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The particle-hole symmetry (equivalence) of the full shell-model Hilbert space is straightforward and routinely
used in practical calculations. In this work I show that this symmetry is preserved in the subspace truncated up to
a certain generalized seniority and give the explicit transformation between the states in the two types (particle
and hole) of representations. Based on the results, I study particle-hole symmetry in popular theories that could
be regarded as further truncations on top of the generalized seniority, including the microscopic interacting boson
(fermion) model, the nucleon-pair approximation, and other models.
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I. INTRODUCTION

The particle-hole symmetry (equivalence) of the full shell-
model Hilbert space is straightforward. A Slater determinant
of 2N particles is the same state as a Slater determinant of
2(� − N ) holes within a model space of degeneracy 2� =∑

j (2j + 1). Operators should be converted accordingly as
in textbooks [1,2], and the final results are independent of
whether choosing particles or holes as the degree of freedom.
Practical shell-model calculations frequently encounter the
dimension limitation, and various truncation schemes are
necessary in reducing the dimension. Apparently it is desirable
to preserve particle-hole symmetry when truncating; in this
work I consider whether this is the case for some popular
truncation schemes.

The seniority quantum number ν was first introduced by
Racah [3–5] as the number of unpaired nucleons in a single
j level to incorporate pairing correlations. As a truncation
scheme for the realistic multi-j shell model, the seniority ν
equals the total number of unpaired nucleons in all j levels.
Obviously, a 2N -particle Slater determinant of seniority v
is the same state as a 2(� − N )-hole Slater determinant of
seniority v. The particle-hole symmetry is preserved in the
seniority truncated subspaces.

The generalized seniority quantum number S was also
introduced [6–11] as the number of unpaired nucleons in a
multi-j model, but the paired part wave function is uniquely
written as the condensate of coherent pairs. The generalized
seniority states are no longer Slater determinants, and the
particle-hole symmetry is not obvious. Using commutator
techniques in the J scheme, Talmi showed [12] that the
2N -particle state of S = 0 is the same as the 2(� − N )-hole
state of S = 0 with reciprocal coherent pair structures, and
the S = 2 particle states span the same subspace as the S = 2
hole states. But for S > 2 the conclusion is absent. Along
the same line, the particle-hole symmetry found by Johnson
and Vincent [13] is restricted within the S-D subspace, and
their collective quadrupole pair operator D is defined with
the seniority projection and thus is different from the usual
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one. Reference [13] was mainly written for the microscopic
foundation of the interacting boson model. The particle-hole
symmetry for arbitrary generalized seniority S was claimed
in Ref. [10] but without a proof; in fact, their only results for
S = 2 [Eqs. (2.44) and (2.95)] were misprinted.

In this work I show that particle-hole symmetry exists for
arbitrary generalized seniority S. In addition, I give the explicit
transformation of states between the particle and the hole
representations, in both the M scheme and the J scheme. Based
on the results, I consider particle-hole symmetry for popular
theories that could be regarded as further truncations on top of
the generalized seniority, including the microscopic interacting
boson (fermion) model, the nucleon-pair approximation, and
other models.

Section II discusses in the M scheme the particle-hole
symmetry in generalized seniority. The M-scheme results are
coupled into J-scheme expressions in Sec. III. I consider
in Secs. IV–VI particle-hole symmetry in the microscopic
interacting boson (fermion) model, the nucleon-pair approx-
imation, and other popular truncation schemes. Section VII
summarizes the work. The J-scheme expressions of the lowest
generalized seniorities are given in the Appendix.

II. M-SCHEME GENERALIZED SENIORITY

In this section I show that particle-hole symmetry exists in
generalized-seniority truncated subspaces. The time-reversal
invariance is assumed but not necessarily the rotational
symmetry; hence, the results are valid for deformed (Nilsson)
single-particle levels. Briefly reviewing definitions of general-
ized seniority, the pair-creation operator

P †
α = a†

αa
†
α̃ (1)

creates a pair of particles on the single-particle level |α〉
and its time-reversed partner |α̃〉 (| ˜̃α〉 = −|α〉, P †

α = P
†
α̃ ). The

coherent pair-creation operator

P † =
∑
α∈�

vαP †
α (2)

creates a pair of particles coherently distributed with structure
coefficients vα over the entire single-particle space, where the
summation index α ∈ � runs over the “pair index” space �
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that is half of the single-particle space (for example, only
those orbits with a positive magnetic quantum number m).
The unnormalized pair-condensate wave function of the 2N -
particle system

(P †)N |0〉 (3)

builds in pairing correlations. Gradually breaking coherent
pairs, the state with S = 2s unpaired nucleons is

a†a† · · · a†︸ ︷︷ ︸
S=2s

(P †)N−s |0〉. (4)

Loosely speaking, S is defined as the generalized-seniority
quantum number [6–11]. More precisely, one distinguishes
between the subspace of S unpaired nucleons and the subspace
of generalized seniority S. Any state of S ′ < S unpaired
nucleons can be written as a linear combination of the states of
S unpaired nucleons, after substituting several P † by Eq. (2).
Therefore, the subspace of S unpaired nucleons consists of the
subspaces of generalized-seniority S,S − 2, . . . ,2,0. Practical
calculations usually truncate the full many-body space to the
subspace of S unpaired nucleons (the subspace up to a certain
generalized seniority S); the basis consists of all the states of
the form (4). S = 2N corresponds to the full space without
truncation.

The full space has particle-hole symmetry. Assuming the
single-particle space has degeneracy 2�, the Hilbert space
consisting of Slater determinants of 2N particles is the same
as that of 2N̄ ≡ 2(� − N ) holes. Now I consider whether
the above two Hilbert spaces truncated to s broken pairs (up
to generalized seniority S = 2s) are still the same [0 � s �
min(N,N̄ )]. To simplify notations I define

ηs
s ′ = (N − s)!

(N̄ − s ′)!

∏
α∈�

vα.

Talmi has shown [12] that for s = 0 they are the same.
The 2N -particle pair condensate (3) is the same state as the
2N̄ -hole pair condensate

(P̄ )N̄ |0̄〉 (5)

with reciprocal pair structures

P̄ =
∑
α∈�

1

vα

Pα. (6)

In Eq. (5),

|0̄〉 =
∏
α∈�

P †
α |0〉 (7)

is the completely occupied state (closed shell). This result
was rederived with the correct normalization in Eq. (2.90) of
Ref. [10],

(P †)N |0〉 = η0
0(P̄ )N̄ |0̄〉. (8)

For s = 1, Talmi proved [12] particle-hole symmetry
through commutator techniques in the (coupled) J scheme.
Here I prove it in the M scheme by using the identity (8) in
Pauli-blocked spaces; this proof seems more clear and can be

directly generalized to s � 2. I divide the s = 1 states into
two types: a†

αa
†
β(P †)N−1|0〉 (where α and β belong to different

time-reversal pairs, Pα �= Pβ) and a†
αa

†
α̃(P †)N−1|0〉. The first

type is

type I = a†
αa

†
β(P †)N−1|0〉 = (P †

[αβ])
N−1a†

αa
†
β |0〉, (9)

where P
†
[αβ] ≡ P † − vαP †

α − vβP
†
β is the coherent pair-

creation operator removing P †
α and P

†
β due to Pauli blocking.

For convenience I introduce |[αβ]} to represent a subspace
of the original single-particle space, by removing pairs of
single-particle levels |α〉,|α̃〉 and |β〉,|β̃〉 from the latter. The
vacuum state and the closed shell of |[αβ]} are represented
by |0〉[αβ] = |0〉 and |0̄〉[αβ] = PαPβ |0̄〉. Within the subspace
|[αβ]} the identity (8) still holds,

(P †
[αβ])

N−1|0〉[αβ] = (N − 1)!

(N̄ − 1)!

⎛
⎝γ �=α,β∏

γ∈�

vγ

⎞
⎠(P̄[αβ])

N̄−1|0̄〉[αβ]

= η1
1

vαvβ

(P̄[αβ])
N̄−1|0̄〉[αβ], (10)

where P̄[αβ] ≡ P̄ − Pα/vα − Pβ/vβ , and the power of P̄[αβ]

corresponding to (P †
[αβ])

N−1 is computed as (� − 2) − (N −
1) = N̄ − 1. Equation (9) results from acting a†

αa
†
β on Eq. (10).

Using a†
αa

†
β |0̄〉[αβ] = aα̃aβ̃ |0̄〉, Eq. (9) becomes

type I = η1
1

aα̃aβ̃

vαvβ

(P̄ )N̄−1|0̄〉. (11)

The result is an s = 1 state in the hole representation.
The second type is treated similarly.

type II = a†
αa

†
α̃(P †)N−1|0〉 = (P †

[α])
N−1P †

α |0〉. (12)

The identity (8) in the subspace |[α]} gives [(� − 1) −
(N − 1) = N̄ ]

(P †
[α])

N−1|0〉[α] = (N − 1)!

N̄ !

⎛
⎝γ �=α∏

γ∈�

vγ

⎞
⎠(P̄[α])

N̄ |0̄〉[α]

= η1
0

vα

(P̄[α])
N̄ |0̄〉[α].

Therefore, Eq. (12) becomes

type II = η1
0

vα

(P̄[α])
N̄ |0̄〉. (13)

The binomial expansion of (P̄[α])N̄ = (P̄ − Pα/vα)N̄ =
(P̄ )N̄ − N̄ (P̄ )N̄−1Pα/vα + · · · has N̄ + 1 terms, but terms
with (Pα)2 or higher powers vanish when acting on |0̄〉 due
to Pauli’s principle. Thus,

type II = η1
0

vα

(P̄ )N̄ |0̄〉 + η1
1

(vα)2
aα̃a ˜̃α(P̄ )N̄−1|0̄〉, (14)

where I have used η1
0N̄ = η1

1 and Pα = aα̃aα = −aα̃a ˜̃α . In
the result the first component is an s = 0 hole state (linear
combinations of the s = 1 hole states), and the second
component is an s = 1 hole state. Combining Eqs. (11)
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and (14), I write in summary

a†
αa

†
β(P †)N−1|0〉 = η1

1

aα̃aβ̃

vαvβ

(P̄ )N̄−1|0̄〉 + δβα̃

η1
0

vα

(P̄ )N̄ |0̄〉. (15)

Equation (15) tells that the s = 1 particle states can be expressed as the s = 1 hole states. The converse is also true. Thus, the
particle space of s = 1 broken pairs and the hole space of s = 1 broken pairs are the same.

The s � 2 states could be treated similarly. In general, an unnormalized s = h + k particle state is written as

state = a†
α1

a†
α2

· · · a†
α2h︸ ︷︷ ︸

2h

P
†
β1

P
†
β2

· · ·P †
βk︸ ︷︷ ︸

k

(P †)N−s |0〉, (16)

where α1,α2, . . . ,α2h belong to different pairs of orbits (Pα1 ,Pα2 , . . . ,Pα2h
are all different). The identity (8) in the Pauli-blocked

subspace |[α1 · · · α2h,β1 · · ·βk]} reads [(� − 2h − k) − (N − s) = N̄ − h]

(
P

†
[α1···α2h,β1···βk]

)N−s |0〉[α1···α2h,β1···βk]

= (N − s)!

(N̄ − h)!

∏
γ∈� vγ

vα1 · · · vα2h
vβ1 · · · vβk

(
P̄[α1···α2h,β1···βk]

)N̄−h|0̄〉[α1···α2h,β1···βk ]

= ηs
h

vα1 · · · vα2h
vβ1 · · · vβk

(
P̄[α1···α2h,β1···βk]

)N̄−h|0̄〉[α1···α2h,β1···βk].

Therefore, Eq. (16) becomes

state = ηs
h

aα̃1aα̃2 · · · aα̃2h

vα1 · · · vα2h
vβ1 · · · vβk

(
P̄[β1···βk]

)N̄−h|0̄〉. (17)

Power expanding the right-hand side,

(
P̄[β1···βk ]

)N̄−h|0̄〉 =
(

P̄ − Pβ1

vβ1

− Pβ2

vβ2

− · · · − Pβk

vβk

)N̄−h

|0̄〉

=
∑

0�n�k

(N̄ − h)!

(N̄ − h − n)!

∑
{γ1···γn}∈{β1···βk}

(−)nPγ1Pγ2 · · · Pγn

vγ1vγ2 · · · vγn

P̄ N̄−h−n|0̄〉, (18)

where the summation index {γ1 · · · γn} ∈ {β1 · · · βk} means taking n different elements {γ1 · · · γn} from the set {β1 · · · βk}, and
summing over all possibilities. Consequently Eq. (17) becomes

state = a†
α1

a†
α2

· · · a†
α2h︸ ︷︷ ︸

2h

P
†
β1

P
†
β2

· · · P †
βk︸ ︷︷ ︸

k

(P †)N−s |0〉

= aα̃1aα̃2 · · · aα̃2h

vα1 · · · vα2h
vβ1 · · · vβk

∑
0�n�k

ηs
h+n

∑
{γ1···γn}∈{β1···βk}

(−)nPγ1Pγ2 · · ·Pγn

vγ1vγ2 · · · vγn

P̄ N̄−h−n|0̄〉, (19)

where I have used ηs
h(N̄ − h)!/(N̄ − h − n)! = ηs

h+n. The result has components of the broken-pair number s ′ = h + n =
h,h + 1, . . . ,s. Hence, the particle states of s broken pairs can be expressed as the hole states of s broken pairs. The converse is
also true. This proves particle-hole symmetry: the 2N -particle space and the 2N̄ -hole space truncated to arbitrary s broken pairs
(up to generalized seniority S = 2s) are the same [0 � s � min(N,N̄ )]. This symmetry has been tested numerically by the fast
algorithm that was developed [14] and applied [15,16] recently.

Odd-particle systems also have particle-hole symmetry in generalized seniority: the (2N + 1)-particle space and the (2N̄ − 1)-
hole space truncated to arbitrary S = 2s + 1 unpaired particles and holes (up to generalized seniority S = 2s + 1) are the same
[0 � s � min(N,N̄ − 1)]. The actual transformation between the particle and the hole representations is (s = h + k)

a†
α1

a†
α2

· · · a†
α2h+1︸ ︷︷ ︸

2h+1

P
†
β1

P
†
β2

· · ·P †
βk︸ ︷︷ ︸

k

(P †)N−s |0〉

= −aα̃1aα̃2 · · · aα̃2h+1

vα1 · · · vα2h+1vβ1 · · · vβk

∑
0�n�k

ηs
h+n+1

∑
{γ1···γn}∈{β1···βk}

(−)nPγ1Pγ2 · · · Pγn

vγ1vγ2 · · · vγn

P̄ N̄−1−h−n|0̄〉. (20)
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III. J-SCHEME GENERALIZED SENIORITY

In the previous section I show that particle-hole symmetry
exists in the generalized-seniority truncated subspaces and
find the transformation between the particle and the hole
representations in the M scheme. In this section I assume
the rotational symmetry and write the transformation in the
(coupled) J scheme. The single-particle space is generally
written as {j1,j2, . . . ,jD}. The pair structure vjm = vj is
independent of the magnetic quantum number m. I choose
the phase of the time-reversed orbit to be

ãj,m = (−)j−maj,−m. (21)

The tensor ãj transforms in the same way as a
†
j under rotation.

In even systems the J-scheme transformation results from
coupling the M-scheme transformation (19) with Clebsch-
Gordan coefficients. For components with the maximal gener-
alized seniority,(

a
†
j1
a
†
j2

· · · a
†
j2s

)τ,J
(P †)N−s |0〉

= ηs
s

(
ãj1 ãj2 · · · ãj2s

)τ,J

vj1vj2 · · · vj2s

(P̄ )N̄−s |0̄〉 + O(s − 1), (22)

where O(s − 1) represents terms of generalized seniority
2(s − 1) and less, and τ collects all the intermediate angular
momenta to specify the state in the selected coupling scheme.
The result is neat: simply replacing a

†
ji

by ãji
.

Odd-particle systems could be treated similarly. Coupling
the M-scheme transformation (20) with Clebsch-Gordan co-
efficients, one has for components of the maximal generalized
seniority(

a
†
j1
a
†
j2

· · · a†
j2s+1

)τ,J
(P †)N−s |0〉

= −ηs
s+1

(
ãj1 ãj2 · · · ãj2s+1

)τ,J

vj1vj2 · · · vj2s+1

(P̄ )N̄−1−s |0̄〉 + O(s − 1).

(23)

The Appendix provides the full expressions [explicit form
of O(s − 1)] for the simplest cases of S = 2,3,4 unpaired
nucleons.

IV. MICROSCOPIC INTERACTING BOSON
(FERMION) MODEL

In this section I show that the microscopic model space
of the interacting boson (fermion) model (IBM and IBFM)
[17–23], as a subspace of the full fermionic many-body space,
has particle-hole symmetry. But the full mapping procedure
preserves the symmetry only at the exact mid-shell. The usual
mapping prescription adopts the particle (hole) representation
in the lower (upper) shell [11]; there is no ambiguity at the
switching mid-shell nucleus.

The IBM uses bosons of various multipolarities as building
blocks of the model space. Microscopically, the bosons are
identified [10,18,19,21] as collective nucleon pairs

B† =
∑
j1j2

βj1j2

(
a
†
j1
a
†
j2

)λ
(24)

with the multipolarity λ and the pair structure βj1j2 . Initially
onlyS (λ = 0) andD (λ = 2) bosons are introduced, but later it
is found that bosons with λ > 2 are frequently necessary [21].
[My P † operator (2) is macroscopically the IBM S boson.]
The mapping from the shell model determines the bosonic
Hamiltonian.

Different mapping methods exist [19]. Here I refer to the
Otsuka-Arima-Iachello mapping [18] summarized in a broader
sense as seven steps. First, on the boson side:

(1) Select important bosons; for example, S, D, and G
(λ = 4) bosons.

(2) Construct the basis of the bosonic space �b from
operators S, D, and G.

(3) From all the allowed (by symmetry) terms consisting of
S, D, and G bosons, select the dominant terms entering
into the bosonic Hamiltonian H and other observables
such as the quadrupole moment Q; each term has a
strength parameter χi yet to be determined.

(4) Compute the matrices Mb of the bosonic operators H
andQwithin the bosonic space �b; the matrix elements
have parameters χi .

Next, on the fermion side:

(5) Choose the microscopic pair structures (24) for S, D,
and G; identify microscopically each bosonic basis
state with its fermionic state. These fermionic states
span a subspace �f of the full many-body space.

(6) Compute the matrices Mf of the fermionic operators
H and Q within the fermionic space �f .

Finally, for the mapping:

(7) Fix χi such that Mb from step 4 closely resembles, by
certain criteria, Mf from step 6.

I consider mapping methods that fix in step 5 the micro-
scopic pair structures (24) in each nucleus separately; hence,
the pair structures vary along the isotopic (isobaric) chain for
realistic Hamiltonians. The S pair is usually determined by
minimizing the mean energy or from the BCS theory. The
D and G pairs could be fixed by, for example, diagonalizing
H in the generalized-seniority-2 sector. In a given nucleus,
I consider whether the mapping results depend on choosing
between the particle and the hole representations.

The subspace �f of step 5 and the matrices Mf of step
6 are the same under the two representations. This has
been proved by Talmi [12] and Johnson and Vincent [13]
for S and D bosons; here I generalize their conclusion to
cases with many kinds of bosons. Equation (22) immediately
gives

(B†
1B

†
2 · · · B†

s )τ,J (P †)N−s |0〉
= ηs

s (B̄1B̄2 · · · B̄s)
τ,J (P̄ )N̄−s |0̄〉 + O(s − 1), (25)

where the s particle-pair operators B
†
i = ∑

βi
j1j2

(a†
j1
a
†
j2

)λi (i =
1,2, . . . ,s) could have different multipolarities λi and pair
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structures βi
j1j2

. The corresponding hole-pair operators are

B̄i =
∑
j1j2

βi
j1j2

vj1vj2

(
ãj1 ãj2

)λi
. (26)

In the particle representation, step 5 microscopically identifies
the bosonic basis state as

(B†
1B†

2 · · ·B†
s )τ,J (S†)N−s |0〉

⇔ P̂2s(B
†
1B

†
2 · · · B†

s )τ,J (P †)N−s |0〉, (27)

where P̂2s is the projection operator that keeps only com-
ponents of the maximal generalized seniority 2s from the
fermionic wave function (B†

1B
†
2 · · ·B†

s )τ,J (P †)N−s |0〉 [the
left-hand side of Eq. (25)]. The projection is necessary
[10,11,18] because the bosons Bi (i = 1,2, . . . ,s) commute
with the S boson, and the macroscopic bosonic state
(B†

1B†
2 · · ·B†

s )τ,J (S†)N−s |0〉 is orthogonal to those of a dif-
ferent number of S†. I clarify one point of the current
mapping scheme. For example, in the S-D-G model space,
although the fermionic state (D†G†)J=6(P †)N−2|0〉 is orthog-
onal to all the fermionic s = 1 states D†(P †)N−1|0〉 and
G†(P †)N−1|0〉, the boson image is still defined with the projec-
tion (D†G†)J=6(S†)N−2|0〉 ⇔ P̂4(D†G†)J=6(P †)N−2|0〉. Here
the projected-out s = 1 components have the I boson (mul-
tipolarity λ = 6) not included in the S-D-G model space.
Similarly in the hole representation the bosonic basis state
is identified as

(B̄†
1B̄†

2 · · · B̄†
s )τ,J (S̄†)N̄−s |0〉

⇔ P̂2s(B̄1B̄2 · · · B̄s)
τ,J (P̄ )N̄−s |0̄〉. (28)

Equations (25), (27), and (28) imply

P̂2s(B
†
1B

†
2 · · · B†

s )τ,J (P †)N−s |0〉
= ηs

s P̂2s(B̄1B̄2 · · · B̄s)
τ,J (P̄ )N̄−s |0̄〉. (29)

Therefore, in step 5 the fermionic subspace �f and its basis
are the same under the two representations; the matrices
Mf of step 6 are also the same. Orthogonalizing, for
example, the fermionic particle states P̂4(B†

1B
†
1)J (P †)N−2|0〉

and P̂4(B†
2B

†
2)J (P †)N−2|0〉 (the two different bosons B1 and

B2 commute in the IBM) does not affect the conclusion;
the orthogonalization happens in the particle and the hole
representations simultaneously.

However, in general the bosonic space �b is different under
the two representations: the particle �b has N bosons and the
hole �b has N̄ bosons. Diagonalizing the mapped bosonic
Hamiltonian H in �b also gives different results. Only at
the exact mid-shell N = N̄ = �/2 (� must be even) does
the full mapping procedure preserve particle-hole symmetry.
Examples include semimagic nuclei 116

50 Sn66, 148
66 Dy82, and

186
82 Pb104, and the open-shell nucleus 170

66 Dy104. The usual
mapping prescription switches from the particle representation
to the hole representation beyond the mid-shell [11]; at the
switching nucleus of the particle number 2N = � (� is even),
both representations give the same results without ambiguity.

The ambiguity reported in Ref. [24] is because they insist the
pair structures (24) are invariant along the isotopic chain.

For odd systems with 2N + 1 particles, the microscopic
IBFM [22,23] uses the model space consisting of one (or more)
unpaired fermion(s) and various bosons. From Eq. (23) we
immediately have

(a†
jB

†
1B

†
2 · · ·B†

s )τ,J (P †)N−s |0〉

= −ηs
s+1

vj

(ãj B̄1B̄2 · · · B̄s)
τ,J (P̄ )N̄−1−s |0̄〉 + O(s − 1),

(30)

where B
†
i and B̄i are still defined by Eqs. (24) and (26). The

normalization ηs
s+1/vj is different when a

†
j is on different j

levels. Projecting onto the maximal generalized seniority S =
2s + 1, the O(s − 1) terms drop out. The microscopic IBFM
model space preserves particle-hole symmetry.

However, the full mapping procedure preserves particle-
hole symmetry only if the spaces �b of the two representations
are the same. The particle �b has N bosons (and one unpaired
fermion) and the hole �b has N̄ − 1 bosons. The condition
of the same boson number N = N̄ − 1 implies that the
nucleus has the particle number 2N + 1 = � (� must be odd);
this is at the exact mid-shell. Examples include semimagic
nuclei 67

28Ni39 and 89
39Y50, and the open-shell nucleus 78

39Y39.
The usual mapping prescription switches between the two
representations in mid-shell nuclei and has no ambiguity.

If the microscopic IBM or IBFM is only used to truncate
the shell-model space (to �f of step 5), we diagonalize Mf

of H from step 6 without doing further mapping. In this case
the truncation scheme has particle-hole symmetry. Its validity,
especially compared with the nucleon-pair approximation of
Sec. V, deserves further study (both are inspired by IBM).

V. NUCLEON-PAIR APPROXIMATION

Inspired by the IBM, the nucleon-pair approximation (NPA)
[25–29] further truncates the generalized-seniority subspace;
the unpaired nucleons are coupled into collective pairs of
certain multipolarities (quadrupole, octupole, hexadecapole,
etc.). The NPA basis state is

(B†
1B

†
2 · · · B†

s )τ,J (P †)N−s |0〉 (31)

as appeared on the left-hand side of Eq. (25), where B
†
i =∑

βi
j1j2

(a†
j1
a
†
j2

)λi is still defined by Eq. (24). In NPA we
diagonalize the exact shell-model Hamiltonian inside the NPA
subspace without mapping onto bosons.

Here I show that in general particle-hole symmetry is lost
in the NPA subspace. As a counterexample, I consider the
simplest version of NPA consisting of only S† [my P † (2)] and
D† pairs. From Eq. (19), the particle state of two D† coupled
to J = 4 is transformed as

(D†D†)J=4(P †)N−2|0〉
= η2

2(D̄D̄)J=4(P̄ )N̄−2|0̄〉 + η2
1(Ḡ)J=4(P̄ )N̄−1|0̄〉. (32)

In the hole representation a new hexadecapole pair Ḡ =∑
βG

j1j2
(ãj1 ãj2 )λ=4 appears, and its structure βG

j1j2
is completely
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determined by the structure of D†. The particle-hole symmetry
is broken.

Near the mid-shell, the NPA should be careful in choosing
between the particles and the holes as the degree of freedom;
the results are generally different.

VI. OTHER TRUNCATION SCHEMES

In this section I consider particle-hole symmetry in other
popular truncation schemes on top of the generalized seniority.
These schemes are frequently used to truncate the shell-model
space; here they act in the same way on the unpaired nucleons
of the generalized-seniority subspace (4).

In the multi-j model, I introduce nj as the number of
unpaired nucleons [particles (holes) in the particle (hole)
representation] on the j level. The truncation nj � nmax

j ,
where nmax

j are preselected integers, preserves particle-hole
symmetry. This is easily proved through Eq. (19): on the
right-hand side the number of unpaired holes, nhole

j , is less
than (some β index is not selected into the γ indices) or equal
to (all are selected) the number of unpaired particles, n

particle
j ,

of the left-hand side.
However, following the same argument, the truncation

nj � nmin
j (nmin

j are preselected integers) breaks particle-hole
symmetry.

Another popular truncation scheme is cutting by mean
energies of the basis states. For each basis state |i〉 in the
form (4), we compute Ei = 〈i|H |i〉 and remove all the states
with Ei > Emax (Emax is the energy cutoff). In general this
scheme breaks particle-hole symmetry. As shown in Eq. (19),
some hole states from the right-hand side possibly had higher
mean energy than the particle state from the left-hand side.

The particle-hole symmetry in other truncation schemes
could be analyzed through the transformations (19) and (20)
for even and odd systems.

VII. CONCLUSIONS

In this work I show that particle-hole symmetry survives the
truncation from the full shell-model space to the generalized-
seniority subspace. The explicit transformations between the
states in the particle and the hole representations are provided
in both the M scheme and the J scheme.

Based on the results, I consider this symmetry in popular
theories that could be regarded as further truncations on top
of the generalized seniority. Specifically, the microscopic
model space of the interacting boson (fermion) model, as a
subspace of the full fermionic many-body space, has particle-
hole symmetry. But the full mapping procedure preserves
the symmetry only at the mid-shell. The usual mapping
prescription adopts the particle (hole) representation in the
lower (upper) shell; there is no ambiguity at the switching
mid-shell nucleus. The nucleon-pair approximation breaks
particle-hole symmetry. Other studied truncation schemes are
restricting the unpaired nucleon number in each j level, and
cutting by the mean energy of the basis states.

Practical calculations frequently truncate the shell-model
space due to the dimension limit. Near the mid-shell, the
results of this work guide the choice between the particle

and the hole representations, for truncation schemes related
to the generalized seniority. More care is due if the symmetry
is broken.
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APPENDIX

I give the full expressions [O(s − 1) terms in Eqs. (22)
and (23)] of the J-scheme transformations for the lowest
generalized seniority S = 2,3,4. These results frequently find
applications in other theories such as the boson mapping. In
even systems and S = 2s = 2,

(
a
†
j1
a
†
j2

)J
(P †)N−1|0〉 = Cs=1 + δJ0δj1j2

η1
0 ĵ1

vj1

(P̄ )N̄ |0̄〉,

where ĵ1 ≡ √
2j1 + 1, and I have used (a†

j a
†
j )0

0 =∑
m a

†
jmã

†
jm/

√
2j + 1. Cs=1 = η1

1(ãj1 ãj2 )J (P̄ )N̄−1|0̄〉/(vj1vj2 )
stands for the s = 1 term as given in Eq. (22).

In even systems and S = 2s = 4, the unpaired part
(a†

j1
a
†
j2
a
†
j3
a
†
j4

)τ,J divides into several cases. If the four particles
are on different j levels (j1, j2, j3, and j4 are all different),
the O(s − 1) terms vanish and the full expression is given by
Eq. (22). If only two of the four j ’s are the same (j , j3, and j4

are different),[
(a†

j a
†
j )λ

(
a
†
j3
a
†
j4

)λ′]J
(P †)N−2|0〉

= Cs=2 + δλ0δλ′J
η2

1 ĵ
(
ãj3 ãj4

)J

vjvj3vj4

(P̄ )N̄−1|0̄〉,

where λ is even and Cs=2 =
η2

2[(ãj ãj )λ(ãj3 ãj4 )λ
′
]J (P̄ )N̄−2|0̄〉/(v2

j vj3vj4 ) according to
Eq. (22). If the four j ’s are pairwise equal (j �= j ′),

[(a†
j a

†
j )λ(a†

j ′a
†
j ′ )λ

′
]J (P †)N−2|0〉

= Cs=2 + δλ0δλ′J (1 − δλ′0)
η2

1 ĵ (ãj ′ ãj ′ )J

vjv
2
j ′

(P̄ )N̄−1|0̄〉

+ δλ′0δλJ (1 − δλ0)
η2

1 ĵ
′(ãj ãj )J

vj ′v2
j

(P̄ )N̄−1|0̄〉

+ δλ′0δλ0δJ0
η2

0 ĵ ĵ ′

vjvj ′
(P̄ )N̄ |0̄〉,

where λ, λ′ are even and Cs=2 =
η2

2[(ãj ãj )λ(ãj ′ ãj ′ )λ
′
]J (P̄ )N̄−2|0̄〉/(v2

j v
2
j ′ ). If three or four

particles are on the same j level, the result is complicated,
involving various recoupling of the identical a

†
j operators; I

skip it here.
In odd systems and S = 2s + 1 = 3, I give the full

expression for (a†
j1
a
†
j2
a
†
j3

)τ,J (P †)N−1|0〉. If the three particles
are on different j levels (j1, j2, and j3 are all different), the
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O(s − 1) terms vanish and the full expression is given by
Eq. (23). If only two of the three j ’s are the same (j �= j ′),

((a†
j a

†
j )λa†

j ′ )J (P †)N−1|0〉 = Cs=1 − δλ0δJj ′
η1

1 ĵ ãj ′

vjvj ′
(P̄ )N̄−1|0̄〉,

where Cs=1 = −η1
2((ãj ãj )λãj ′ )J (P̄ )N̄−2|0̄〉/(v2

j vj ′ ) according
to Eq. (23). If the three j ’s are the same,

(a†
j a

†
j )0a

†
jm(P †)N−1|0〉 = Cs=1 − (2j − 1)η1

1ãjm

ĵv2
j

(P̄ )N̄−1|0̄〉,

where Cs=1 = −η1
2(ãj ãj )0ãjm(P̄ )N̄−2|0̄〉/v3

j . And for even
λ �= 0,

(a†
j a

†
j )λ0a

†
jm(P †)N−1|0〉

= Cs=1 + 2(−)j−mCλ0
jmj−m

η1
1ãjm

v2
j

(P̄ )N̄−1|0̄〉,

where Cs=1 = −η1
2(ãj ãj )λ0 ãjm(P̄ )N̄−2|0̄〉/v3

j .
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