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Nuclear level density: Shell-model approach
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Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the
stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density.
Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the
density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian.
The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting
particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with
those derived from exact diagonalization. The resulting level density is much smoother than that coming from
conventional mean-field combinatorics. We study the role of various components of residual interactions in the
process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results
for the traditionally used parameters are also compared with standard phenomenological approaches.
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I. INTRODUCTION

Knowledge of the level density is an important element in
understanding the behavior of a quantum many-body system of
interacting particles in various physical processes. In nuclear
physics, this knowledge is necessary for the description of
numerous reactions, including those of astrophysical or tech-
nological interest. Cross sections can be very sensitive to the
level density, that typically grows exponentially as a function
of the excitation energy and the number of constituents.
In turn, the theoretically predicted level density is sensitive
to the statistics of particles, their specific interactions, and
available orbital space that, in realistic computation, usually
has to be truncated. Apart from that, the level density in a
finite self-bound system, such as the atomic nucleus, can be
different for the available classes of eigenstates characterized
by different quantum numbers of exact constants of motion (in
nuclei total spin J , parity � if we neglect weak interaction,
and isospin T if we neglect interactions violating charge
independence).

Below we consider a problem of practical microscopic
calculation of the level density for a nucleus described by
a Hamiltonian of the shell-model type. In this framework it
does not matter if the Hamiltonian is derived from a more
fundamental approach or fit phenomenologically with the
use of experimental data. We assume that the Hamiltonian
describes the low-lying energy spectra, transition rates, and
other observables known from experiments reasonably well.
Then the task is to predict the level density of the system at
higher excitation energy, in the region beyond direct mea-
surements resolving individual quantum states. Practically,
the relevant factual milestones, apart from the low-lying
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spectroscopy, are the regions of isolated neutron resonances
near neutron separation energy and the results of the Oslo
method and related experimental approaches [1–4]. Of course,
any practical shell-model Hamiltonian loses its validity outside
of the truncated orbital space where this Hamiltonian was
expected to work. At some excitation energy, the states of
the system come from the particle orbitals not included in
the model. However, with available computational means, the
space of validity of the model Hamiltonian can be broad
enough, in particular including the excited states involved;
for example, in astrophysical reactions at a typical stellar
temperature. We can also hope to use the microscopic results
for the nuclei far from stability, where the level density is
usually predicted by pure phenomenology [5].

Another physical limitation arises from the obvious fact that
the states involved in the reactions belong to the continuum,
while the standard shell-model calculations work in the
discrete spectrum. Instead of discrete states, here one has
to deal with resonances seen in various reactions. Then the
whole definition of the level density becomes questionable
and, strictly speaking, one has to move to the complex
plane of resonances. However, the traditional approach is still
meaningful if the typical widths of the involved states are
small compared to the spacings between the states with the
same quantum numbers. In what follows we limit ourselves to
this situation.

Neglecting the continuum effects, the trivial solution for
the level density generated by a certain Hamiltonian would
be a full diagonalization of the Hamiltonian matrix in an
appropriate orbital basis. However, this is practically only
possible in sharply truncated orbital spaces, which might be
only sufficient for relatively light nuclei, such as those in the
sd shell [6]. In many realistic cases of current interest, the
dimensions of corresponding matrices, even in subspaces with
given quantum numbers, are prohibitively large. Moreover,
such a diagonalization is anyway superfluous because we
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do not need full information on every excited state in
spectral regions of high level density. The level density is,
by construction, a statistical notion.

In this situation, we are looking for the statistical solution
of the problem. The physical justification of such an approach
lies in the fact that, at small level spacings, the stationary
nuclear states are extremely complicated superpositions of
simple determinantal states with integer occupation numbers
of definite orbitals. Gradually switching on inter-particle
interactions and going in this process through multiple avoided
crossings of various configurations we come to chaotic states
[6,7] with observable properties smoothly changing along the
spectrum. Therefore our problem reduces to finding a realistic
way to describe this smooth evolution.

This goal can be reached using the methods of statistical
nuclear spectroscopy [8–10]. Already in the framework of
a single partition (a certain configuration of independent
particles occupying the mean field levels), the level density
after including the particle interaction rapidly goes to the
Gaussian limit with increasing particle number [11]. This
is some kind of manifestation of the central limit theorem.
The many-level, and therefore many-partition, generalization
should give a reliable image of the total level density for
an accepted orbital scheme. This has to be done for each
class of global quantum numbers. This direction of theoretical
search has a long history. We would like to especially mention
the works in the direction of statistical spectroscopy applied
to shell-model Hamiltonians; see for example [12,13]. After
several preliminary publications, our successful algorithm was
constructed [14] and opened for public use [15]. The results
of implementing this algorithm for the level density in sectors
with given values of global constants of motion are practically
identical to those from the full diagonalization when the
latter is possible. For well-tested shell-model Hamiltonians,
the results are in good agreement with available experimental
data.

For many years, starting with the classic work by Bethe
[16], the nuclear level density was estimated using combi-
natorics based on the ideas of a Fermi gas. An influential
review of earlier approaches of this type was given by
Ericson [17], and later derivations can be found in [18–21];
see also [22]. Recent achievements in this direction [23–25]
include the pairing correlations considered as a part of the
self-consistent mean field in the framework of the BCS theory
or Hartree-Fock-Bogoliubov variational ansatz. The shell-
model Monte Carlo methods [26–28], being very demanding
computationally, work relatively well, at least with some parts
of the full shell-model interaction, but require the projection
to the correct values of spin and parity.

The chaotization of the dynamics mentioned above leads
to the possibility of describing the physics of excited states
at high level density in terms of statistical thermodynamics
including temperature, entropy, etc. This was understood in
the application to nuclear reactions from the early times
of nuclear physics [16,29,30]. Detailed analysis of atomic
[31,32] and nuclear [6,33] chaotic states supported an old
idea [34] of thermalization in a closed system driven by the
interactions between the constituents, with no heat bath: the
average over a generic chaotic wave function in a chaotic

region is equivalent to the average over a standard equilibrium
thermal ensemble [35]. Currently this idea, sometimes called
the “eigenfunction thermalization hypothesis,” is extensively
discussed in the many-body physics community [36]. One of
the purposes of the current publication is to compare the exact
shell-model nuclear level density with phenomenological ideas
based on the Fermi-gas picture at a certain temperature. We
look at these ideas and, based on them, equations from the
viewpoint of our numerical results. Our attention will be
mostly concentrated on the usually cited empirical parameters
of the level density and their energy and spin dependence.
Another point of interest is in the role of various components
of the shell-model interactions in the formation of the level
density. One important result is that the consideration of the
mean field, even with addition of the BCS-type pairing, is
not sufficient. Incoherent components of the interaction in a
finite many-body system, as a rule neglected in the mean-field
combinatorics, play a significant role in smoothing the energy
behavior of the level density.

In what follows we briefly explain the method and give ex-
amples of practical calculations. The results will be compared
with what would follow from traditional phenomenological
models.

II. MOMENTS METHOD

We consider a finite system of interacting fermions de-
scribed by the standard Hamiltonian

H =
∑

1

ε1a
†
1a1 + 1

4

∑
1234

V12;34a
†
1a

†
2a3a4 (1)

that contains the mean-field part with effective single-particle
energies ε1 and the antisymmetrized two-body interaction.
The generalized numerical subscripts combine all quantum
numbers of single-particle orbitals. In this form the method
can be applied to nuclei, atomic or molecular electrons,
atoms in traps, etc.; any system where the residual interaction
is sufficiently strong to produce complicated eigenstates.
The three-body forces can be included in the same way,
although the computations become more cumbersome. Using
a phenomenological shell-model Hamiltonian we assume that
many-body forces, at least partly, are included in fitted matrix
elements. The quality of the Hamiltonian is checked by
the explicit applications to individual low-lying states and
comparison with available experimental information.

In a finite self-bound system, such as the atomic nucleus, the
total angular momentum (nuclear spin) is exactly conserved,
supplying good global quantum numbers J and M . Therefore
it is convenient from the very beginning to use a spherically
symmetric basis of single-particle orbitals |jm) which define,
along with the orbital momentum �, main quantum number
ν and isospin τ , the quantum numbers combined in Eq. (1)
into a unified numerical subscript. If the orbital space is
sufficiently broad, this spherical shell model can describe
intrinsic deformation without violating rotational symmetry
[37]. In practice, the operators in the Hamiltonian can be
combined into pairs, such as (a3a4)L�, with the angular
momentum quantum numbers of the pair, L�, fixed through
the Clebsch-Gordan coefficients. In the same way, for the
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isospin-invariant forces, the isospin of the pair can be also
fixed, and then the interaction V in a restricted orbital space is
defined through a finite number of pairwise matrix elements.
If more convenient for computations, one can as well use the
M scheme without vector coupling.

The practical algorithm of calculations in the M scheme
follows from individual configurations, p (partitions), which
are possible distributions (n1,n2, . . . ) of available N particles
over single-particle orbitals (here the index 1 does not include
the projection m). The many-body states |α〉 possible for each
partition form a subspace where α combines total quantum
numbers N,M,T3 and parity. It is convenient [14] to use the
proton-neutron formalism.

Let Dαp be the dimension of the class of states with
global quantum numbers α built on the partition p. As shown
in statistical spectroscopy [9,11] and confirmed in many
examples by the exact shell-model diagonalization, the density
of states for a given partition is close to Gaussian. Of course,
this is the main assumption based on a rich experience with
the features of quantum chaos in mesoscopic systems. The
characteristics of the Gaussian are defined by the moments
(traces) of the actual Hamiltonian. The centroid is just the
mean energy value for a given partition,

Eαp = 〈H 〉αp = 1

Dαp

Tr(αp)H. (2)

The dispersion of the Gaussian, σαp, is the second moment,

σ 2
αp = 〈H 2〉αp − E2

αp ≡ 1

Dαp

Tr(αp)H 2 − E2
αp. (3)

It is important to stress that the calculation of these traces
does not require the diagonalization of large-scale matrices.
The first moment (2) is the diagonal matrix element of the
Hamiltonian averaged over the partition, while the second
moment (3) is the sum of squared off-diagonal elements
along one line of the Hamiltonian matrix, again averaged over
the lines corresponding to the partition. It is known that the
dispersion for each basis state very weakly fluctuates within a
partition [6,38] even prior to the next averaging. The second
moment includes all interactions coupling the partitions. If
the traces were calculated in the M scheme, we obtain the
density of states counting all M-degenerate states within the
multiplets. To obtain the level density for given spin J , we have
to find in a standard way the difference of traces for M = J
and M = J + 1.

The total level density is given by summing the contribu-
tions of partitions using the constructed Gaussians Gαp(E)
with their centroids (2) and widths (3):

ρ(E; α) =
∑

p

DαpGαp(E). (4)

As was understood earlier [39], it is better to use finite range
Gaussians,

Gαp(E) = G(E − Eαp + Eg.s.; σαp), (5)

where

G(x; σ ) = C
{

e−x2/2σ 2
, |x| � ησ,

0, |x| > ησ.
(6)

Here Eg.s. is the ground state energy to be defined separately,
C is the normalizing factor,

∫
dx G(x,σ ) = 1, and the cutting

finite-range parameter η has to be found empirically [40]; its
actual value η ≈ 2.8 agrees with the analysis of the shape of
typical nuclear strength functions [41].

Following the recipe of Ref. [42] we make an important
addition to the algorithm. In many realistic applications, the
orbital space contains several shells labeled by the harmonic
oscillator quanta N . In this case, the standard formulation of
the shell model with cross-shell transitions includes unphysical
excitations of the center of mass. These spurious states are
to be excluded from the level density. In some versions of
the shell model, these states are artificially shifted to high
energies. Here, the subtraction of ghost states is accomplished
by renormalizing the contaminated level density ρ(E,J ;N )
through the recurrence relations. For example, while the N =
0 case, which will be called the ρ◦(E,J ; 0) approximation, is
free of admixtures, the pure level density ρ◦ at the next step (no
admixtures of the single center-of-mass excitation) is found as

ρ◦(E,J ; 1) = ρ(E,J ; 1) −
J+1∑

J ′�|J−1|
ρ(E,J ′; 0). (7)

Here the sum goes over the intermediate angular momenta
J ′ from |J − 1| to J + 1 since the center-of-mass operator
is equivalent to a vector. If higher admixtures N > 1 are
present, the recurrence relation has to include a corresponding
number of steps back. This makes the calculation of the trace
of H 2 with various intermediate states slightly more involved
[40,43].

III. EXAMPLES OF LEVEL DENSITY

A. Comparison with the exact solution of the shell model

The first natural check of the approach is in comparison
of the resulting level density with the picture arising from
the full shell-model diagonalization in the cases where such a
diagonalization is technically plausible. The sd-shell model
for a long time has been known as the best example of
exact diagonalization. The model is completely fixed by
the effective single-particle energies d5/2, s1/2, and d3/2 and
63 phenomenologically fitted matrix elements of two-body
interaction. The model works extremely well for practically all
observables of sd nuclei and not only for the lowest states. For
example, both the experiment [44] and the sd-shell model [42]
indicate the existence of ten stationary states with J� = 0+ up
to an excitation energy of 15 MeV in 28Si, therefore providing
the same average level density, at least at not very high energy;
the mean level spacing between those 0+ levels is 0.95 MeV in
the experiment and 1.02 MeV in the shell-model calculation.

Figure 1 illustrates the results of the moments method
for calculating the level density in 24Mg (see also Fig. 1 in
Ref. [40] for similar results in 28Si, a typical object of sd-shell
model applications that served long ago as a testing ground for
quantum chaos [6]). The level density for different classes of
states, here 0+, 1+, 2+, and 3+, is always a smooth curve of
Gaussian type. Of course, as the calculations have been done in
the restricted orbital space, the real physical result that can be
juxtaposed to the experimental data and used for the reaction
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FIG. 1. Nuclear level densities for 24Mg, � = +1 and various spins, for the sd-shell and USDB two-body interaction [45]; full shell-model
diagonalization (solid curves) vs moments method (dashed curves); finite-range parameter η = 2.7.

calculations always corresponds only to the left-hand side of
the full graph and to the excitation energy below the centroid
maximum.

Various specific quantum numbers (total spin, except for the
maximal one, and parity) produce a level density of the same
qualitative behavior, with the integral corresponding to exact
multiplicities of states with a given set of quantum numbers
in a fixed orbital space. All examples look the same. The
agreement with the exact shell-model diagonalization is almost
perfect, with slightly more visible fluctuations for the class
J� = 0+ that has a smaller total dimension. In all cases we
see a small deviation near the centroid, which supposedly can
be eliminated by taking into account the fourth moment of the
Hamiltonian (but it makes no sense to go for such complicated
and time-consuming calculations to improve the results in the
region outside the physically relevant area). In the cases of
the shell model with cross-shell transitions, the removal of the
spurious states restores the symmetry of the level density and
makes the calculation of the third moment unnecessary.

The smoothness and Gaussian behavior of results in all
cases confirm the possible thermodynamic interpretation in
terms of entropy S(E) (mean logarithm of the level density)
and temperature, dS/dE = 1/T (E). Formally, the centroid
of the level density for the finite orbital space corresponds to
infinite temperature and the right half of the curve to negative
temperatures. The full shell-model analysis of the wave
functions [6] has found that the same effective temperature
can be extracted by a single-particle thermometer using

the occupation numbers of available spherical orbitals for
individual stationary many-body states. The interaction of
the quasiparticles in the self-consistent mean field acts as the
heat bath, and the chaotic mixing of the eigenstates leads to
thermalization even in such a small Fermi system.

B. Elimination of spurious states

As mentioned above, the full shell-model diagonalization in
the cases with the presence of transitions between the orbitals
of opposite parity (excitations across the oscillator shells)
brings in ghost states related to the center-of-mass motion
rather than to intrinsic excitations. We explained above the
recurrent techniques used for eliminating these spurious states
and obtaining the pure level density. The recipe frequently
used in the shell model is the brute-force shift of the undesired
states to high energy by adding to the Hamiltonian under
diagonalization a Lawson term [46] that in the harmonic
oscillator field of frequency ω looks like (β > 0)

H ′ = β

[
Hc.m. − 3

2
�ω

]
A

�ω
. (8)

As was shown long ago [6], this recipe indeed generates a new
branch of eigenstates shifted to high energy (by about ∼βNA)
but having essentially the same complexity (measured by the
information entropy) as their predecessors without spurious
admixtures. The separation of unphysical spurious states
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according to the recurrence relations (7) works very well; for
more details and examples see Ref. [14].

IV. SHELL-MODEL PREDICTIONS AND MEAN-FIELD
COMBINATORICS

The widely used standard road to the nuclear level density
is going through the mean-field representation of the nuclear
dynamics. This traditional approach is based on the classical
idea [16,17] of a Fermi gas, where the excited levels result from
combinations of many particle-hole excitations. Practically,
the combinatorics used single-particle excitations from the
fully occupied Fermi surface identified with the ground state
population of the lowest individual orbitals. At low excitation
energy, a renormalization of the level density is related to
the gap due to the Cooper pairing. In complex nuclei, the
low-energy levels observed inside the gap can be interpreted
as collective excitations, vibrational and/or rotational. As the
collective phenomena of these types correspond typically to
the slow self-consistent motion of many particles, it is natural
to expect that such coherent combinations of single-particle
excitations partly compensate the deficit of levels at low energy
due to the pairing gaps and give rise to the so-called collective
enhancement of the level density [22,48] in comparison to
the single-particle combinatorics of independent particles and
holes. Modern refined approaches of this class account in
various forms for the pairing phenomenon that changes the
excitation spectrum, especially in even-even nuclei [23–25].

In the spirit of mean-field combinatorics, one has to expect
the corresponding suppression of level density at higher
excitation energy (damping of collective enhancement); the
level density is just redistributed. When the general level
density grows, the vibrational modes become strongly mixed
with simpler excitations of the two-quasiparticle and more
complicated structures, as is known very well from the widths
of the giant resonances. With smoothing shell gaps, it is harder
to distinguish between rotational and intrinsic motion. Recent
experiments in nuclei, where low-lying collective excitations
are well known, did not find clear phenomena of collective
enhancement and its fade-out [49].

In not too heavy nuclei, the quasiparticle combinatorics
(on the base of the BCS or Hartree-Fock-Bogoliubov pairing
description) reveals stepwise effects of subshell occupation
and pair breaking. This leads, at relatively low energy, to the
irregular picture of the level density that clearly reflects these
steps. The shell-model Hamiltonians, as a rule, contain all
interaction matrix elements allowed by the selection rules. One
of the main conclusions of the full shell-model calculation is
that the presence of all interactions is significantly smoothing
the whole picture so that it is hard to see the traces of individual
families which could be still recognized only by the special
observables and selection rules for the individual transitions.
We can recall that our algorithm still starts with the partitions
formed by independent particles, which then overlap and lose
their boundaries.

The shell-model Hamiltonian contains all pairing matrix
elements (and not in the simplified form with constant matrix
elements) as well as the interaction processes responsible
for multipole-multipole forces and deformation. Therefore all
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FIG. 2. Low-energy level density for 64Ge, spin J = 0 and
� = +1. The solid curve presents the calculation in the pf shell
with the GXPF1A interaction, the dashed curve corresponds to the
calculation in the larger model space with the level g9/2 added,
and the dotted curve presents the results obtained using the HFB
single-particle energies and the combinatorial method [47].

collective effects are fully taken into account if the orbital
space is sufficiently broad. Figure 2 shows the comparison
of the level densities in the nucleus 64Ge (see also Figs. 4
and 5 in [40] for similar results in 54Fe and 52Cr nuclei).
The thin dotted lines give the level density found with the
mean-field combinatorics built on the Hartree-Fock mean
field and BCS pairing. All irregularities found through the
mean-field combinatorics are completely smoothed in the full
moments calculation. This is a typical result encountered in
all examples. Again we see that the method under discussion
produces a level density practically identical to the full
shell-model diagonalization when the latter is possible. One
can note that the shell-model and mean field approaches use
different interactions. The shell-model parameters were fitted
to describe well the low-energy data. We believe that the
discrepancy between the shell-model and the mean field level
densities has not accidental but qualitative character evident in
all considered examples.

Using the moments method we can calculate nuclear level
densities in very large model spaces, for example in the pf +
g9/2 model space. The interaction we used for this model space
was built starting with the GXPF1A interaction for the pf
model space, to which the G-matrix elements that describe
the interaction between the pf shell and the g9/2 orbit were
added. The single-particle energy for the g9/2 orbit was fixed at
−0.637 MeV. Figures 2 and 3 present the level density of states
0+ in the N = Z nucleus 64Ge calculated in the pf space (solid
curves) and pf + g9/2 shell (dashed curves); the dotted curve
in Fig. 2 corresponds to HFB+combinatorial method. Figure 3
illustrates the influence of the enlargement of the orbital shell-
model space [47]. The level density becomes sensitive to the
inclusion of the next shell (g9/2) only at excitation energy
greater than 14 MeV, which means that the region of neutron
resonances could be reliably evaluated with the more narrow
orbital space. This case has important ramifications for the
astrophysical consideration of element abundance since this

064304-5



ROMAN SEN’KOV AND VLADIMIR ZELEVINSKY PHYSICAL REVIEW C 93, 064304 (2016)

2 4 6 8 10 12 14 16 18 20 22
Excitation energy (MeV)

0
1000
2000
3000
4000
5000
6000
7000

N
uc

le
ar

 le
ve

l d
en

si
ty

 (M
eV

-1
)

Moments, pf-shell
Moments, pf+g9/2-shell

64Ge, JΠ=0+

FIG. 3. Level density for 64Ge, spin J = 0 and � = +1. The
densities are calculated in pf (solid curve) and in pf + g9/2 (dashed
curve) shells. The range of excitation energy is increased, compared
to Fig. 3, up to 24 MeV.

nucleus is considered to be a waiting point in the r process of
nucleosynthesis.

V. COHERENT AND INCOHERENT INTERACTIONS

As the whole shell-model Hamiltonian contributes to the
traces defining the level density, we can explore the effects of
individual components of the effective interactions, including
the “incoherent” parts of the full Hamiltonian which do not
significantly contribute to the formation of the mean field.
These parts of the interaction determine the finite lifetime
of the simple quasiparticle (or collective) modes and their
fragmentation in terms of genuine complicated eigenstates of
exceedingly entangled nature. In particular, these collision-like
interactions are responsible for the formation of chaotic
states with high information entropy and the process of
thermalization [6]. For example, it was shown [50–52] that the
exactly considered pairing interaction contains some chaotic
features, but they are still not sufficient for establishing the

complete chaotic picture comparable to the predictions of the
Gaussian orthogonal ensemble.

Below we show the evolution of the level density as a func-
tion of the interaction modes included in the full calculation of
the moments. Although it is not difficult to vary all individual
matrix elements, here we use a simplified approach, presenting
the whole two-body interaction Hamiltonian in the sd-shell
model as consisting of two parts with variable intensity,

H = h + k1V (pairing) + k2V (nonpairing). (9)

Here h contains the single-particle energies, V (pairing) in-
cludes all matrix elements with the pairs of nucleons in the
channel JπT = 0+1, while all other shell-model matrix ele-
ments are attributed to the last term. The numerical coefficients
k1 and k2 are varied, giving rise to different versions of the
shell model; the realistic case emerges at k1 = k2 = 1. It is
easy to understand that in the moments method (and in the
full diagonalization, see [6]) new independent components of
the Hamiltonian add in quadratures to the final width of the
shell-model level density.

The global evolution of the full level density in 28Si, as the
coefficients k1 = k2 are varied from 0.1 to their realistic values,
is shown in the left graph of Fig. 4. The low residual interaction
obviously keeps untouched the independent-particle partition
structure of the Hilbert space that recalls the results of the
mean-field combinatorics. As the parameters k1,k2 grow,
the next curves show the development of the final picture.
The configurational structure is gradually washed out by the
residual interaction, leading to the final smooth level density
discussed earlier. Let us stress that the observed evolution
is not a consequence of the superposition of all subspaces
with different values of J . The individual subspace J� = 0+,
the right graph on Fig. 4, demonstrates practically the same
evolution.

Figure 5 describes the situation when the nonpairing
components of interaction are suppressed, k2 = 0.1, but the
pairing strength evolves. Superposing all values of J (the left
graph of Fig. 5), we see that the smooth Gaussian-like curve
is achieved only at the nonrealistically high pairing strength.
Again the picture is nearly the same when only the states J = 0
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FIG. 4. Level density for 28Si, sd model space. Different curves correspond to different scale factors of Eq. (9): k1 = k2 =
{0.1,0.2,0.3,0.5,1.0} when the pairing and nonpairing parts of the interaction scale similarly. The left graph corresponds to the total density
with all J included, while the right graph describes the evolution of the J = 0 density.

064304-6



NUCLEAR LEVEL DENSITY: SHELL-MODEL APPROACH PHYSICAL REVIEW C 93, 064304 (2016)

0 10 20 30 40 50 60 70 800

2000

4000

6000

8000

10000 k1=0.1
k1=0.2
k1=0.3
k1=0.5
k1=1.0
k1=1.5

k1=1.0

k1=1.5

k1=0.5

k1=0.3
k1=0.1

k1=0.2

0 10 20 30 40 50 60 70 800

50

100

150

200

250

300

350
k1=0.1
k1=0.2
k1=0.3
k1=0.5
k1=1.0
k1=1.5

k1=1.0

k1=0.5

k1=1.5

k1=0.1

k1=0.2 k1=0.3

FIG. 5. Level density for 28Si, sd model space. The nonpairing interaction is always turned off, k2 = 0.1, while the pairing interaction
scales are k1 = {0.1,0.2,0.3,0.5,1.0,1.5}. The left graph corresponds to the total density with all J included, while the right graph describes
the evolution of the J = 0 density.

are considered (the right graph of Fig. 5). The realistic pairing
strength, k1 = 1.0, at the absence of nonpairing interactions,
is still not sufficient for the fully smooth level density. At
low excitation energy <20 MeV the evolution of the level
density for J = 0 clearly shows the disappearance of the
typical large oscillations with the growth of pairing. Here,
indeed, the pairing interaction shifts the noticeable part of
levels to higher energies. If the pairing matrix elements are
fixed at the empirical value, Fig. 6, the large bumps from the
original partitions do not appear but the incoherent interactions
very much broaden the final result. The generic character of
this scenario is confirmed by Fig. 7 for 52Fe.

VI. THERMODYNAMIC DESCRIPTION AND
COMPARISON WITH PHENOMENOLOGY

A. Simple Fermi-gas

The shell-model Hamiltonian (1) starts from noninteracting
particles or quasiparticles, elementary excitations in the mean
field of a certain symmetry that determines the appropriate
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k1=1.0, k2=0.2
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FIG. 6. Level density for 28Si, J = 0, sd model space. The black
curve presents k1 = 1.0, k2 = 0.1, then the remaining parts of the
interaction are increased together with k2 up to the red curve (k1 =
k2 = 1.0) that describes the realistic interaction.

quantum numbers of excited states. For nuclei, an adequate
image is that of the perfect two-component Fermi gas. The
ground state of the system is the filled Fermi sphere, and the ex-
cited states are described by the particle-hole picture. In the
realistic many-body physics, this is just an initial step that
has to be followed by switching on the interaction between
particles and holes. However, already at this stage, the level
density increases exponentially, which justifies the traditional
phenomenological approaches.

The particle-hole phenomenology uses the steepest descent
method to calculate the level density as a function of excitation
energy E through the Laplace transform of the partition
function, which leads to the standard result for one type of
particles,

ρ(E) = 1

4
√

3 E
e2

√
aE, (10)

where the level density parameter is

a = π2

6
νF (11)
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FIG. 7. Level density for 52Fe, all J , pf model space. This figure
and its color scheme are similar to the left panel of Fig. 4.
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and νF is the density of single-particle states at the Fermi
surface. The generalization to a proton-neutron system leads
to a modified expression,

ρ(E) =
√

π ā

12 (aE)5/4
e2

√
aE = 61/4 ν̄

12 (νF E)5/4
e2

√
aE, (12)

where the parameters a and ā now include the total
single-particle density of states at the Fermi surface, νF =
νF (n) + νF (p), and the effective single-particle density ν̄ =
ν2

F /(2
√

νF (n)νF (p) ), correspondingly, see Eq. (11). The
singularities at E → 0 in densities (10) and (12) show that
the statistical method of calculation is invalid at too low
excitation energy where the number of nuclear many-body
states is small. The notion of the level density requires that the
excitation energy be greater than the average distance between
the single-particle levels,

E � 1

νF

. (13)

In thermodynamic language, the nuclear temperature t is
introduced through the Fermi-gas formula for the excitation
energy,

E = at2. (14)

In general, for the low excitation energy region it is always
recommended to use directly the available experimental
information.

If one tries to compare the thermodynamic level density of
Fermi-gas type with experimental data, it is hard to expect the
numerical agreement of the level density parameter (11) with
that required by data even if exponential growth of the total
level density takes place. As mentioned in the Introduction,
when the level density grows, the residual interactions lead
to multiple avoided crossings and mixing of many-body
levels with the same exact quantum numbers. This process
of chaotization evolves the level network considered as a

function of the interaction strength close to the aperiodic
crystal with a small average spacing. The whole set of
stationary states becomes locally close to the predictions of
the Gaussian orthogonal ensemble of random matrices. The
wave functions here are quite complicated superpositions of
very many particle-hole states. The energy behavior of the
level density is now close to a Gaussian [6], with a total width
that is given by adding in quadrature the initial width due to the
mean-field quasiparticles and the dispersion of the off-diagonal
matrix elements of residual interactions.

Figure 8 shows the parameters a found from the shell-model
calculation of the total level density ρ(E) fitted by

ln[ρ(E)] = 2
√

aE − 5
4 ln E + constant. (15)

To extract the parameter a we fit ( ln[ρ(E)] + 5
4 ln E) using a

linear function of
√

E. As the result we get the slope 2
√

a and
the intercept. The energy interval used for the interpolation
should not start too low (it has to contain sufficiently many
states and not go too far where the shell model does not work).
For the fitted a parameters in Fig. 8 we used the energy interval
from 5 to 25 MeV.

Both the parameter a and the constant show the change
clearly correlated with the microscopic filling of the nuclear
shells. The parameter a reveals the maximum in the middle
of the shell occupation, as should have been expected from
the construction of the model. This is the known Rosenzweig
effect [55] described by Ericson [17] as due to “a considerably
larger number of rearrangement possibilities when the shell
is half-filled.” The empirical estimates for the same nuclei
are available from the level density at the neutron resonances
energy [53] (these do not show considerable shell effects) and
by extrapolation from low-lying levels [54] where one can see
very weak shell effects in the region of the mass number around
A ≈ 50. The constant in Eq. (15) is small but also shows
in some cases the shell-model dependence with a minimum
in counter-phase with the parameter a. Extrapolations of the
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FIG. 8. Interpolation of the single-particle level density parameter a; see Eq. (15) and the details in the text. The fitting energy range is
5–25 MeV. Left panel: different colors present different isotopes or isotones. Right panel: moments-method calculation with interpolation
(black circles), fit using the experimental data on neutron resonances (Ref. [53], red diamonds), and fit using experimental low-lying levels
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064304-8



NUCLEAR LEVEL DENSITY: SHELL-MODEL APPROACH PHYSICAL REVIEW C 93, 064304 (2016)

20 30 40 50 60 70 80
Mass number, A

0

2

4

6

8
Pa

ra
m

et
er

 a
  (

M
eV

-1
)

fitting range: 1-5 MeV
fitting range: 5-25 MeV

FIG. 9. Level density parameter (11) fitted in the simple Fermi-
gas model for sd and pf shell nuclei. The empty circles (red
color) present the fitting range 1-5 MeV and the filled black circles
correspond to the fitting range 5–25 MeV. The error bars show the
uncertainty of the level density parameter a due to the fitting.

level density parameter a from low-lying levels and neutron
resonances and from the shell-model approach use different
energy intervals to fit the data; this could be one of the possible
sources of a big discrepancy, but we agree that the question is
far from being completely understood.

Figure. 9 shows the dependence of the level density
parameter a on the energy range for which the fitting was
performed. The empty circles (red color) present the low
energy fit, around 1–5 MeV, while the filled circles (black
color) present the standard 5–25 MeV energy range fit. We
can see that at low energies the fitted level density parameter a
is slightly larger, but still it is not large enough to be compared
with the empirical estimates [53,54].

B. Back-shifted Fermi-gas model

In this paper we do not discuss in detail the nuclear pairing
correlations and its importance for the nuclear level densities,
leaving this for future consideration. One of the standard
phenomenological ways to account for pairing correlation is
to use the back-shifted Fermi-gas formula (BSFG) [18,56],

ρBSFG(E) =
√

π ā

12 [a(E − δ)]5/4
e2

√
a(E−δ), (16)

where the excitation energy is shifted by the pairing energy
parameter δ. This introduces a new free parameter that should
be fitted alongside the level density parameter a. The pairing
energy parameter δ is in general different for even-even,
odd-odd, and even-odd nuclei due to the formation of Cooper
pairs, and does not necessarily coincide with the corresponding
pairing gap parameters � or 2�.

Figure 10 shows the sensitivity of the level density
parameter a to inclusion of the energy shift δ. The quantity
plotted along y axis is the relative change in a if we shift the
excitation energy by δ,

100% × a − aBSFG

a
, (17)
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FIG. 10. The relative changes in the level density parameter a

due to the pairing energy shift δ, Eq. (17), shown for sd- and pf -
shell nuclei. The empty circles present the fit with the energy shift
δ = −1 MeV and the filled circles correspond to δ = 1 MeV.

where aBSFG is the level density parameter fitted using Eq. (16)
with a fixed value of the pairing energy δ. We can see that
the a parameter varies only in a ±6% range when the shift
changes from δ = −1 MeV (presented by the empty circles)
to δ = 1 MeV (filled circles). We conclude that the inclusion
of the pairing energy shift δ practically does not change the
level density parameter a, instead it affects the constant in
Eq. (15), which is not very interesting and can be fixed by the
normalization.

C. Constant temperature model

The model of the energy dependence of the level density,
different from the Fermi-gas phenomenology (12), was sug-
gested long ago [18,56] and gradually has become popular
among practitioners. It is assumed that the level density, at
least up to 10 MeV excitation energy, and maybe even higher
[57–59], can be described by the constant temperature T . This
temperature is the single parameter defined, in the simplest
version, according to the thermodynamics as

T =
[

d ln ρ(E)

dE

]−1

. (18)

The philosophy behind this approach is usually explained [60]
in terms of the first-order phase transition that goes through
the latent heat at fixed temperature. Although typically this
assumes the melting of the Cooper pairs, in fact one can
also talk about other types of correlated structures which are
undergoing something similar to the liquid-gas phase transition
or even the first stage on the road to multifragmentation. In a
more detailed description, the effective temperature parameter
can be different for the classes of states with different quantum
numbers, although such a generalization does not seem appli-
cable from the viewpoint of the thermal equilibrium between
various degrees of freedom. Such an effective temperature
parameter (plus a corresponding constant) could be fitted in a
reasonable energy range to represent the partial (with certain
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FIG. 11. Thermodynamic temperature as a function of excitation
energy, Eq. (18), calculated in the moments method for 28Si, top four
curves (black color), and for 56Fe, the bottom four curves (blue color).

spin and parity) or total nuclear level densities as

ln[ρ(E,J )] = E

TJ

+ constant,

ln[ρ(E)] = E

T
+ constant. (19)

It is immediately clear that the constant temperature
model cannot be compatible globally with our shell-model
calculations. In the truncated orbital space the global level
density will always look like a Gaussian with the effective
temperature (18)

Teff = σ 2
E

Ec − E
, (20)

changing with energy from positive to negative values on dif-
ferent sides of the centroid energy Ec. Here σE is the effective
width of the Gaussian that reflects the summed contribution
of all components of interactions. However, at relatively low
energy the level density can grow approximately exponentially,
effectively resulting in an approximately constant temperature.

Here we give a couple of examples showing the exponential
fit to the level density of different J classes and global level
density. Figure 11 shows how the actual temperature [see
Eq. (18)] calculated by the moments method for 28Si and 56Fe
depends on the excitation energy. The temperatures calculated
for certain spins J and for all spins (the total density) are not
constants: they increase with the excitation energy as suggested
in Eq. (20). The corresponding constant temperature fit of
Eq. (19) performed for the sd and pf nuclei is presented
in Fig. 12. The effective constant temperatures in the figure
depend on the range of the excitation energies where the fit
was performed: the greater the excitation energy the higher the
effective constant temperature.

We note that the majority of the fitted temperatures in
Figs. 11 and 12 are concentrated in small regions near 2–
5 MeV, while there are some exceptional cases of unreasonably
high temperatures of 10–20 MeV that correspond to the
nuclei with complete or almost complete shells for one or
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FIG. 12. The constant temperature T and the constant [see
Eq. (19)] fitted for the energy range 5–15 MeV. Different sets of
nuclei from the pf shell with complete and almost complete shells are
presented by different colors: Z = 20 (red), Z = 21 (green), Z = 22
(blue), and N = 40 (brown).

two sorts of nucleons when the Fermi gas approximation is
obviously invalid. Finally, Fig. 13 shows how good the constant
temperature approximation is. The dotted curve (fitting energy
range is 5–15 MeV) and the dashed curve (the range is 5–
25 MeV) present the corresponding constant-temperature level
densities for 28Si. We can see that these densities work pretty
well inside the energy interval where they were fitted compared
to the “exact” density calculated within the moments method.
As the excitation energy increases, the constant-temperature
densities stop working (they rise very high too fast). Figure 14
shows the fitted temperatures when different energy ranges are
used: red diamonds present the 1–5 MeV fitting range, black
circles and blue squares present 5–15 MeV and 5–25 MeV
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Eq. (19). The inset presents the magnified low-energy region.
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FIG. 14. Constant temperature fitted for sd and pf shell nuclei.
The diamonds (red color) present the fitting range 1–5 MeV, the
circles (black color) correspond to 5–15 MeV, and the squares (blue
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energy ranges correspondingly. It is natural that at higher
excitation energies the effective temperature increases, thus

reducing the rate at which the density grows; see Eqs. (19) and
(20).

VII. SPIN CUTOFF PARAMETER

The distribution of levels with certain values of global nu-
clear constants of motion (angular momentum, parity, isospin)
is of special interest in all applications. Our method directly
supplies the required information for every set of those exact
quantum numbers. The standard phenomenological approach
to the angular momentum dependence of the level density
assumes random angular momentum coupling as a diffusion
process in the space of projections M . The total projection
results from a random walk, and the fraction of states with a
given projection M is Gaussian,

ρ(E,M)

ρ(E)
= 1√

2πσ 2
e−M2/2σ 2

. (21)

Then, as mentioned earlier, the density of states with a given
value of J is just a difference

ρJ (E) = ρ(E,M = J ) − ρ(E,M = J + 1). (22)
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FIG. 15. Logarithm of level density, ln[ρ(E,M)], versus M2, Eq. (23), calculated for 28Si, 52Fe, 44Ca, and 64Cr. Different colors present
different excitation energies: 5 MeV (black), 10 MeV (red), 15 MeV (green), 20 MeV (blue), and 25 MeV (brown). Dots correspond to the
moments method calculations, the solid lines are linear interpolations; see the text.
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Assuming this random angular momentum coupling, we
expect a linear M2 dependence of the logarithm of the level
density,

ln[ρ(E,M)] = ln[ρ(E,M = 0)] − M2

2σ 2
. (23)

The top two graphs of Fig. 15 show the M2 dependences of
ln[ρ(E,M)] at different energies for 28Si and 52Fe. The lines
correspond to the best linear interpolation of this logarithm.
In these examples we see a very good linear behavior
and the smooth dependence on excitation energy. This can
be interpreted as evidence for random coupling of angular
momenta of individual particles.

The situation is different in two next examples, the bottom
graphs in Fig. 15, 44Ca and 64Cr. Here we do not have a
regular energy dependence and, therefore, a clearly defined
parameter σ . This is what could be expected from physical
arguments. The whole idea of the Gaussian random walk in
the angular momentum space breaks down here because of
the isospin limitations. The nucleus 44Ca in the shell-model
description has only four identical f7/2 neutrons, which allow
for isospin T = 2 only and for the interaction in the particle-
particle channel with total isospin T = 1. Therefore many
values of the total spin are forbidden. The second nucleus,
64
24Cr40, in the pf shell model has only four valence protons
with the same limitations of the angular momentum coupling.
In both cases, it is hard to expect the requirements of the
random spin coupling to be satisfied.

The value of the spin cutoff parameter σ can be extracted
from the curves, as in Fig. 15 where we observe a good linear
behavior. The first step is to interpolate the shell-model density

with a linear function of M2; see Eq. (23). The obtained slopes
in Fig. 15 corresponding to different energies allow us to get the
spin cutoff parameter as a function of excitation energy σ 2(E).
Using thermodynamic language, we expect this parameter to
be proportional to temperature, or, for a Fermi-gas, to the
square root of energy. The corresponding parametrization can
be chosen as

σ 2 = α
√

E (1 + βE). (24)

The coefficient α can be taken [17] from Fermi-gas statistical
mechanics as ∝ νF T 〈M2〉, where νF is the single-particle
level density at the Fermi surface, or by assuming that the
angular momentum corresponds on average to a rigid-body
rotation with moment of inertia ∝ T A5/3. The second step
is to interpolate σ 2/

√
E (which we know numerically from

the first step) using a linear function of excitation energy
E. The results of such a two-step interpolation are shown
in Fig. 16. We define the parameters α and β, Eq. (24), from
the energy region 5–25 MeV. Comparing two groups of nuclei,
sd shell and pf shell, we indeed see the average growth of
the spin cutoff parameter for two representative groups being
proportional to A5/3. It is impossible here to make a selection
between the statistical estimate of the spin cutoff parameter
and the estimate from the moment of inertia, as both of them,
being too crude to reflect shell effects inside each group which
are certainly present, do not agree with the A5/3 estimate and
require a more detailed analysis. The constant β from Eq. (24)
is small but, at least for the pf nuclei, may also reflect some
shell effects.

Finally, Fig. 17 presents an attempt to compare exact
shell-model densities with the Fermi-gas model densities
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FIG. 17. Partial nuclear level densities for 28Si, � = +1, and various spin projections M . The solid curves present the shell model densities
(sd shell and USDB two-body interaction [45]) while the dashed curves show the Fermi-gas model densities (with the fitted parameters, see
text for details). The insets show the magnified low-energy area that spans from 5 to 25 MeV, where the densities were actually fitted.

calculated with the fitted parameters. For the comparison we
picked the 28Si nucleus in the sd model space with the USDB
two-body interaction [45]. The plotted Fermi-gas densities
combine Eqs. (12), (21), and (24) as

ρFG(E,M) = 1

E5/4
exp

[
2
√

aE + const − M2

2σ 2

]
, (25)

where the spin cutoff parameter is σ 2 = α
√

E(1 + βE). The
fitted parameters are a = 1.78 ± 0.03, const = −2.92 ± 0.13,
α = 2.370 ± 0.095, and β = −0.010 ± 0.003. We can see that
up to 20 MeV, where we still can trust the shell model, the fitted
parameters provide a reasonably good agreement between the
Fermi gas and shell models. Of course, after a certain energy
the Fermi-gas densities go up exponentially while the shell-
model densities have to follow a Gaussian-type curve.

VIII. CONCLUSION

In this article we collected, explained, and summarized the
first results of an improved method for statistical calculation of
the nuclear level density for a given shell-model Hamiltonian.
The method is physically based on the chaotization of the
intrinsic dynamics by interparticle interactions. In practice,
one needs to calculate only the lowest moments of the
Hamiltonian partitioned in terms of mean-field configurations.
The first two moments turn out to be sufficient for the full
agreement of the found level density with the result of the
exact diagonalization, as checked by the cases in which
such full diagonalization was technically possible. Significant
improvements compared to the previous attempts in the same
direction include the use of finite-range Gaussian distributions
and of the recurrence relation for eliminating spurious states.
We did not discuss the determination of the ground state
energy, which is necessary for the appropriate positioning
of the level density. There are special methods for doing
this, including exponential extrapolation also based on the
chaotic properties of remote highly excited states [61]. The
shell-model level density can be calculated in any specific class

of global constants of motion (proton and neutron numbers,
total spin, parity, and isospin) as a function of excitation energy.
This is essentially what is needed for practical applications to
nuclear reactions, including those in astrophysics.

The main conclusion that can be drawn from this experience
is that the shell-model level density that results from the
statistical calculation is a smooth function of excitation energy
in all classes of quantum numbers containing a considerable
number of states allowed by the truncation of the orbital space
(of course, the state with the maximum possible total spin is
unique). Giant oscillations of the level density predicted by
calculations based on the mean-field combinatorics are almost
completely erased by the presence of incoherent collision-like
interactions, which usually remain outside of the mean-field
models or parametrizations with the so-called collective
enhancement. Taking into account all components of residual
interactions, coherent (such as pairing) and incoherent, is
necessary for an adequate description. In the same way, one
has to study the role of interaction components responsible for
the onset of deformation and rearrangement of the spectra by
rotational bands.

Comparison with phenomenological Fermi-gas ap-
proaches, including models with constant temperature, shows
that, although they are less theoretically justified than the
full direct calculation, in many cases they are nevertheless
quite reasonable for practical use. The calculations of the
spin dependence of the level density and of the relevant spin
cutoff parameter are more sensitive to assumptions, and there
are cases when they are not in good agreement with exact
results. The model of constant temperature, in our opinion,
can be applied at relatively low excitation energy but, most
probably, it reflects the general process of chaotization of the
dynamics rather than just breaking of Cooper pairs. Certainly,
the accumulation of experimental data and new applications
of the statistical method are necessary to better understand the
underlying physics.

The whole approach unavoidably suffers from the general
problems of the shell model. It is conceivable that the results
will not be sensitive to the specific version of the shell-model
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Hamiltonian when this choice agrees well with the low-lying
spectroscopy. However, the space truncation provides a natural
limitation on the applications of all such methods. The space
can be expanded (and many-body residual interactions can be
included) by paying the price of longer computational time
that can be cut off by the parallelization. Regardless, for any
choice of finite space there is a natural limit of applicability.
Luckily enough, it seems that this limitation is not essential
for many astrophysical applications. More theoretical work is
necessary to understand the resonance density for the states

deep in the continuum, which again might not be critical for
a typical stellar temperature when the resonance states under
consideration still are quite narrow.
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