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Description of fusion and evaporation residue formation cross sections in reactions leading
to the formation of element Z = 122 within the Langevin approach
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We describe the evolution of the compact system formed by the touching of two colliding ions in
reactions 58Fe + 248Cm → 306−x122 + xn, 64Ni + 244Pu → 308−x122 + xn, and 90Zr + 208Pb → 298−x122 + xn.
The description is carried out within the dynamical multidimensional stochastic approach, based on Langevin
equations for the shape degrees of freedom of colliding ions and the compact system. For the approach stage we
take into account the shell structure of colliding ions, their orientation in the space, and the effect of tunneling of
ions through the Coulomb barrier. By describing the evolution of the compact system formed after the touching
of incident ions, the shell structure of the compact system is also taken into account. Within this approach we
have calculated the compound nucleus and evaporation residue formation cross sections. These can be compared
with the experimental data. We have also clarified the impact of the tunneling effect in the entrance channel on
the fusion and evaporation residue cross sections.
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I. INTRODUCTION

The synthesis of superheavy elements and the investigation
of their properties is one of the most important problems of
modern nuclear physics. Since the probability of superheavy
element formation is extremely small, the theoretical estima-
tion of the corresponding cross sections and prediction of the
optimal choice of the target and projectile nuclei are of great
interest.

In our previous publications, see Ref. [1] and references
therein, we have developed a two-step approach for the
description of fusion-fission reactions. In the first step (the
entrance channel) the time evolution of the system up to the
touching point is described. The distributions at the touching
point obtained in the first step are used for the transition
from separated ions to the compact system and as the initial
conditions for the description of the evolution of the compact
system (second step).

Both the approach of ions and the evolution of the
compact system (up to the formation of evaporation residue)
are described with help of Langevin equations for the col-
lective coordinates (deformation parameters) which specify
the shape of the nuclear system. In both stages the shell
structure of colliding ions and compound nucleus is taken into
account.

In recent publication [2] we considered the approach phase
of ions leading to the formation of superheavy elements with
charge numbers between Z = 112 and Z = 122. The compar-
ison of calculated results with the available experimental data
[3] has shown that by describing the process of ion collision
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one should take into account not only the deformation [1,4]
and reciprocal orientation of ions [5,6], but also the possibility
of tunneling through the Coulomb barrier [1,7].

The capture (touching) cross section calculated in [2] for the
reactions 58Fe + 248Cm → 306−x122 + xn leading to synthesis
of isotopes with Z = 122 was found to be rather close to the
experimental data [3] available at the reaction energy 33 MeV
(Ecm = 279 MeV).

In [2] the touching cross sections in other
reactions, 64Ni + 244Pu → 308−x122 + xn, 90Zr + 208Pb →
298−x122 + xn, leading to the synthesis of isotopes with
Z = 122 were also analyzed. It was shown that the touching
cross sections in these reactions are larger for mass symmetric
combinations of the projectile and target nuclei. On the other
hand, it follows from the earlier works [8,9] that the fusion
(the penetration through the fission barrier toward the ground
state) probability for the mass symmetric combination of
the projectile and target is strongly suppressed. Thus the
description of the whole process from the approaching stage
till the formation of the evaporation residue is necessary in
order to predict the most favorable combination of the target
and projectile nuclei.

In present work we analyze the evolution of the compact
systems formed in reactions 58Fe + 248Cm → 306−x122 + xn,
64Ni + 244Pu → 308−x122 + xn, and 90Zr + 208Pb →
298−x122 + xn from the touching point up to the formation
of the evaporation residue. The distributions at the touching
point obtained in [2] are used as the initial conditions for the
time evolution of compact system.

By solving Langevin equations for the shape degrees of
freedom, we have calculated the fusion and evaporation residue
formation cross sections for these reactions at various reaction
energies, and we have clarified the role of mass asymmetry of
colliding nuclei on the formation of compound nucleus and
the role of the tunneling effect in the entrance channel.
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The penetrability of the barrier was defined in the WKB
approximation, i.e.,

TL(E) =
[

1 + exp

(
2

�

∫ r1

r2

√
2m(V fus − E)dr

)]−1

, (1)

where the integration is carried out between the turning points
r1 and r2 in the subbarrier region and E is the potential energy
of the system at the turning points. One can find more details
in [7].

II. THE REACTION MODEL

We describe the shape of the compact system formed
after the touching of projectile and target nuclei by means
of the Cassini shape parametrization [10,11] and take into
account three deformation parameters, namely, α, α1, and α4.
These parameters fix the elongation of the system, the mass
asymmetry, and the neck radius, repectively. For the spherical
shape α = α1 = α4 = 0. The touching point configuration of
the system can be parametrized by α = 1 (zero neck radius
condition); the α1 and α4 parameters at the touching point are
fixed by the mass asymmetry of the colliding nuclei and the
requirement that the value of potential energy of the system
just before the touching point (separated ions) and immediately
after the touching point (compact system) is the same.

The time evolution of the collective degrees of freedom [de-
formation parameters q ≡ (α,α1,α4)] and the corresponding
momenta p/m ≡ (α̇,α̇1,α̇4) at both stages of the reaction are
described by the stochastic Langevin equations [12], namely,

q̇β = μβνpν,

ṗβ = −1

2
pνpη

∂μνη

∂qβ

+ Kβ − γβνμνηpη + θβνξν. (2)

Here qβ are the deformation parameters, and a convention of
summation over repeated indexes ν, η is used. The quantity
γβν is the tensor of friction coefficients and μβν is the tensor
inverse to the mass tensor mβν .

The random force θβνξν takes into account the fluctuations
in the system, where ξν is a random number with the following
properties:

〈ξν〉 = 0,

〈ξβ(t1)ξν(t2)〉 = 2δβνδ(t1 − t2). (3)

The magnitude of the random force θβν is expressed in terms
of the diffusion tensor Dβν , Dβν = θβηθην , which is related
to the friction tensor γβν via the modified Einstein relation
Dβν = T ∗γβν . Here T ∗ is the effective temperature introduced
by H. Hofmann [13,14],

T ∗ = ��

2
coth

��

2T
. (4)

The point is that the classical Einstein relation D = T γ is
valid at relatively high temperatures. At low temperatures
the quantal aspect of the fluctuation-dissipation becomes
important and the magnitude of the diffusion coefficient
becomes larger than its classical value; see [15,16].

This property is guaranteed by the form (4). Here parameter
� is the local frequency of collective motion. In principle, it

should be calculated at each deformation point. Unfortunately,
this would be too time consuming. The value calculated in [17]
of �� at the ground state and the saddle of 224Th is close to
1 MeV. For the superheavies in the present calculations we
used the somewhat larger value �� = 2 MeV independently
of deformation (T ∗ = 1 MeV at T = 0).

The T in (4) is the temperature related to the dissipated
(excitation) energy by the Fermi-gas formula, T = √

aEdis,
with a being the level density parameter [18]. The dissipated
energy Edis is calculated at each time step of Eqs. (2). It
depends on the reaction energy U ∗ and the kinetic and potential
energy, namely,

Edis = U ∗ − 1

2

∑
βν

pβpημβη − Vpot. (5)

The reaction energy U ∗ is related to the center-of-mass energy
Ecm by the energy balance, Egs(p) + Egs(t) + Ecm = Egs(p +
t) + U ∗, where p and t stand for the projectile and target
nuclei. The U ∗ can be expressed as U ∗ = Ecm − Q, where
Q is so called Q value of the reaction, Q ≡ Egs(p + t) −
Egs(p) − Egs(t). The Q value is defined as the difference of
ground state energies Egs; it does not depend on dynamics.
For a particular reaction the ground state energies can be taken
from existing tables or calculated, for example, within the
macroscopic-microscopic approach.

The center-of-mass energy Ecm is fixed in the approaching
phase. After formation of the compact system the energy
available for the system is given by Ecm − Q, i.e., by U ∗.
The reaction energy U ∗ is shared between the collective
kinetic energy and dissipated energy, which is released by
the evaporation of particles and γ quanta. For the second step
of the fusion-fission reaction the use of U ∗ is more convenient
compared to Ecm. In experimental works, at least in some of
them (see [3]), the cross sections are given as functions of U ∗.

The conservative force in (2) is represented by the derivative
of free energy with respect to deformation, Kβ ≡ −∂F/∂qβ ,
where F (q,T ) = V (q,T ) − aT 2. The potential energy of the
compact system Vpot consists of the rotation and deformation
Edef energies, i.e.,

Vpot = �
2L2

2J
+ Edef, (6)

where J is the rigid-body moment of inertia [19].
The nuclear deformation energy Edef is calculated within

the macroscopic-microscopic method [20,21]. In this method
the deformation energy is expressed as the sum of the
macroscopic (liquid-drop) part ELDM

def and the shell correction
Eshell (including the shell correction to the pairing correlation
energy), i.e.,

Edef = ELDM
def + Eshell. (7)

For the macroscopic part we use the sum of surface and
Coulomb energies with parameters given in [22]. The shell
correction for protons (p) and neutrons (n) at zero excitation
energy is calculated by the Strutinsky method [20,21]:

Eshell(T = 0) =
∑
p,n

(δEp,n + δP p,n). (8)
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The dependence of the shell correction on the temperature is
given by the expression Eshell(T ) = Eshell(T = 0)e−aγ T 2

[23].
The level density parameter a and the shell correction damping
parameter γ are taken from [18].

Besides the deformation energy, the dynamic properties of
each nucleus are characterized by the friction γβν and inertia
mβν tensors, which were calculated within the linear response
approach and the local harmonic approximation [24,25]. In
this approach, many quantum effects, such as shell and pairing
effects, and the dependence of the collisional width of single-
particle states on the excitation energy, are taken into account.
The precise expressions for the friction γβν and inertia mβν

can be found in [26].
To start the second step calculations, we need information

on the dependence of touching probability on the angular
momentum of the system: the two-dimensional distributions
of touching events in angular momentum and potential energy,
and in angular momentum and excitation energy. All these data
for the reactions considered here were calculated in [2]. The
details of the transition from the first to the second step of the
reaction can be found in [1,5].

On the second step of reaction the formation of the
compound nucleus and evaporation residue can take place or
the system can split back into two fragments. So, we calculate
the evolution of the compact system either until it crosses the
fission barrier and splits back into two fragments or until it
gets deexcited by the emission of light particles and gamma
rays and forms the evaporation residue.

In order to form the evaporation residue, the system should
release the excitation energy by the evaporation of light
particles and γ quanta. The particle evaporation from an
excited nucleus is described by statistical methods. We employ
the method proposed in [18]; see also [27]. The probability
for the emission of one particle or another depends on the
decay width of the nucleus into particlar decay channel. The
evaporation widths �j (j ≡ n,p,d,t,3He ,α) and �γ are given
by the expressions [18]

�j = (2sj + 1)mi

(π�)2ρ0(U0)

∫ Uj −Bj

Vj

σinv(e)ρj (Uj − Bj − e)e de, (9)

�γ = 1

(π�c)2

1

ρ0(U0)

∫ U0

0
σγ (e)ρj (U0 − E)e2de. (10)

Here, ρ0, ρj , and ργ are the level densities, respectively, in the
primary nucleus or in the nucleus formed after the particle or
γ -quanta emission; sj , mj , Vj , Bj are the spin of the emitted
particle, its mass, the height of the Coulomb barrier, and its
binding energy; σinv(e) is the cross section for the absorption of
a particle or a γ quanta with kinetic energy e by the considered
nucleus; Uj = U − �j ; U0 = U − �0; U is the compound-
nucleus excitation energy; and �j and �0 are the pairing gaps
for the residual and the primary nucleus, respectively.

After determining the widths for all evaporated particles,
we find which particle, if any, is evaporated [28]. For this,
we generate a random number ξ between zero and unity
and compare it with τ

∑
�b/�, where τ is the time step in

numerically solving the Langevin equations (2). If this random
number is smaller than τ

∑
�b/�, it is assumed that a particle

is emitted at this step of solving the Langevin equations. The

kind of a particle is determined again at random proportionally
to the known width values.

If some particle is emitted, the binding energy of this
particle is subtracted from the excitation energy of the system;
the deformation energy and the transport coefficient are
replaced by these for smaller particle number.

At low excitation energies the probability of particle (γ )
evaporation becomes very low, consequently the calculation
until the complete cooling of the system requires a lot of time.
We stop the calculation for a given trajectory if the probability
of the evaporation of any particle gets smaller than 10−3. In the
reactions considered here mainly the neutrons are emitted. The
number of emitted neutrons depends on the reaction energy
U ∗. The calculations show that at high values of U ∗, U ∗ =
50–60 MeV, up to five neutrons can be emitted.

At the beginning of the second step, the shape of the
compact system consists of two ions connected by a thin neck.
In the course of evolution, the neck can break down almost
immediately after the touching (deep inelastic collision) or
can get thicker; the system gets less elongated and moves (in
the space of deformation parameters) toward the ground state.
On this way the system has to overcome the fission barrier
from outside (toward the ground state). If the system does not
manage to overcome the fission barrier, it splits again into two
fragments: quasifission takes place. If the system gets through
the fission barrier, the fusion takes place. After the fusion
the system can either get deexcited by the evaporation of γ
quanta or light particles and form the evaporation residue, or
cross the fission barrier back (toward larger elongation). The
last process is the true fission process. The outcome of the
reaction depends on the random force θβνξν , which appears in
the Langevin equations (2).

Repeating the calculation from the touching configuration
many times, one gets probabilities of each particular process
which is defined as the ratio of the number of trajectories
leading to this process to the total number of trajectories.
The relation between probabilities of different processes
depends on the initial conditions (the shape of the initial
system, especially, its mass asymmetry, angular momentum,
and the kinetic, potential, and excitation energy at the touching
point), on the value and deformation dependence of transport
coefficients—potential energy and tensors of friction and
inertia—and on the initial reaction energy U ∗.

For comparison with the experimental data, the probabili-
ties of fusion Pcomp or evaporation residue formation Per are
transformed to corresponding cross sections:

σcomp = �Lσcomp(L) = �LPcomp(L)σtouch(L),
(11)

σer = �Lσer(L) = �LPer(L)σtouch(L),

where σtouch(L) is the touching probability of the initial ions.
These cross sections, calculated in [2] with and without
inclusion of tunneling through the Coulomb barrier in the
entrance channel, are shown in Fig. 1. The height of the
Coulomb barrier depends on the reciprocal orientation of the
projectile and target nuclei, their deformation, and the angular
momentum. The arrows in Fig. 1 mark the value of U ∗ which
correspond to the highest Coulomb barrier at L = 0. At higher
values of angular momentum the Coulomb barrier is even
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FIG. 1. The touching cross sections calculated in [2] for the
reactions leading to the formation of system with charge number
Z = 122. The calculations done with and without inclusion of
tunneling through the Coulomb barrier are shown by dotted and
solid lines respectively. The experimental value [3] is shown by �.
The arrows mark the value of U ∗ which correspond to the highest
Coulomb barrier at L = 0.

higher. At each value of U ∗ some part of the trajectories can
overcome the Coulomb barrier only due to the tunneling effect,
and accounting for the tunneling effect increases the touching
probability.

From the analysis of the approach phase of reactions leading
to the synthesis of elements with Z = 112, . . . ,122 in [2] it
follows that the inclusion of the tunneling effect improves
the agreement between the calculated and experimental values
of the touching cross section. Consequently, the calculations
below were carried out mainly using the initial data (touching
point distributions) obtained with the inclusion of the tunneling
effect in the entrance channel.

III. THE EVOLUTION OF THE COMPACT SYSTEM

The main quantities of interest in the present calculations
are the values of the fusion cross section and the evaporation
residue cross section. To get these cross sections one has to cal-
culate the time evolution of compact system. One of the main
differences between the three considered reactions is the initial
mass asymmetry of the compact system, which is characterized
by the deformation parameter α1; see Fig. 2. In the reaction
58Fe + 248Cm → 306−x122 + xn the initial value of α1 is equal
to 0.29, in the reaction 64Ni + 244Pu → 308−x122 + xn it is
α

(in)
1 = 0.23, and α

(in)
1 = 0.15 in the reaction 90Zr + 208Pb →

298−x122 + xn. It is seen from Fig. 2 that the initial point for
the reaction 90Zr + 208Pb → 298−x122 + xn corresponds to the
smallest potential energy.

In order for fusion to take place the shape of the compact
system should evolve toward a smaller value of parameter α
“climbing up” the slope of potential energy; see Fig. 2. This is
possible due to the presence of a random force in Eqs. (2) and
the available kinetic energy of radial motion.

The numerical value of the probability and corresponding
cross section of reaching a certain value of α are calculated
using equations similar to (11). The results of such calculations

FIG. 2. The position of the starting point of the evolution of the
compact system on the potential energy surface of isotope 306122,
Vpot(α4 = −0.29,α,α1) (in MeV).

are shown in Fig. 3. One can seen that on the way to fusion
the fastest decrease of the survival probability takes place
for the reaction with the smallest initial mass asymmetry,
90Zr + 208Pb → 298−x122 + xn. Consequently, for this reac-
tion the probability of reaching the ground state shape is the
smallest.

The decrease of fusion cross sections slows down around
α = 0.2. One can believe that the trajectories which have
reached the value α = 0.2 contribute to the fusion process.
Exactly in this region, α ≈ 0.2, is the position of the fission
barrier; see Fig. 4. From the numerical results it follows
that the fusion cross section for the reaction 90Zr + 208Pb →
298−x122 + xn is by 9–10 orders of magnitude smaller
than that for reactions 58Fe + 248Cm → 306−x122 + xn and
64Ni + 244Pu → 308−x122 + xn; see Fig. 3. Thus, further cal-
culations for 90Zr + 208Pb → 298−x122 + xn make no sense.

From the comparison of the deformation dependence of
fusion cross sections for different reaction energies U ∗ in
reaction 58Fe + 248Cm → 306−x122 + xn, see Fig. 5, one can
see that the fusion cross section decreases fast with decreasing
U ∗. On the other hand, for smaller values of reaction
energy, the probability that the system would not undergo

FIG. 3. The decrease of survival cross sections from the touching
cross section (σtouch) at α = 1 up to the fusion cross section (σcomp) at
α ≈ 0.2 calculated for three different compact systems with the same
reaction energy U ∗ = 43 MeV.
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FIG. 4. The deformation energy [Eqs. (7) and (8)] of the compact
system (in MeV) minimized with respect to α4.

fission but would form the evaporation residue increases.
Figure 6 shows the cross sections of touching, fusion, and
evaporation residue formation in the reactions 64Ni + 244Pu →
308−x122 + xn and 58Fe + 248Cm → 306−x122 + xn. It turns
out that the touching cross section is larger in the reaction
64Ni + 244Pu → 308−x122 + xn, but due to the different initial
asymmetry of the compact system the fusion cross section is
by 1.5 order of magnitude smaller than that for the reaction
58Fe + 248Cm → 306−x122 + xn. The fission probability of
isotopes 306−x122 is slightly larger than that of 308−x122. The
evaporation residue formation cross sections for these two
reactions differ only by one order of magnitude. At the reaction
energy U ∗ = 33 MeV the cross sections are very close to each
other.

Finally, we would like to examine the effect of tunneling
through the Coulomb barrier in the entrance channel on the
value of fusion cross section. To this end we compare in
Fig. 7 the touching and fusion cross sections for the reaction
58Fe + 248Cm → 306−x122 + xn calculated with and without
inclusion of tunneling. As one can see from the upper part of
Fig. 7, the inclusion of tunneling increases the touching cross
section by a factor of 5 or so at all values of the reaction
energy U ∗. The point is that the height of the Coulomb
barrier in the entrance channel depends substantially on the

FIG. 5. The same as in Fig. 3 for different energies of the compact
system formed in the reaction 58Fe + 248Cm → 306−x122 + xn.

FIG. 6. The cross sections of touching (σtouch), fusion (σcomp),
and evaporation residue formation (σer) in reactions 58Fe + 248Cm →
306−x122 + xn (dotted) and 64Ni + 244Pu → 308−x122 + xn (solid).

deformation of the ions, their orientation in space, and their
angular momentum. At each reaction energy U ∗ some part of
the trajectories can get through the Coulomb barrier only due
to the tunneling effect. Thus, inclusion of the tunneling effect
increases the touching cross section at all reaction energies.

The impact of the tunneling effect on the fusion probability
at low and high reaction energy is quite different. The motion
from the touching point toward the fusion region is mainly
due to the available kinetic energy of radial motion. At low
reaction energies both trajectories that overcame the Coulomb
barrier with or without inclusion of tunneling effect have
small velocity in the direction toward the ground state. The
contribution of both type of trajectories to the fusion cross
section is approximately the same. As one can see in the bottom
part of Fig. 7, at low U ∗ due to inclusion of tunneling the fusion
cross section is increased by approximately a factor of 2. With
growing U ∗ the effect of tunneling gets smaller and smaller.

The trajectories which have reached the touching point due
to the tunneling effect have kinetic energy in the direction
toward the ground state that is close to zero. Such trajectories
can overcome the fission barrier in the ground state direction

FIG. 7. The touching and fusion cross sections in the reaction
58Fe + 248Cm → 306−x122 + xn, calculated with (dotted) and without
(solid) inclusion of tunneling through the Coulomb barrier in the
entrance channel.
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FIG. 8. The dependence of the touching and fusion cross sec-
tions on the angular momentum of the system in the reaction
58Fe + 248Cm → 306−x122 + xn at the reaction energy U ∗ = 48 MeV,
calculated with (dotted) and without (solid) inclusion of tunneling
through the Coulomb barrier in the entrance channel.

only due to the effect of the random force and eventually
contribute to the deep inelastic scattering or quasifission.

At high reaction energies the part of trajectories which
overcame the Coulomb barrier in the entrance channel without
tunneling effect is larger. Some of these trajectories have large
enough kinetic energy of radial motion in order to reach the
ground state deformation. In other words, the contribution to
fusion comes from trajectories which overcame the Coulomb
barrier in the entrance channel without the tunneling effect.
The contribution of the tunneling effect to the fusion cross
section at height U ∗ is negligibly small; see the bottom part of
Fig. 7.

This conclusion is confirmed by the comparison of partial
touching and fusion cross sections calculated with and without

inclusion of the tunneling effect in the entrance channel at high
reaction energy, shown in Fig. 8. The touching cross section
calculated with inclusion of the tunneling effect is much
larger than that calculated without inclusion of the tunneling
effect, whereas the partial fusion cross sections in both cases
are practically the same. Note that the trajectories with high
angular momenta do contribute to the touching cross section
but do not contribute to the fusion cross section.

In principle, in the description of the evolution of the com-
pact system one has to account also for tunneling through the
fission barrier. Unfortunately, tunneling in three-dimensional
deformation space {α,α1,α4} is much more difficult to describe
than tunneling through the one-dimensional Coulomb barrier.
The investigation of tunneling through the fission barrier will
be the subject of further studies.

IV. SUMMARY

In present work we have calculated the fusion and
the evaporation residue formation cross sections for the
reactions 58Fe + 248Cm → 306−x122 + xn, 64Ni + 244Pu →
308−x122 + xn, and 90Zr + 208Pb → 298−x122 + xn leading to
the synthesis of isotopes of element Z = 122. We have found
out that the largest cross section is reached in the reaction
with the most mass asymmetric combination of projectile and
target nuclei, 58Fe + 248Cm → 306−x122 + xn. In this case the
largest evaporation residue cross sections is equal to 23 fb at
the initial reaction energy U ∗ = 53 MeV (Ecm = 299 MeV).

It is shown that the trajectories which have reached the
touching point due to tunneling effect through the Coulomb
barrier in the entrance channel do not contribute to the fusion
cross section.
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