 for 10,11Be, 14,15C, 16,17C, 18,19C, 30,31Ne, and
36,37Mg. The model results (open squares) are consistent with
the experimental data deduced from measured σR and σI with
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FIG. 5. Behavior of H in the vicinity of Sn = 0. A logarithmic
scale is taken for the horizontal axis. The theoretical results are shown
by a solid (dotted) line for 11Be (19C), by a dashed (long and short
dashed) line for 31Ne (37Mg), by a long and two short dashed line for
17C and by a short and two long dashed line for 15C. See Fig. 3 for
the experimental data.

the optical-limit Glauber model based on harmonic-oscillator-
type projectile densities (closed circles), the optical-limit
Glauber model based on few-body model densities (closed
triangles) [9,10], and the double-folding model based on
Woods-Saxon model densities (closed squares) [15]. Precisely,
the present model overestimates the experimental data slightly
for 14,15C. However, the deviation does not affect H, because
Uc is normalized to reproduce the measured σR(c). For a while,
we do not consider the case of Ein/AP = 83 MeV for 14,15C,
since the data on r̄a and r̄c are deduced from σR(c) and σR(a)
at Ein/AP = 960 MeV.

Figure 5 shows the behavior of H in the vicinity of Sn = 0.
Here a logarithmic scale is taken for the Sn axis, and only
the case of Ein/AP = 960 MeV is considered for 15C. As for
halo nuclei 11Be, 19C, 31Ne, and 37Mg, the results of the present
model are consistent with the corresponding experimental data
within the 1σ deviation. As for 15,17C, the model results are
consistent with the corresponding data within the 2σ deviation.
As expected, the theoretical lines reach the scale-invariant
point (Sn,H) = (0,1) only for s-wave halo nuclei 11Be, 15C,
and 19C. The values of H in the Sn = 0 limit are about 0.55 for
p-wave halo nuclei 31Ne and 37Mg and about 0.21 for a d-wave
non-halo nucleus 17C. In the vicinity of Sn = 0, consequently,
the six lines are well separated into three groups of s-wave
halo, p-wave halo, and d-wave nonhalo. This separation may
be universal for any unstable nucleus with small Sn. Therefore,
if σR(p), σR(c), and σR(a) are newly measured at the same
Ein/AP for unstable nuclei with small Sn and H are calculated,
one can see the halo nature of the nuclei through the values of
H without making any model calculation.

Figure 6 shows the behavior of the probability parameter P
defined by Eq. (8) in the vicinity of Sn = 0. Since we cannot
determine the border parameter rb uniquely for the ambiguity
coming from the diffuseness parameter in the Woods-Saxon

potential, we take rb =
√

5
3 〈r2〉WS as a plausible example,
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FIG. 6. Same as Fig. 5 but for the probability parameter P defined
by Eq. (8).

where 〈r2〉WS is the mean square radius of the Woods-Saxon
potential. Note that the mean square radius of square-well
potential with the radius rb becomes equal to 〈r2〉WS in the
above condition. The probability parameter P is almost similar
to H qualitatively. The parameter H is thus a useful way
of understanding P qualitatively and a measurable parameter
quantifying the halo nature.

C. Ein dependence of halo parameter for 15C +12C scattering

Here we discuss Ein dependence ofH in Fig. 7 for 15C +12C
scattering. As for H, two empirical values were deduced from
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FIG. 7. Halo parameter H as a function of Ein/AP for 15C +12C
scattering. The empirical value of H is taken from Fig. 3. The
model results are shown by open squares at Ein/AP = 83 and
960 MeV. Here, the normalization factors are (fc,fN ) = (0.54,1)
for Ein/AP = 960 MeV and (fc,fN ) = (0.60,0.60) for Ein/AP =
83 MeV. The model results are extrapolated to other Ein by assuming
that the normalization factors fc and fN do not depend on Ein. The
solid (dashed) line stands for the model result of (fc,fN ) = (0.54,1)
[(fc,fN ) = (0.60,0.60)].

experimental data on σR(c) and σR(a) at Ein/AP = 83 and
960 MeV, as shown in Fig. 3. We first compare the empirical
values with the model results at the two incident energies.
For this purpose, the normalization factors fc and fN are
determined from experimental data on σR(c) and σR(p) at
the incident energies. The resulting values are fc = 0.54 and
fN = 1 for Ein/AP = 960 MeV and fc = 0.6 and fN = 0.6 for
Ein/AP = 83 MeV. TheH calculated with these normalization
factors are plotted by open squares at the two energies.
The model calculations overestimate the empirical value at
Ein/AP = 960 MeV but underestimate at Ein/AP = 83 MeV.
Next, the two model results (open squares) are extrapolated
to other Ein with fc and fN fixed at either (fc,fN ) = (0.54,1)
or (fc,fN ) = (0.6,0.6). The solid and dashed lines denote the
model results of (fc,fN ) = (0.54,1) and (fc,fN ) = (0.6,0.6),
respectively. The two lines are close to each other and
have weak Ein dependence. This may indicate that H is
nearly independent of Ein. As an interesting result, the model
prediction lies halfway between two empirical values for H. It
is then highly expected that measurements of σR will be made
for 14,15C at typical beam energies of the Radioactive Isotope
Beam Factory at RIKEN (Ein/AP ∼ 250 MeV).

D. Validity of the Glauber formula

Finally we investigate the validity of the Glauber for-
mula (4). As shown in Sec. II A, this formula is valid when
ρ̄(b) is independent of b in a range of 0 � b � bmax ≈ 15 fm.
This condition is automatically satisfied, when ρ̄(b) is scale
invariant, i.e., ρ̄(b) = ρ̄(λb) for any λ. The Glauber formula is
thus related to scale invariance of ρ̄(b).

Inserting Eq. (4) into Eq. (6) leads to

H ≈ HGl ≡ 1 − 1

2π
〈r−2〉σabs(c). (50)

As shown in Fig. 8, ρ̄(b) has large b dependence in 0 �
b � bmax ≈ 15 fm for all cases of the s-wave halo nucleus
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FIG. 8. b dependence of z-integrated projectile densities 11Be,
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dependence for 11Be, 17C, and 31Ne, respectively.
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FIG. 9. Test of the Glauber formula for in the Sn-H plane. Exact
results (thick lines) are compared with approximate results (thin lines)
based on the Glauber formula (GF) of Eq. (4). The solid, dashed, and
dotted lines indicate the cases of 11Be, 17C, and 31Ne, respectively.

11Be, the p-wave halo nucleus 31Ne, and the d-wave nonhalo
nucleus 17C. In Fig. 9, the Glauber formula is directly tested
in the Sn-H plane. The H values calculated exactly without
the Glauber formula are plotted by thick lines, and the HGl

values calculated approximately with the Glauber formula
are drawn by thin lines; here the solid, dashed, and dotted
lines correspond to the model results for 11Be, 17C, and
31Ne, respectively. The HGl are largely deviated from the
corresponding H except for the case of s-wave halo in the
vicinity of Sn = 0. This result is natural, since ρ̄(b) is scale
invariant only at the point (Sn,H) = (0,1).

IV. SUMMARY

We proposed a measureable parameter H quantifying the
halo nature of one-neutron halo nuclei a, assuming the c + n
model for a. We proved the inequality (7). This equation shows
that the halo parameter H of Eq. (6) can vary with Sn in a range
of 0 � H � 1. Since the halo structure is most developed when
H = 1, we proved that this situation is realized only for s-wave
halos in the Sn = 0 limit, independently of the concrete form
of the interaction V (r) between c and n.

We considered 11Be and 15,19C as s-wave halo nuclei, 31Ne
and 37Mg as p-wave halo nuclei, and 17C as an example of
d-wave nonhalo nuclei. For each halo nucleus, an empirical
value of H was deduced at the measured Sn from experimental
data on σR(a), σR(c), and σR(n) at intermediate and high
incident energies where σbr is negligibly small compared with
σR, and σR can be regarded as σabs. The parameter H is thus
a measurable parameter. This point is an important advantage
compared to the probability parameter P that is almost similar
to H qualitatively but cannot be measured directly. The
location of (Sn,H) thus obtained is plotted in the Sn-H plane.

The empirical points are extrapolated to the vicinity of Sn = 0
by using the c + n + T model. As mentioned above, only
the s-wave halo lines can reach a point (Sn,H) = (0,1) in the
Sn-H plane, independently of the concrete form of V (r). As a
result of this property, the s-wave halo lines are always above
the p-wave halo and d-wave nonhalo lines at least in Sn < 1
MeV in the Sn-H plane. Particularly in the vicinity of Sn = 0,
the lines are well separated into three groups of s-wave halo,
p-wave halo, and d-wave nonhalo. This separation may be
universal for any unstable nuclei with small Sn. Therefore,
if σR(a), σR(c), and σR(n) are newly measured at the same
Ein/AP for unstable nuclei with small Sn and empirical values
of H are deduced from the experimental data, one can see the
halo nature of the nuclei through the values without making
any model calculation.

In the Sn = 0 limit, ρ̄(b) and 〈r−2〉 are zero for s-wave
halo nuclei, whereas 〈r2〉 is divergent for s- and p-wave halo
nuclei. These results are independent of the concrete form of
V (r), indicating that the quantities are determined only from
the external part of the ground-state wave function ũ�(r) of the
c + n system. Since ũ�(r) can be defined so that the external
part becomes scale invariant in the Sn = 0 limit, ρ̄(b) and 〈r−2〉
for s-wave halos and 〈r2〉 for s- and p-wave halos turn out to
be scale invariant in the limit. Any dimensionful quantity is
scale invariant only when it is either zero or infinity. This is the
reason why the dimensionful scale-invariant quantities, ρ̄(b),
〈r−2〉, and 〈r2〉, become either zero or infinity in the Sn = 0
limit. The point (Sn,H) = (0,1) in the Sn-H can be regarded as
a scale-invariant point in the sense that ρ̄(b) is scale invariant
there.

Finally we tested the validity of the Glauber formula (4).
This formula is valid, when ρ̄(b) is independent of b in 0 �
b � bmax ≈ 15 fm. This condition is automatically satisfied,
when ρ̄(b) is scale invariant. The Glauber formula is thus good
only for s-wave halos in the vicinity of Sn = 0, i.e., near the
scale-invariant point.
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APPENDIX: SCALE INVARIANCE OF ρ̄λ(b)

In this Appendix, we re-examine the scale-transformed z-
integrated density of Eq. (47)

ρ̄λ(b) = 1

4πF0(λ)

∫ ∞

−∞
dz

∣∣∣∣ ũ0(λr)

r

∣∣∣∣
2

(A1)

and show that the scale invariance of ρ̄λ(b) is realized not only
for finite b but also for infinite b.
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Let us consider finite b1 and b2 satisfying the condition
rm < b1 < b2. Obviously, the inequality

0 � ρ̄λ(b2) � ρ̄λ(b1) (A2)

is satisfied because of the relation

0 �

∣∣ũ0
(
λ

√
b2

2 + z2
)∣∣2

b2
2 + z2

�

∣∣ũ0
(
λ

√
b2

1 + z2
)∣∣2

b2
1 + z2

(A3)

for the integrand in Eq. (A1). On the other hand, we
have already probed that ρ̄(b1) is scale invariant for
finite b1:

lim
κ→0

ρ̄(b1) = 0. (A4)

Using Eqs. (A2) and (A4), we can get

lim
κ→0

ρ̄λ(b2) = 0 (A5)

for infinite b2.
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