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Microscopic optical potential for exotic isotopes from chiral effective field theory
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We compute the isospin-asymmetry dependence of microscopic optical model potentials from realistic chiral
two- and three-body interactions over a range of resolution scales � � 400–500 MeV. We show that at moderate
projectile energies, E = 110–200 MeV, the real isovector part of the optical potential changes sign, a phenomenon
referred to as isospin inversion. We also extract the strength and energy dependence of the imaginary isovector
optical potential and find no evidence for an analogous phenomenon over the range of energies, E � 200 MeV,
considered in the present work. Finally, we compute for the first time the leading (quadratic) corrections to the
Lane parametrization for the isospin-asymmetry dependence of the optical potential and observe an enhanced
importance at low scattering energies.
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I. INTRODUCTION

The structure and dynamics of neutron-rich nuclei are key
inputs for modeling neutron stars, core-collapse supernovae,
and r-process nucleosynthesis [1–8]. Elucidating the proper-
ties of highly isospin-asymmetric nuclear matter is therefore
a priority in low-energy nuclear science research and a major
motivation for the development of next-generation radioactive
ion beam (RIB) facilities. Microscopic many-body methods
[9–11] with chiral two- and three-body forces have been
successful in describing the bound-state properties of neutron-
rich matter. Complementary and consistent nuclear reaction
models are under development [12–14], and of these, global
optical potentials aim to address the broadest theory needs
for interpreting RIB scattering experiments and simulating
r-process nucleosynthesis. In fact, current modeling of the
strong r-process favors a cold scenario in binary neutron
star mergers [6–8,15–17], where mass transfer to highly
neutron-rich isotopes occurs and freeze-out is achieved more
rapidly, which enhances the importance of radiative neutron
capture processes in determining the final abundance pattern
of r-process elements [18].

Although global phenomenological optical potentials
[19–21] are well constrained close to the valley of nuclear
stability, their predictive power for reactions involving ex-
otic neutron-rich isotopes is not well understood. Elastic
scattering data were used in the past to parametrize local
optical potentials in specific regions of the nuclear chart
off stability, however, the most exotic and low-intensity
radioactive ion beams require thick-target experiments that
provide quality inelastic data only [22]. This motivates the
need for accurate microscopic optical model potentials and
investigations of their energy and isospin-asymmetry, δnp =
(N − Z)/A, dependence. Identifying energy regimes in which
the leading linear δnp term is dominant can then be valuable
for extrapolating existing phenomenological potentials away
from stability.

The aim of the present work is to employ high-precision
chiral two- and three-nucleon forces to study the real and
imaginary volume components of the nucleon-nucleus optical

potential far from the valley of stability. The dependence on
the isospin asymmetry of the target nucleus is traditionally
taken to be linear and isovector in character, a parametrization
known as the Lane form [23]. The isoscalar components of the
optical potential are then independent of δnp. We revisit these
assumptions and find that higher-order terms in δnp (which
are isoscalar and isovector for even and odd powers of δnp, re-
spectively) can be important for highly neutron-rich nuclei and
particularly at the low energies most relevant for nuclear astro-
physical phenomena. We study the energy dependence of these
terms up to E � 200 MeV in anticipation of future experimen-
tal investigations of exotic isotope reactions at RIB facilities.

A phenomenon of particular interest is isospin inversion,
whereby the real isovector optical potential is expected to
change sign from positive at low energies to negative at
higher energies. In the vicinity of isospin inversion, subleading
terms proportional to δ2

np may become relevant and probe
novel isospin dependences of the nuclear force. The interplay
between intermediate-range attractive contributions to the
nucleon-nucleon interaction and short-range repulsive contri-
butions can give rise to a change in sign of the isoscalar optical
potential at projectile energies greater than E ∼ 250 MeV,
which was observed in calculations with microscopic nucleon-
nucleon potentials [24]. The isovector contribution to the
optical potential, arising from π -meson exchange and ρ-
meson exchange in traditional one-boson exchange models,
has a stronger relative energy dependence. In the past, semi-
microscopic and microscopic optical potentials have been
constructed from mean field theory [25–27] and realistic
nucleon-nucleon interactions [28–33], respectively, and there
is significant disagreement regarding the energy dependence of
the isovector components. To date there are therefore no strong
constraints on the kinematic transition region associated with
isospin inversion.

In microscopic many-body theory the nucleon-nucleus
optical potential is identified with the on-shell nucleon self-
energy �(�r,�r ′; E) [34]. In the present study we compute the
nucleon self-energy at second order in many-body perturbation
theory employing as a starting point high-precision nuclear
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interactions derived from chiral effective field theory [35,36].
Chiral nuclear potentials with momentum-space cutoffs � �
450 MeV [37–39] exhibit very good perturbative behav-
ior (comparable to renormalization-group evolved potentials
[40–42]) and we also consider a potential employing a
500 MeV cutoff [36] that is used to give a conservative estimate
of theoretical uncertainties associated with nonperturbative
dynamics and variations in the resolution scale. Previous work
has shown that chiral low-momentum potentials provide a
good description of the symmetric nuclear matter saturation
energy and density [39], the incompressibility and isospin-
asymmetry energy [43], and the critical endpoint of the liquid-
gas phase transition [44,45]. The present approach to nuclear
scattering is therefore consistent with nontrivial constraints
from nuclear structure.

II. ISOSPIN-ASYMMETRY DEPENDENCE
OF OPTICAL POTENTIALS

In the optical model for nucleon-nucleus scattering, the
complicated many-body problem associated with multiple
scattering through two- and three-body forces is replaced by
an equivalent complex-valued single-particle potential:

V (�r,�r ′; E) = U (�r,�r ′; E) + iW (�r,�r ′; E), (1)

which in general is both nonlocal and energy dependent. The
imaginary part in Eq. (1) accounts for the presence of open
inelastic scattering channels. Phenomenological optical poten-
tials are often taken to be local and energy dependent. The real
and imaginary parts contain volume components proportional
to Woods-Saxon densities fj (r) = 1/(1 + e(r−Rj )/aj ):

U (r; E) = −U (E)fr (r), W (r; E) = −W (E)fi(r), (2)

where the parameters U 0(E),W 0(E),Rr,i , and ar,i vary
smoothly with the mass number A of the target nucleus and
the projectile energy E.

Recently chiral two- and three-nucleon forces have been
used to compute the real and imaginary volume components
of the optical potential for isospin-symmetric nuclear systems
[12,13]. Although the strength and energy dependence of
the real component was found to be in good agreement
with modern phenomenological parametrizations [21], the
absorptive strength of the imaginary part from microscopic
nuclear potentials was about a factor of two larger than
that from phenomenology. We note that at low energies
the phenomenological imaginary part is surface peaked and
vanishes in the infinite matter limit. Microscopic many-
body theory in the local density approximation attributes the
surface imaginary part to the nonlinear density dependence
of the imaginary volume component. In Fig. 1 we show the
real and imaginary parts of the optical potential at nuclear
matter saturation density ρ0 = 0.16 fm−3 from chiral nuclear
potentials compared to the global fit in Ref. [21]. The
phenomenological “Koning” bands are obtained by varying
the mass number over the range A = 50–150 and should not
be interpreted as an uncertainty. On the other hand, the error
band associated with the microscopic calculation comes from
varying the resolution scale over the range � = 414–500 MeV.
In Fig. 1 we have included for comparison also global optical
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FIG. 1. Energy dependence of the real and imaginary parts
of the microscopic optical potential from chiral two- and three-
body forces for symmetric nuclear matter at saturation density ρ0.
Shown for comparison are the global phenomenological potentials of
Refs. [19–21].

potential parametrizations [19,20] valid at lower energies with
associated uncertainty estimates. In contrast to the results
reported in Ref. [12], the single-particle energies entering in
the second-order perturbative calculation are computed self-
consistently via e(q) = q2/2M + Re �(q,e(q)) rather than
from the effective mass plus energy shift parametrization
e(q) � q2/2M∗ + �, which smears out the enhancement of
the momentum-dependent effective mass at the Fermi surface
[46]. From Fig. 1 we observe that the microscopic real volume
component remains nearly linearly dependent on the incident
energy beyond E = 100 MeV, in contrast to the Koning
analysis in Ref. [21]. Nevertheless, the two approaches are
consistent within uncertainties over a wide range of energies.

For scattering on neutron-rich nuclei, the dependence of the
optical potential on the isospin asymmetry δnp is crucial. The
standard Lane form,

U = U0 + �τ · �T
A

UI , (3)

where �τ and �T are the isospin operators for the projectile
and target nucleus, respectively, is widely used in both
phenomenological and microscopic calculations. The Lane
parametrization relates the elastic proton-nucleus, neutron-
nucleus, and quasielastic charge-exchange processes. For
elastic scattering the Lane form reduces to U = U0 − UIδnpτ3,
where τ3 = ±1 (for protons and neutrons, respectively) is the
isospin quantum number of the incident nucleon.

Here we consider a more general expansion of the isospin
asymmetry dependence:

U = U0 − UI τ3δnp + UII δ
2
np + O(

δ3
np

)
. (4)

The Hartree-Fock contribution �(1),2N
p,n (q; kf ,δnp) from two-

body forces, shown diagrammatically in Fig. 2(c), is obtained
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(a) (b) (c)

FIG. 2. Diagrams contributing to the proton and neutron self-
energies �p,n(q,ω; kf ,δnp) at first and second order in perturbation
theory. The wavy line represents the antisymmetrized two-nucleon
interaction V̄2N and the thick wavy lines on the second-order diagrams
represent the sum of the free-space two-body force and the density-
dependent NN interaction from Refs. [47,48].

by generalizing the results of Ref. [12] and has the form,

�
(1),2N
t (q; kf ,δnp) =

∑
1

〈�q �h1ss1t t1|V̄2N |�q �h1ss1t t1〉n1, (5)

where V̄2N is the antisymmetrized potential matrix element,
np,n = θ (kf (1 ∓ δnp)1/3 − |�h1|) is the occupation probability,
and the sum is taken over the momentum �h1, spin s1, and
isospin t1 of the intermediate hole state. In the present work
we compute the exact dependence of �(1),2N

p,n (q; kf ,δnp) on δnp

and extract the linear and quadratic terms numerically.
The Hartree-Fock contributions from three-body forces are

obtained by summing two particles over the filled states in the
Fermi sea:

�
(1),3N
t (q; kf ,δnp)

= 1

2

∑
12

〈�q �h1 �h2; ss1s2; t t1t2|V̄3N |�q �h1 �h2; ss1s2; t t1t2〉n1n2.

(6)

The next-to-next-to-leading order (N2LO) chiral three-body
force consists of three terms, whose diagrammatic contribu-
tions to the nucleon self-energy are shown in Fig. 3. The chiral
three-nucleon contact force is proportional to the low-energy
constant cE :

V
(ct)

3N =
∑

i 
=j 
=k

cE

2f 4
π �χ

�τi · �τj , (7)

where �χ = 700 MeV and fπ = 92.4 MeV. The one-pion
exchange three-body force proportional to the low-energy

(a) (c)

(g)(f)(e)(d)

(b)

FIG. 3. Contributions to the Hartree-Fock single-particle po-
tential from the N2LO chiral three-nucleon force. The large
dots represent vertices proportional to the low-energy constants
c1,c3,c4,cD,cE , and the short double-line indicates a medium inser-
tion: −2πδ(k0)θ (kp,n

f − |�k|).

constant cD has the form,

V
(1π)

3N = −
∑

i 
=j 
=k

gAcD

8f 4
π �χ

�σj · �qj

�qj
2 + m2

π

�σi · �qj �τi · �τj , (8)

where gA = 1.29 and mπ = 138 MeV. Finally, the two-pion
exchange component with vertices proportional to c1,3,4 is
given by

V
(2π)

3N =
∑

i 
=j 
=k

g2
A

8f 4
π

�σi · �qi �σj · �qj( �qi
2 + m2

π

)( �qj
2 + m2

π

)F
αβ
ijk τ

α
i τ

β
j , (9)

where the isospin tensor is

F
αβ
ijk = δαβ

(−4c1m
2
π + 2c3 �qi · �qj

) + c4ε
αβγ τ

γ
k �σk · (�qi × �qj ).

(10)

The low-energy constants c1,3,4 have been fitted (within the
empirical uncertainties imposed by πN scattering) to nucleon-
nucleon scattering phase shifts [36], while the cD and cE

constants have been fitted to reproduce the binding energies of
3H and 3He as well as the β-decay lifetime of 3H [39].

At the Hartree-Fock level, the first-order terms in δnp arising
from three-nucleon forces proportional to the low-energy
constants cE and cD are given by

UI (q,kf ) = cEk6
f

6π4f 4
π �χ

+ gAcDm6
πu3

3(2πfπ )4�χ

{
2u − 2u3 − arctan 2u − arctan(u + x) − arctan(u − x)

+ 1

4u
ln(1 + 4u2) + 3 + 5u2 − 3x2

12x
ln

1 + (u + x)2

1 + (u − x)2

}
, (11)

where k3
f = 3π2(ρn + ρp)/2, x = q/mπ , and u = kf /mπ . The 2π -exchange Hartree diagrams proportional to c1,3 give rise to

the isovector optical potential,

UI (q,kf ) = g2
Am6

πu5

18π4f 4
π

{
c3u + c1 − c3

2x
ln

1 + (u + x)2

1 + (u − x)2
+ (c3 − 2c1)u

[1 + (u + x)2][1 + (u − x)2]

}
, (12)

064603-3



J. W. HOLT, N. KAISER, AND G. A. MILLER PHYSICAL REVIEW C 93, 064603 (2016)

while the 2π -exchange Fock diagrams proportional to c1,3,4 yield

UI (q,kf ) = g2
Am6

πu

9(4πfπ )4x2

{
−6c1[H (x,u) ∂uH (x,u) + H (u,u) ∂xH (u,x)] + (2c4 − c3)[G(x,u) ∂uG(x,u) + G(u,u) ∂xG(u,x)]

− 2(c3 + c4)[I (x,u) ∂uI (x,u) + I (u,u) ∂xI (u,x)] +
∫ u

0
dξ [18c1∂uH (ξ,u) ∂xH (ξ,x)

+ (3c3 + 2c4)∂uG(ξ,u) ∂xG(ξ,x) + 2(3c3 − c4)∂uI (ξ,u) ∂xI (ξ,x)]

}
, (13)

with auxiliary functions,

G(x,u) = 4ux

3
(2u2 − 3) + 4x[arctan(u + x) + arctan(u − x)] + (x2 − u2 − 1) ln

1 + (u + x)2

1 + (u − x)2
, (14)

H (x,u) = u(1 + u2 + x2) − 1

4x
[1 + (u + x)2][1 + (u − x)2] ln

1 + (u + x)2

1 + (u − x)2
, (15)

I (x,u) = ux

6
(8u2 + 3x2) − u

2x
(1 + u2)2 + 1

8

[
(1 + u2)3

x2
− x4 + (1 − 3u2)(1 + u2 − x2)

]
ln

1 + (u + x)2

1 + (u − x)2
, (16)

The terms second order in δnp are relatively small, and the explicit expressions are given in the Appendix.
Finally, we consider the second-order perturbative contribution from two- and three-body forces, U

(2)
2N+3N , which is

approximated by employing a density-dependent NN interaction constructed from V3N as described in Refs. [47–49]. The
second-order contributions, shown in Figs. 2(a) and 2(b), are given by

�
(2a),2N
t (q,ω; kf ,δnp) = 1

2

∑
123

∣∣〈 �p1 �p3s1s3t1t3|V̄ eff
2N |�q �h2ss2t t2〉

∣∣2

ω + ε2 − ε1 − ε3 + iη
n̄1n2n̄3(2π )3δ( �p1 + �p3 − �q − �h2), (17)

�
(2b),2N
t (q,ω; kf ,δnp) = 1

2

∑
123

∣∣〈�h1 �h3s1s3t1t3|V̄ eff
2N |�q �p2ss2t t2〉

∣∣2

ω + ε2 − ε1 − ε3 − iη
n1n̄2n3(2π )3δ(�h1 + �h3 − �q − �p2), (18)

where t = ±1/2 for p,n; n̄k = 1 − nk and V̄ eff
2N is the sum of

the free-space nucleon-nucleon potential V̄2N and the density-
dependent two-body force V̄ med

2N [47,48]. All single-particle
energies are computed self-consistently:

ep,n(q) = q2/2M + �(1),2N
p,n (q) + �(1),3N

p,n (q)

+ Re �(2)
p,n(q,e(q)). (19)

The expressions are computed for arbitrary isospin asymmetry,
and the linear and quadratic terms in δnp are extracted
numerically.

We show in Fig. 4 the various contributions to the real
part of the single-particle potential for protons and neutrons
in asymmetric matter at a density of ρ0 computed from the
n3lo450 chiral NN potential. We notice that when employing
the n3lo450 low-momentum chiral nuclear potential (and
also the n3lo414 potential), the second-order perturbative
contribution is always less than the Hartree-Fock contribution,
in contrast to the behavior observed in Ref. [12] using the
n3lo500 potential. We find that three-nucleon forces in general
enhance isospin inversion due to the repulsive character of
three-body forces in homogeneous matter.

The magnitude and energy dependence of the real isovec-
tor part of the optical potential are poorly constrained by
experiment. From Refs. [19–21,25,50–52] one finds that the
magnitude is expected to decrease with energy according to
UI = (28 ± 6) MeV − (0.15 ± 0.05)E, which we show as the

empirical band in Fig. 5. The chiral effective field theory
prediction shown in Fig. 5 is consistent with the empirical
constraints but has significantly smaller uncertainties, typically
of about 5–10 MeV over a wide range of scattering energies.
The region for isospin inversion is predicted to lie in the range
Einv = 155 ± 45 MeV, and the two low-momentum interac-
tions alone would give a much narrower region of Einv =
120 ± 10 MeV. The results from other microscopic many-body
calculations are shown, including Brueckner-Hartree-Fock
“BHF” [53] and Dirac-Brueckner-Hartree-Fock “DBHF” [33],
as well as semi-microscopic mean field models: “RMF” [54],
“Gogny” [55], “SKM*” [56], and “SkLya” [57]. We refer the
reader to Ref. [33] for additional details and analysis.

In addition to variations in the resolution scale, also the
order-by-order convergence [58,59] in the chiral expansion
provides an estimate of the theoretical uncertainty and associ-
ated cutoff artifacts. For this purpose we have computed as well
the optical potential from the NLO (next-to-leading order) and
N2LO chiral potentials with cutoffs � = 450 and 500 MeV
[58]. At threshold the uncertainties for both sets of cutoffs
are similar: U 450

I (0) = 32 ± 6 MeV and U 500
I (0) = 31 ±

6 MeV. At the isospin inversion energy the uncertainties are
slightly reduced: U 450

I (Einv) = 0 ± 5 MeV and U 500
I (Einv) =

0 ± 4 MeV. Accounting for these uncertainties would not
qualitatively alter the error bands shown in Fig. 5, except at low
scattering energies. We also note that beyond an energy of E �
200 MeV, significant artifacts were observed in the calculation
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FIG. 4. Contributions to the real part of the proton and neutron
optical model potentials from the n3lo450 chiral two- and three-body
forces as a function of the momentum q and isospin asymmetry δnp

at nuclear matter saturation density ρ0.

of the optical potential from the n3lo414 potential, suggesting
a breakdown in the chiral effective field theory expansion.

In Fig. 6 we show at ρ0 the subleading contribution UII to
the real optical potential as a function of projectile energy. For
low-energy scattering on neutron-rich targets we can expect
an isoscalar shift of roughly (15−20) · δ2

pn MeV, while for
energies greater than E > 100 MeV the quadratic term is
consistent with zero. The latter observation has the important
consequence that extrapolations of phenomenological optical
potentials into the neutron-rich region of the nuclear chart can
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FIG. 5. Energy dependence of the isovector real optical model
potential at saturation density from chiral effective field theory.
Shown for comparison are the predictions of other microscopic,
semimicroscopic, and phenomenological models (see Ref. [33]).
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FIG. 6. Energy dependence of the isovector imaginary optical
potential at saturation density from chiral two- and three-body forces.
Also shown are the subleading δ2

np contributions to both the real and
imaginary potentials.

be valid for energies beyond E > 100 MeV. This is supported
by a similar feature in the volume imaginary component, where
in Fig. 6 we see that the quadratic δ2

np term WII is consistent
with zero for all scattering energies considered. The Lane
parametrization of the volume imaginary optical potential
strength therefore provides an excellent approximation to the
true isospin asymmetry dependence over a large range of
energies. We note that because no isovector component for the
volume imaginary contribution could be extracted from the
most recent analyses in Refs. [20,21] due to the uncertainties
in the scattering data at large energies, our result is a prediction
that may be verified at RIB facilities.

Finally, we consider the quality of fitting the isospin
asymmetry dependence of the proton and neutron real optical
potentials up to quadratic δ2

np terms. In Fig. 7 we show as a rep-
resentative example the isospin asymmetry dependence of the
optical potential for a scattering energy of 50 MeV employing
the n3lo450 chiral nuclear potential. For values of the isospin
asymmetry up to δnp = 0.1 the leading contribution is isovec-
tor in character and the Lane parametrization works well.
Even at δnp = 0.2 the second-order δ2

np isoscalar contribution
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FIG. 7. Isospin asymmetry dependence of the proton and neutron
real optical potentials in infinite nuclear matter at saturation density
ρ0. A scattering energy of E = 50 MeV was chosen.
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becomes evident. At the highest value of δnp = 0.4, the
isoscalar δ2

np term gives a contribution to the optical potential
that is about 1/4 that of the isovector contribution.

The present work lays the foundation for improved mod-
eling of nucleon-nucleus scattering away from the valley of
stability. A strong isovector component to the imaginary part
of the optical potential, as found in the present study, can inhibit
radiative neutron-capture cross sections on exotic nuclei [60]
and strongly influence r-process nucleosynthesis in cooler
environments such as the tidally ejected matter in neutron
star mergers. The isovector real part of the single-particle
potential (together with the isoscalar δ2

np terms important at
low energies) may be more relevant for neutron star inner
crusts, where a lattice (or pasta structures) of neutron-rich
nuclei interact with a background of free neutrons. At the
higher energies attained at next-generation radioactive beam
facilities, our predicted sign change in the isovector real optical
potential in the energy range 110 < Einv < 200 MeV as well
as the strength of the isovector imaginary optical potential
WI � 8–12 MeV can be tested.

ACKNOWLEDGMENTS

This work was supported in part by US DOE Grant No. DE-
FG02-97ER-41014, the BMBF, the DFG cluster of excellence
Origin and Structure of the Universe, the DFG, and NSFC
(CRC110).

APPENDIX: δ2
np CONTRIBUTIONS FROM

THREE-NUCLEON FORCES

Here we present results for the quadratic δ2
np corrections to

the nucleon-nucleus optical potential from three-body forces
at the Hartree-Fock level, which are found to be significantly
smaller than the leading δnp terms. The short-distance contact
term contribution, shown in Fig. 3(a), has the form,

UII (q,kf ) = cEk6
f

12π4f 4
π �χ

. (A1)

The two diagrams from the one-pion exchange three-body
force, Figs. 3(b) and 3(c), yield

UII (q,kf ) = gAcDm6
πu5

18(2πfπ )4�χ

{
8u2 + 3

4u3
ln(1 + 4u2) − 6u − 3

u
+ u + x + x−1

1 + (u + x)2
+ u − x − x−1

1 + (u − x)2
+ 3

2x
ln

1 + (u + x)2

1 + (u − x)2

}
. (A2)

The Hartree diagrams, Figs. 3(d) and 3(e), from the two-pion exchange three-body force proportional to c1 and c3 give

UII (q,kf ) = g2
Am6

πu5

9(2πfπ )4

{
4c3u + 6

u
(3c3 − 4c1) + 8u(2c1 − c3)

1 + 4u2
+

[
8

u
(c1 − c3) + 3

2u3
(4c1 − 3c3)

]
ln(1 + 4u2)

+ 2

x
(c1 − c3) ln

1 + (u + x)2

1 + (u − x)2
+ 8u(c3 − c1)(1 + x2 − u2)

[1 + (u + x)2][1 + (u − x)2]
+ 16u3(c3 − 2c1)(1 + u2 − x2)

[1 + (u + x)2]2[1 + (u − x)2]2

}
. (A3)

The Fock diagrams, Figs. 3(f) and 3(g), are split into two parts depending on c1 and c3,4:

UII (q,kf ) = g2
Ac1m

6
πu

3(4πfπ )4x2

{
H (x,u)

[
u ∂2

uH (x,u) − 2∂uH (x,u)
] + u[∂uH (x,u)]2 + ∂xH (u,x)

[
u

3
(3∂x − 2∂u)H (x,u)|x=u

− 2H (u,u)

]
+ uH (u,u) ∂u∂xH (u,x) +

∫ u

0
dξ ∂xH (ξ,x)

[
u ∂2

uH (ξ,u) − 2∂uH (ξ,u)
]}

, (A4)

UII (q,kf ) = g2
Am6

πu

18(4πfπ )4x2

{
u

3
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[
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]

+ 2u

3
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[
u ∂2

uI (x,u) − 2∂uI (x,u)
]

+ (c3 − 2c4)

[
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(
u

3
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+
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0
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[
∂xI (u,x)

(
u

3
(3∂x − 2∂u)I (x,u)|x=u − 2I (u,u)

)
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0
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(
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, (A5)

with auxiliary functions defined in Eqs. (14)–(16).
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