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D∗ �N bound state in strange three-body systems
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The recent update of the strangeness −2 ESC08c Nijmegen potential incorporating the NAGARA and KISO
events predicts a �N bound state, D∗, in the 3S1(I = 1) channel. We study if the existence of this two-body
bound state could give rise to stable three-body systems. For this purpose we solve the bound state problem of
three-body systems where the �N state is merged with N ’s, �’s, �’s, or �’s, making use of the most recent
updates of the two-body ESC08c Nijmegen potentials. We found that there appear stable states in the �NN and
��N systems, the ��N and ��N systems being unbound.
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I. INTRODUCTION

The hyperon-nucleon (YN ) and hyperon-hyperon (YY )
interactions are not only of interest by themselves but they
constitute also the input for microscopic calculations of
few- and many-body systems involving strangeness, such
as exotic neutron star matter [1–5] or hypernuclei [6–8].
Recently the so-called KISO event was reported, the first clear
evidence of a deeply bound state of �−-14N [9]. Although
microscopic calculations are impossible in this case and,
consequently, their interpretation will be always afflicted by
large uncertainties, the ESC08c Nijmegen potential has been
recently updated to account for the most recent experimental
information of the strangeness −2 sector, the KISO [9] and the
NAGARA [10] events, concluding the existence of a bound
state, D∗, in the 3S1(I = 1)�N channel with a binding energy
of 1.56 MeV [11,12].

In a recent series of papers [13,14] we have studied the
consequences of the existence of this �N bound state in few-
baryon systems with nucleons, specifically because for some
quantum numbers such states could be stable, which can be
easily tested against future data. In Ref. [13] we analyzed
the possible existence of �NN bound states in isospin 3/2
channels, motivated by the decoupling from the lowest ��N
channel, due to isospin conservation, which would make a
possible bound state stable. We found a �NN JP = 1

2
+

bound
state with a binding energy of about 2.5 MeV.1 In Ref. [14]
we found a �NN deeply bound state with quantum numbers
(I )JP = ( 1

2 ) 3
2

+
, lying 13.5 MeV below the �d threshold, due

to the coherent effect of the deuteron, a NN bound state, and
the D∗, a �N bound state.

In a manner similar to the existence of the deuteron, a
NN bound state which is responsible for the existence of the

*humberto@esfm.ipn.mx
†valcarce@usal.es
1This binding energy was recalculated in Ref. [14] including, in

addition to the �N isospin-spin (i,j ) = (1,1) channel, also the
�N (1,0) channel, which is mainly repulsive, obtaining a bound
state with a binding energy slightly smaller, 1.33 MeV below
threshold.

triton, NNN, and the hypertriton, �NN , stable three-body
bound states; in this paper we study if the existence of the
D∗ �N bound state could give rise to other stable few-body
systems when it is merged with N ’s, �’s, �’s or �’s.
The possible existence of stable few-body states containing
a �N two-body subsystem is suggested by the attractive
character of the ��, ��, and �� interactions for some
partial waves [15–21]. There are also preliminary studies of
the ��N system [22] indicating that lattice QCD calculations
of multibaryon systems are now within sight. To carry out
our objectives, we will study the �NN , ��N , ��N , and
��N three-body systems. We will make use of the most recent
updates of the ESC08c Nijmegen potentials in the strangeness
−1, −2, −3, and −4 sectors [11,20,21], accounting for the
recent KISO [9] and NAGARA [10] events in the strangeness
−2 sector.

Recent preliminary results from lattice QCD suggest an
overall attractive �N interaction [23] which may be relevant
for the first � hypernucleus reported in Ref. [9]. Besides the
recent update of the ESC08c Nijmegen model [11,12], there
are other models predicting bound states in the �N system
prior to the KISO event, such as the chiral constituent quark
model of Ref. [24]. However, one should keep in mind that
there are other models for the �N interaction, such as the
hybrid quark-model-based analysis of Ref. [25], the effective
field theory approach of Ref. [26], and even some of the earlier
models of the Nijmegen group [16] that do not present �N

bound states and in which, in general, the interactions are
weakly attractive or repulsive. Thus, one does not expect that
these models will give rise to �NN or �YN bound states. On
the other hand, current � hypernuclei studies [6–8] have been
performed by means of �N interactions derived from the Ni-
jmegen models, and thus our study complements such previous
works for the simplest systems that could be studied exactly.

The paper is organized as follows. We will use Sec. II to
describe all technical details to solve the three-body bound-
state Faddeev equations. In Sec. III we will construct the
two-body amplitudes needed for the solution of the bound
state three-body problem. Our results will be presented and
discussed in Sec. IV. Finally, in Sec. V we summarize our
main conclusions.
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II. THE THREE-BODY BOUND-STATE
FADDEEV EQUATIONS

We will restrict ourselves to the configurations where
all three particles are in S-wave states so that the Faddeev
equations for the bound-state problem in the case of three
baryons with total isospin I and total spin J are

T
iiji

i;IJ (piqi) =
∑
j �=i

∑
ij jj

h
iiji ;ij jj

ij ;IJ

1

2

∫ ∞

0
q2

j dqj

×
∫ 1

−1
d cos θ ti;ii ji

(
pi,p

′
i ; E − q2

i

/
2νi

)
× 1

E − p2
j /2μj − q2

j /2νj

T
ij jj

j ;IJ (pjqj ), (1)

where ti;ii ji
stands for the two-body amplitudes with isospin ii

and spin ji . pi is the momentum of the pair jk (with ijk an
even permutation of 123) and qi the momentum of particle i
with respect to the pair jk. μi and νi are the corresponding
reduced masses,

μi = mjmk

mj + mk

,

νi = mi(mj + mk)

mi + mj + mk

, (2)

and the momenta p′
i and pj in Eq. (1) are given by

p′
i =

√
q2

j + μ2
i

m2
k

q2
i + 2

μi

mk

qiqj cos θ,

pj =
√

q2
i + μ2

j

m2
k

q2
j + 2

μj

mk

qiqj cos θ. (3)

h
iiji ;ij jj

ij ;IJ are the spin–isospin coefficients,

h
iiji ;ij jj

ij ;IJ

= (−)ij +τj −I
√

(2ii + 1)(2ij + 1)W (τj τkIτi ; ii ij )

× (−)jj +σj −J
√

(2ji + 1)(2jj + 1)W (σjσkJσi ; jijj ),

(4)

where W is the Racah coefficient and τi , ii , and I (σi , ji , and
J ) are the isospins (spins) of particle i, of the pair jk, and of
the three-body system.

Since the variable pi in Eq. (1) runs from 0 to ∞, it is
convenient to make the transformation

xi = pi − b

pi + b
, (5)

where the new variable xi runs from −1 to 1 and b is a
scale parameter that has no effect on the solution. With this
transformation, Eq. (1) takes the form

T
iiji

i;IJ (xiqi) =
∑
j �=i

∑
ij jj

h
iiji ;ij jj

ij ;IJ

1

2

∫ ∞

0
q2

j dqj

×
∫ 1

−1
d cos θ ti;ii ji

(
xi,x

′
i ; E − q2

i

/
2νi

)
× 1

E − p2
j /2μj − q2

j /2νj

T
ij jj

j ;IJ (xjqj ). (6)

Since in the amplitude ti;ii ji
(xi,x

′
i ; e) the variables xi and x ′

i

run from −1 to 1, one can expand this amplitude in terms of
Legendre polynomials as

ti;ii ji
(xi,x

′
i ; e) =

∑
nr

Pn(xi)τ
nr
i;ii ji

(e)Pr (x ′
i), (7)

TABLE I. Low-energy parameters of the most recent updates of the ESC08c Nijmegen interactions for the �N [11], �N [11], �N [11],
�� [21], �� [21], and �� [21] systems, and the parameters of the corresponding local potentials given by Eq. (19).

(i,j ) a (fm) r0 (fm) A (MeV fm) μA (fm−1) B (MeV fm) μB (fm−1)

(1/2,0) −2.62 3.17 280 2.00 655 3.55
�N

(1/2,1) −1.72 3.50 170 1.95 670 4.60

(3/2,0) −3.91 3.41 122 1.47 388 3.55
�N

(3/2,1) 0.61 −2.35 329 4.12 124 1.71

(0,0)a 120 1.30 510 2.30
(0,1) −5.357 1.434 377 2.68 980 6.61

�N
(1,0) 0.579 −2.521 290 3.05 155 1.60
(1,1) 4.911 0.527 568 4.56 425 6.73

(1/2,0) −9.83 2.38 370 2.20 970 3.90
��

(1/2,1) −12.9 2.00 130 1.90 340 4.50

(3/2,0) −2.80 2.45 111 2.00 315 4.73
��

(3/2,1) −10.9 1.92 147 2.07 790 6.33

(0,1) 0.53 1.63 210 1.60 560 2.05
��

(1,0) −7.25 2.00 155 1.75 490 5.60

aThis channel is discussed in Sec. III.
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FIG. 1. (a) V�N (r) potential as given by Eq. (19) with the parameters of Table I. (b) Same as (a) for the V�N (r) potential. (c) Same as (a) for
the V�N (r) potential. (d) Same as (a) for the V��(r) potential. (e) Same as (a) for the V��(r) potential. (f) Same as (a) for the V��(r) potential.

where the expansion coefficients are given by

τnr
i;ii ji

(e) = 2n+ 1

2

2r + 1

2

∫ 1

−1
dxi

×
∫ 1

−1
dx ′

i Pn(xi)ti;ii ji
(xi,x

′
i ; e)Pr (x ′

i). (8)

Applying expansion (7) in Eq. (6), one gets

T
iiji

i;IJ (xiqi) =
∑

n

Pn(xi)T
niiji

i;IJ (qi), (9)

where T
niiji

i;IJ (qi) satisfies the one-dimensional integral equation

T
niiji

i;IJ (qi) =
∑
j �=i

∑
mij jj

∫ ∞

0
dqjA

niiji ;mij jj

ij ;IJ (qi,qj ; E) T
mij jj

j ;IJ (qj ),

(10)
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with

A
niiji ;mij jj

ij ;IJ (qi,qj ; E) = h
iiji ;ij jj

ij ;IJ

∑
r

τ nr
i;ii ji

(
E − q2

i

/
2νi

)q2
j

2

×
∫ 1

−1
d cos θ

Pr (x ′
i)Pm(xj )

E −p2
j

/
2μj − q2

j

/
2νj

.

(11)

The three amplitudes T
ri1j1

1;IJ (q1), T
mi2j2

2;IJ (q2), and T
ni3j3

3;IJ (q3)
in Eq. (10) are coupled together. The number of coupled
equations can be reduced, however, when two of the particles
are identical. The reduction procedure for the case where one
has two identical fermions has been described before [27,28]
and will not be repeated here. With the assumption that
particles 2 and 3 are identical and particle 1 is the different one,
only the amplitudes T

ri1j1
1;IJ (q1) and T

mi2j2
2;IJ (q2) are independent

from each other and they satisfy the coupled integral equations

T
ri1j1

1;IJ (q1) = 2
∑
mi2j2

∫ ∞

0
dq3A

ri1j1;mi2j2
13;IJ (q1,q3; E) T

mi2j2
2;IJ (q3),

(12)

T
ni2j2

2;IJ (q2) =
∑
mi3j3

g

∫ ∞

0
dq3A

ni2j2;mi3j3
23;IJ (q2,q3; E) T

mi3j3
2;IJ (q3)

+
∑
ri1j1

∫ ∞

0
dq1A

ni2j2;ri1j1
31;IJ (q2,q1; E) T

ri1j1
1;IJ (q1),

(13)

with the identical-particle factor

g = (−)1+σ1+σ3−j2+τ1+τ3−i2 , (14)

where σ1 (τ1) stand for the spin (isospin) of the different
particle and σ3 (τ3) for those of the identical ones.

Substitution of Eq. (12) into Eq. (13) yields an equation
with only the amplitude T2,

T
ni2j2

2;IJ (q2) =
∑
mi3j3

∫ ∞

0
dq3K

ni2j2;mi3j3
IJ (q2,q3; E) T

mi3j3
2;IJ (q3),

(15)
where

K
ni2j2;mi3j3
IJ (q2,q3; E)

= gA
ni2j2;mi3j3
23;IJ (q2,q3; E)

+2
∑
ri1j1

∫ ∞

0
dq1A

ni2j2;ri1j1
31;IJ (q2,q1; E)Ari1j1;mi3j3

13;IJ (q1,q3; E).

(16)

III. TWO-BODY AMPLITUDES

We have constructed the two-body amplitudes for all sub-
systems entering the three-body problems studied by solving
the Lippmann–Schwinger equation of each (i,j ) channel,

t ij (p,p′; e) = V ij (p,p′) +
∫ ∞

0
p′′2dp′′V ij (p,p′′)

× 1

e − p′′2/2μ
tij (p′′,p′; e), (17)

where

V ij (p,p′) = 2

π

∫ ∞

0
r2dr j0(pr)V ij (r)j0(p′r), (18)

and the two-body potentials consist of an attractive and a
repulsive Yukawa term, i.e.,

V ij (r) = −A
e−μAr

r
+ B

e−μBr

r
. (19)

The parameters of all �N , �N , �N , ��, ��, and ��
channels were obtained by fitting the low-energy data of each

TABLE II. Two-body NN, YN , and YY isospin-spin (i,j ) channels that contribute to a given three-body state with total isospin I and total
spin J . The last column indicates the corresponding threshold for each state, given by

∑3
i=1 Mi − E, where Mi are the masses of the baryons

of each channel; B1 stands for the binding energy of the deuteron and B2 for the binding energy of the D∗ �N state.

(I,J ) �N �N �� ��(�N ) ��(NN ) E

(1/2,1/2) (0,0),(0,1),(1,0),(1,1) (0,1),(1,0) B1

(1/2,3/2) (0,1),(1,1) (0,1) B1
�NN

(3/2,1/2) (1,0),(1,1) (1,0) B2

(3/2,3/2) (1,1) B2

(0,1/2) (1/2,0),(1/2,1) (0,0),(0,1) (1/2,0),(1/2,1) 0
(0,3/2) (1/2,1) (0,1) (1/2,1) 0

��N
(1,1/2) (1/2,0),(1/2,1) (1,0),(1,1) (1/2,0),(1/2,1) B2

(1,3/2) (1/2,1) (1,1) (1/2,1) B2

(2,1/2) (1,0),(1,1) (3/2,0),(3/2,1) B2
��N

(2,3/2) (1,1) (3/2,1) B2

(1/2,1/2) (0,0),(0,1),(1,0),(1,1) (0,1),(1,0) B2

(1/2,3/2) (0,1),(1,1) (0,1) B2
��N

(3/2,1/2) (1,0),(1,1) (1,0) B2

(3/2,3/2) (1,1) B2
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FIG. 2. (a) Fredholm determinant for the J = 1/2 and J = 3/2 I = 1/2 �NN channels. (b) Fredholm determinant for the J = 1/2 I =
3/2 �NN channel.

channel as given in the most recent update of the strangeness
−1 and −2 [11] and strangeness −3 and −4 [21] ESC08c
Nijmegen potentials. The low-energy data and the parameters
of these models are given in Table I. The �N 1S0 (I = 0)
potential was fitted to the �N phase shifts given in Fig. 14
of Ref. [11] without taking into account the inelasticity, i.e.,
assuming ρ = 0 (this two-body channel does not contribute
to the three-body bound states found in this work). For the
�N system we only consider the I = 3/2 channels, because
the I = 1/2 channels would decay strongly to �N states.
Analogously, for the �� system we only consider the I = 3/2
channels, because the I = 1/2 channels would decay strongly
to �� states. In the case of the NN (0,1) and (1,0) channels we
use the Malfliet-Tjon models [29] with the parameters given
in Ref. [30].

The potentials obtained are shown in Fig. 1. In Fig. 1(a)
we show the V�N (r) potential that it is constrained by the
existence of experimental data. The interaction is attractive
at intermediate range and strongly repulsive at short range,
but without having bound states. The same could be said
about the I = 3/2 V�N (r) potentials shown in Fig. 1(b).
The existence of �±p cross sections tightly constrains the

interaction. As can be seen the 3S1(I = 3/2) potential is
strongly repulsive at intermediate range, which makes rather
unlikely the existence of three-body bound states containing
this �N channel. In Fig. 1(c) we show the V�N (r) potential,
where one notes the attractive character of the 3S1(I = 1) �N
partial wave, giving rise to the D∗ bound state with a binding
energy of 1.67 MeV. We also confirm how all the J = 1 �N
interactions are attractive [21]. The V��(r) potentials shown in
Fig. 1(d) are rather similar to the V�N (r) case, the intermediate
range attraction not being enough to generate two-body bound
states. The I = 3/2 V��(r) potentials are shown in Fig. 1(e);
analogously to the �� case, being attractive they do not
present two-body bound states. Regarding the �� interaction,
Fig. 1(f), we observe the attractive character of the 1S0(I = 1)
potential; although having bound states in earlier versions
of the ESC08c Nijmegen potential [16], in the most recent
update of the strangeness −4 sector it does not present a
bound state [21]. The existence of bound states in the ��
system has been predicted by different calculations in the
literature [15,17,18]. It can be definitively stated that all
models agree on the fairly important attractive character of
this channel, either with or without a bound state [19].

FIG. 3. (a) Fredholm determinant for the J = 1/2 and J = 3/2 I = 0 ��N channels. (b) Fredholm determinant for the J = 1/2 and
J = 3/2 I = 1 ��N channels.
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FIG. 4. Fredholm determinant for the J = 1/2 and J = 3/2 I =
2 ��N channels.

IV. RESULTS AND DISCUSSION

We show in Table II the channels of the different two-
body subsystems contributing to each (I,J ) three-body state.
For the ��N system we only consider the I = 2 channels,
because the I = 0 and 1 would decay strongly to ��N states.
The three-body problem is solved by means of the ESC08c
Nijmegen interactions described in Sec. III and given in Table I.
The binding energies are measured with respect to the lowest
threshold, indicated in Table II for each particular state.

We show in Fig. 2 the Fredholm determinant of all �NN
channels that had been previously studied in Refs. [13,14].
As we can see in Fig. 2(b), a bound state is found for
the (I )JP = ( 3

2 ) 1
2

+
�NN state, 1.33 MeV below the corre-

sponding threshold, 2mN + m� − B2, where B2 is the binding
energy of the D∗ �N state. However, the most interesting
result of the �NN system is shown in Fig. 2(a): the very large
binding energy of the ( 1

2 ) 3
2

+
state, which would make it easy

to identify experimentally as a sharp resonance lying some
15.7 MeV below the �NN threshold. The ��–�N (i,j ) =
(0,0) transition channel, which is responsible for the decay
�NN → ��N , does not contribute to the (I )JP = ( 1

2 ) 3
2

+

state in a pure S-wave configuration [14]. One would need
at least the spectator nucleon to be in a D wave or that the
��–�N transition channel to be in one of the negative parity
P -wave channels, with the nucleon spectator also in a P wave.
Thus, due to the angular momentum barriers, the resulting
decay width of the ( 1

2 ) 3
2

+
state is expected to be very small.

For the �NN three-baryon system with (I,J ) = (3/2,3/2),
only the (i,j ) = (1,1) �N channel contributes (see Table II),
and the corresponding Faddeev equations with two identical
fermions can be written as [31]

T = −tN�
N G0 T . (20)

Thus, due to the negative sign in the right-hand side, the �N
interaction is effectively repulsive and, therefore, no bound
state is possible in spite of the attraction of the �N subsystem.
The minus sign in Eq. (20) is a consequence of the identity of
the two nucleons, since the first term of the right-hand side of
Eq. (20) proceeds through � exchange, and it corresponds to a
diagram where the initial and final states differ only in that the
two identical fermions have been interchanged, which brings
the minus sign. This effect has been pointed out before [32].
This is the reason why the Fredholm determinant for the
(I,J ) = (3/2,3/2) �NN channel is not shown in Fig. 2(b).

We show in Fig. 3 the Fredholm determinant of all ��N
channels. As can be seen, although the �N interaction is
attractive [see Fig. 1(a)], it is not enough to generate bound
states in the three-body system. The channels with I = 1 are
more attractive than those with I = 0, where the Fredholm
determinant is rather flat, but they are far from being bound.
Note that whereas in the �NN and ��N systems the �N
interaction in the bound-state channel appears twice, in the
��N system this interaction appears only once, which is the
reason why this last system has no bound states.

We present in Fig. 4 the Fredholm determinant of the
I = 2��N channels. As expected, due to the contribution
of the strongly repulsive 3S1(I = 3/2) �N channel in all

FIG. 5. (a) Fredholm determinant for the J = 1/2 and J = 3/2 I = 1/2 ��N channels. (b) Fredholm determinant for the J = 1/2 I =
3/2 ��N channel.
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TABLE III. Separation energy, in MeV, of the different (I )J P

three-body states containing �N subsystems.

(I )J P ( 1
2 ) 3

2

+
( 3

2 ) 1
2

+

�NN 13.54 1.33
��N 2.85

I = 2 ��N three-body systems, there do not appear any
bound states.

Finally, we show in Fig. 5 the Fredholm determinant
of all ��N channels. The Fredholm determinant for the
(I )JP = (3/2)3/2+ channel is not shown in Fig. 5(b) for
the same reason explained above for the �NN system: it is
strongly repulsive. In the ��N system there appears a bound
state with quantum numbers (I )JP = ( 3

2 ) 1
2

+
, 2.85 MeV below

the lowest threshold, 2m� + mN − B2, where B2 stands for
the binding energy of the D∗ �N subsystem. Since this ��N
state has isospin 3/2 it can not decay into ��� due to isospin
conservation, so it would be stable. This stable state appears in
spite of the fact that the last update of the ESC08c Nijmegen
�� 1S0(I = 1) potential has no bound states, as is predicted,
however, by several models in the literature. If bound states
would exist for the �� system, the three-body state would
become deeply bound, as happens for the �NN system.
The I = 1/2 channels are also attractive but they are not
bound.

We summarize in Table III the stable bound states of the
different three-body systems containing a �N subsystem.

V. SUMMARY

Recent results in the strangeness −2 sector, the so-called
KISO event, reported clear evidence of a deeply bound state of
�−-14N. which could point out that the average �N interaction
might be attractive. We have made use of the most recent
updates of the ESC08c Nijmegen potential in the different
strangeness sectors, accounting for the recent experimental
information, to study the bound state problem of three-body
systems containing a �N subsystem: �NN , ��N , ��N ,
and ��N . We have found that the �NN system presents
bound states with quantum numbers (I )JP = (3/2)1/2+ and
(1/2)3/2+, the last one being a deeply bound state lying
13.54 MeV below the �d threshold. The ��N system is
unbound for all possible quantum numbers due to a reduced

contribution of the �N interaction in the bound-state channel.
We found the same for the ��N system; in this case
the negative results are even reinforced by the contribution
of the repulsive 3S1(I = 3/2) �N interaction. The ��N
system presents a bound state with quantum numbers (I )JP =
(3/2)1/2+. The states with isospin 3/2 would be stable due to
isospin conservation. The state with isospin 1/2 is expected to
present a very small decay width due to angular momentum
barriers. The ��N bound state does exist in spite of the fact
that we have used the most recent update of the ESC08c
Nijmegen potential that does not predict �� bound states.
If bound states would exist for the �� system, as predicted by
several models in the literature, the state would become deeply
bound, as happens for the �NN system.

As stated in the Introduction, the hyperon-nucleon and
hyperon-hyperon interactions are basic inputs for micro-
scopic calculations of few- and many-body systems involving
strangeness, such as hypernuclei or exotic neutron star matter.
It is expected that the recently approved hybrid experiment
E07 at J-PARC, could shed light on the uncertainties of our
knowledge of the hadron-hadron interaction in the baryon
octet. Meanwhile the scarce experimental information, to-
gether with the impossibility of microscopic calculations to
study observations like the ones reported in Ref. [9], means its
interpretation will be always afflicted by large uncertainties,
giving rise to ample room for speculation. The detailed
theoretical investigation presented in our recent works about
the possible existence of bound states based on realistic models
is a basic tool to advance knowledge of the details of the
hyperon-nucleon and hyperon-hyperon interactions. First, it
could help to raise the awareness of the experimentalist that it
is worthwhile to investigate few-baryon systems, specifically
because for some quantum numbers such states could be stable.
Second, it makes clear that strong and attractive YN and YY
interactions have consequences for the few-body sector and
can be easily tested against future data.
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