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Testing semilocal chiral two-nucleon interaction in selected electroweak processes
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A. Nogga
Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics, Forschungszentrum Jülich,
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The recently developed semilocal improved chiral nucleon-nucleon interaction is used for the first time to study
several electromagnetic and weak processes at energies below the pion production threshold. Cross sections and
selected polarization observables for deuteron photodisintegration, nucleon-deuteron radiative capture, three-
body 3He photodisintegration, as well as capture rates for decays of the muonic 2H and 3He atoms are calculated.
The Lippmann-Schwinger and Faddeev equations in momentum space are solved to obtain nuclear states. The
electromagnetic current operator is taken as a single nucleon current supplemented by many-body contributions
induced via the Siegert theorem. For muon capture processes the nonrelativistic weak current together with
the dominant relativistic corrections is used. Our results compare well with experimental data, demonstrating
the same quality as is observed for the semiphenomenological Argonne V18 potential. Compared to the older
version of the chiral potential with a nonlocal regularization, a much smaller cut-off dependence is found for the
state-of-art chiral local interaction employed in this paper. Finally, estimates of errors due to the truncation of the
chiral expansion are given.
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I. INTRODUCTION

Studies of electromagnetic and weak reactions are an
important part of nuclear physics. They deliver information
on electromagnetic properties of nuclei, transitions between
nuclear states and details of electromagnetic and weak currents
inside nuclei [1–4]. In the broader sense the precise description
of electromagnetic and weak reactions is a challenging test
for models of the nuclear Hamiltonian and current operators
as well as for the used theoretical schemes and numerical
methods. Chiral effective field theory (χEFT) is currently the
most important theoretical approach, which can and should be
tested in investigations of electromagnetic and weak processes.
Among many attempts to do that in the few-nucleon sector
we mention Refs. [2,5,6] and references therein. However,
these works were usually restricted to small energies or
the lowest orders of the chiral expansion or combine the
phenomenological potentials and chiral currents within the
so-called “hybrid” χEFT approach or cover only selected
reaction channels.

The continuous progress in the field of χEFT has resulted in
the development of sophisticated nucleon-nucleon (NN ) and
many-nucleon interactions [7,8]. These forces have been used
to describe reactions in three-nucleon (3N ) systems [9–14],
the structure of light nuclei [15], and nuclear matter [16].
Results obtained for NN scattering at energies up to 300 MeV
and nucleon-deuteron elastic scattering proved the usefulness
and high quality of chiral potentials. In these first studies the
regularization of NN and 3N potentials in momentum space
with the nonlocal regulator was used [17].

Recently it was shown [18,19] that such a regularization
scheme introduces artifacts and affects the correct physical
behavior of the potential at long distances. In addition, the
spectral function regularization had to be introduced in order
to cut off the unwanted short-range part of the two-pion
exchange potential. This in turn causes too-strong dependence
of predictions on values of the cut-off parameters [18,20].
The Bochum-Bonn group proposed recently in Refs. [21,22]
an improved version of the chiral potential up to fifth order
of the chiral expansion (N4LO). During its construction,
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regularization is performed in coordinate space and only after-
wards such a regularized force is transformed to momentum
space. In particular, the one-pion and the static two-pion
exchange potentials are regularized in coordinate space by
multiplying them by the function f ( r

R
) = [1 − exp(−( r

R
)2]6,

with R being the cut-off (regularization) parameter. This
procedure maintains the long-range part of the interaction
and leads to smaller undesirable regularization effects. Indeed,
as shown in Refs. [21,22] the NN phase shifts as well as
the deuteron properties are much less sensitive to the values
of the regularization parameter R than the ones obtained
within the older version [17]. The same is also true for
elastic nucleon-deuteron (Nd) scattering observables [23].
The three-nucleon force with consistent local regularization
is under development, so in this paper we only use two-body
interactions and, in addition, we neglect the Coulomb force.

One of the important and unique features of the χEFT
approach is a possibility of a consistent derivation of nu-
clear forces and electroweak current operators, see, e.g.,
Refs. [24–28] for works in these directions. In particular, in
Ref. [27] the long-range part of the leading two-pion exchange
contributions was derived. Together with the well-known
single nucleon current (SNC) and consistent old, nonlocal
version of chiral interaction they were used to study the
deuteron and the 3He photodisintegration in Refs. [29,30].
While the general description of observables was reasonable,
a strong cut-off dependence of predictions was also observed.
Similar results were obtained for radiative nucleon-deuteron
capture and 3He photodisintegration where, instead of explicit
many-body currents, the Siegert theorem was used [31]. The
strong variation of predictions due to different values of
the cut-off parameters practically precluded us from drawing
detailed physical conclusions. Thus it is very interesting to
see whether the cut-off dependence also becomes smaller
for the electromagnetic processes, when the newly developed
improved chiral interactions are considered. In the present
work we use the Siegert approach and postpone studies based
on explicit single-nucleon and many-body electromagnetic
currents until a more complete picture of the electroweak
current operator, consistent with the NN interaction at each
order of the chiral expansion, is known.

The question of the cut-off dependence can be also
addressed in weak reactions. Thus we use the improved
NN forces [21,22] to calculate the capture rates in muon
capture reactions on the deuteron and 3He. In this paper
we employ a nonrelativistic single nucleon weak current
operator supplemented with leading relativistic corrections
(RC) [5,32,33]. Since we are mainly interested in the cut-off
dependence of capture rates, the use of such an incomplete
model of the current operator is justified in the present
investigation.

The paper is organized as follows. In the next section we
give a short overview of our formalism for electromagnetic
and weak processes. Section III contains selected results for
the deuteron photodisintegration process, γ + d → p + n,
while in Secs. IV and V we discuss 3N electromagnetic pro-
cesses: nucleon-deuteron radiative capture, n(p) + d → γ +
3H(3He), and the total 3He photodisintegration γ + 3He →
p + p + n, respectively. The results for weak muon capture

processes, μ− + 2H → n + n + νμ, μ− + 3He → 3H + νμ,
μ− + 3He → n + d + νμ, and μ− + 3He → n + n + p + νμ

are presented in Sec. VI. We summarize in Sec. VII.

II. FORMALISM

The theoretical approach used in the present study is
described in detail in Refs. [29,34–37], so here we only remind
the reader of the key steps. We work in momentum space
and employ a formalism based on the 3N Faddeev equations.
The nuclear matrix elements for electromagnetic or weak
disintegration processes are the central quantities from which
we are able to calculate observables [33,36].

In the case of the deuteron photodisintegration, the nuclear
matrix element N

μ
deu is defined as

N
μ
deu ≡ 〈

�2N
scatt

∣∣jμ
2N

∣∣�2N
bound

〉
, (2.1)

where |�2N
scatt〉 and |�2N

bound〉 are the final proton-neutron scat-
tering state and the initial deuteron bound state, respectively.
The deuteron state is a solution of the Schrödinger equation
with the Hamiltonian comprising the NN potential V . The
same interaction, together with the free two-nucleon (2N )
propagator G0, enters the Lippmann-Schwinger equation for
the t operator, t = V + tG0V, which we use to obtain the final
scattering state. Then the N

μ
deu is given as

N
μ
deu = 〈 �p0|(1 + tG0) j

μ
2N

∣∣�2N
bound

〉
, (2.2)

where | �p0〉 is the eigenstate of the relative proton-neutron
momentum. The form of the electromagnetic current operator
j

μ
2N is discussed below.

Radiative nucleon-deuteron capture is related via the time-
reversal symmetry to the two-body 3He or 3H photodisinte-
gration reactions. We exploit this relation and calculate the
nuclear matrix element for the radiative Nd capture N

μ
radNd

from the matrix element Nμ
Nd ≡ 〈�Nd

scatt|(1 + P )jμ
3N |�3N

bound〉 for
the photodisintegration reaction, leading to the final nucleon-
deuteron scattering state |�Nd

scatt〉 [34,36]. The matrix element
N

μ
Nd can be expressed as

N
μ
Nd = 〈φNd |(1 + P )jμ

3N

∣∣�3N
bound

〉 + 〈φNd |P |Uμ〉 , (2.3)

where |�3N
bound〉 is the 3N bound state while |φNd〉 is the product

of the internal deuteron state and the state describing the
free relative motion of the third nucleon with respect to the
deuteron. P = P12P23 + P13P23 is a permutation operator with
Pij being the operator exchanging nucleons i and j .

The auxiliary state |Uμ〉 fulfills the Faddeev-like equa-
tion [36]

|Uμ〉 = tG0 (1 + P )jμ
3N

∣∣�3N
bound

〉 + tG0P |Uμ〉 , (2.4)

with the free 3N propagator G0.
The nuclear matrix element for 3He photodisintegration

leading to three free nucleons in the final state, N
μ
3N ≡

〈�3N
scatt|jμ

3N |�3N
bound〉 , is also given by the auxiliary state |Uμ〉:

N
μ
3N = 〈�3N |(1 + P )jμ

3N

∣∣�3N
bound

〉 + 〈�3N |(1 + P )|Uμ〉 ,

(2.5)

where |�3N 〉 is an antisymmetrized state describing the free
motion of the three outgoing nucleons.
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The nuclear electromagnetic current operators, jμ
2N and j

μ
3N ,

employed for the deuteron and 3He (3H) photodisintegration
processes, are constructed in the same way. Unfortunately,
the 2N currents fully consistent with the locally regularized
nuclear potentials are not yet available. Therefore, we approx-
imate the electromagnetic current by a sum of contributions
from the individual nucleons and supplement these results
by the many-body parts incorporated via the Siegert theo-
rem [34,36]. To this end we perform a multipole decomposition
of the corresponding single nucleon current matrix elements
and use standard identities [36] to express a part of the electric
multipoles by the Coulomb multipoles, generated again by the
single nucleon charge density operator. This step is justified
by the fact that at low energies many-nucleon contributions to
the nuclear charge density are small. The remaining part of the
electric multipoles and all the magnetic multipoles are taken
solely from the single nucleon current operators. The Siegert
theorem, together with the so-called Siegert hypothesis, is also
widely used in many calculations performed in coordinate
space, see, e.g., Refs. [1,38–40]. This form of the nuclear cur-
rent operator has the (purely technical) advantage that it does
not depend on the nucleon-nucleon potential employed in our
calculations. We denote this model of the current operator as
SNC+Siegert.

The weak muon capture processes on atomic nuclei are
described by means of similar nuclear matrix elements as in
Eqs. (2.1)–(2.5), which are combined with the well-known lep-
tonic part [41] to build the full transition amplitudes. Depend-
ing on the studied process the deuteron or 3He wave function
represents the initial nuclear bound state. For the μ− + 2H →
n + n + νμ reaction, the final two-neutron scattering state is
calculated using the t operator. In the case of break-up channels
in muon capture on 3He the corresponding two- and three-body
scattering states are required. We calculate them analogously
to the states for photodisintegration, again using Eq. (2.4),
with the electromagnetic current j

μ
3N replaced by the weak

current jμ
w [5,32,33]. Since we solve Eq. (2.4) at a given

energy of the 3N system, numerous solutions of Faddeev-like
equation (2.4) have to be obtained in order to cover the whole
range of the final muon neutrino energies. This significantly
increases the numerical complexity of such calculations. Of
course, in the case of the μ− + 3He → 3H + νμ channel we
use only precalculated 3He and 3H states and no Faddeev
equation for the bound state has to be solved repeatedly. For
the weak current jμ

w we employ a nonrelativistic single nucleon
current operator supplemented by the dominant (p/Mnucl)2

relativistic corrections, where Mnucl is the nucleon mass. A
detailed discussion of the weak current, formulas connecting
the nuclear matrix elements with the capture rates, and various
aspects of the reaction kinematics are given in Ref. [33].

Our calculations are performed in momentum space and
we use the formalism of partial waves. In the calculations
we employ all partial waves in the two-body systems up
to the two-body total angular momentum j � 3 and in the
three-body states up to the three-body total angular momentum
J � 15

2 . Such sets of partial waves guarantee convergence of
predictions for all observables, see Refs. [36,42] for more
technical details. The 3N bound states are obtained as in
Ref. [43].

To estimate the theoretical errors of predictions arising from
neglecting, at a given order of the chiral expansion, the contri-
butions from higher orders, we apply the prescription given in
Refs. [23,44]. Namely, we estimate the truncation error δ(X)(i)

of an observable X at the ith order of the chiral expansion, with
i = 0,2,3, . . . . If Q denotes the chiral expansion parameter,
then the expressions for truncation errors are

δ(X)(0) � max(Q2|X(0)| ,|X(i�0) − X(j�0)|),
δ(X)(2) = max(Q3|X(0)| ,Q|	X(2)| ,|X(i�2) − X(j�2)|),
δ(X)(i) = max(Qi+1|X(0)| ,Qi−1|	X(2)| ,Qi−2|	X(3)|)

for i � 3. (2.6)

In the above formulas X(i) is a prediction for the observable X
at ith order, 	X(2) ≡ X(2) − X(0), and 	X(i) ≡ X(i) − X(i−1)

for i � 3. We also require that δ(X)(2) � Qδ(X)(0) and
δ(X)(i) � Qδ(X)(i−1) for i � 3. In particular, such a way
of theoretical error estimation takes into account the fact
that our present calculations are incomplete as we do not
include the 3N force starting from N2LO. Furthermore,
we do not estimate in this paper the uncertainty from the
truncation of the chiral expansion of the current operators,
which are included by means of the Siegert theorem at all
considered orders. The actual theoretical uncertainty may,
therefore, be larger than the values of δ(X)(i) given below. A
more reliable uncertainty quantification requires performing
complete calculations including the corresponding 3N forces
and exchange current operators. This work is in progress.

III. RESULTS FOR DEUTERON PHOTODISINTEGRATION

In Fig. 1 we show the total cross section for the γ + d →
n + p process at photon laboratory energies Eγ up to 80 MeV
obtained using the chiral NN interaction at N4LO [21,22] with
the value of the regularization parameter R = 0.9 fm. In this

0 10 20 30 40 50 60 70 80
Eγ [MeV]

10

100

1000

σ to
t [μ

b]

FIG. 1. The total cross section σtot for the γ + d → p + n

reaction. The chiral N4LO, R = 0.9 fm predictions for the SNC
(SNC+Siegert) current model are shown with the dashed red
(thick black dashed) curve. The AV18 predictions for the SNC,
SNC+Siegert, and SNC+MEC current models are shown with the
double-dotted-dashed green, dotted violet, and solid blue curves,
respectively. The experimental data are from Ref. [46] (black
“x”), [47] (magenta squares), [48] (open circles), [49] (black pluses),
and [50] (black dots).
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FIG. 2. The differential cross section d2σ
d�

for the γ + d → p + n reaction at Eγ = 30 MeV (the upper row) and Eγ = 100 MeV (the lower
row) as a function of the proton center-of-mass scattering angle θp . The left column shows the convergence of predictions at R = 0.9 fm with
respect to the order of the chiral expansion (the double-dotted-dashed green, dashed blue, dotted black, solid red, and thick dashed black curves
correspond to predictions at LO, NLO, N2LO, N3LO, and N4LO, respectively). The middle column shows the truncation errors (see text) at
the different orders of the chiral expansion: NLO (yellow band), N2LO (green band), N3LO (turquoise band), and N4LO (red band). The right
column shows the dependence of predictions at N4LO on the value of parameter R (the dotted green, thick dashed black, solid black, dashed
red, and double-dotted-dashed blue curves correspond to predictions with R = 0.8, 0.9, 1.0, 1.1, and 1.2 fm, respectively). Note that the thick
dashed black curve shown in both margin columns represents the same predictions. The thick violet dotted curve which represents the AV18
predictions is duplicated in the margin columns. All data points (open and solid circles and full squares) are from Ref. [51].

case we apply two models of the electromagnetic current: the
SNC alone (the dashed red curve) and the SNC+Siegert (the
thick dashed black curve). It is clear that while the omission
of 2N currents leads to a poor description of the data, the
SNC+Siegert approach yields an excellent agreement with
the experimental results. For the sake of comparison with the
predictions based on semiphenomenological forces, we show
also predictions obtained with the Argonne V18 (AV18) NN
interaction [45] and three models of the nuclear current: SNC
(green double-dotted-dashed curve), SNC+Siegert (dotted
violet curve), and SNC+meson exchange currents (MEC)
(blue solid curve). The SNC+MEC model comprises single
nucleon contributions and the explicit π -like and ρ-like MEC
linked to the AV18 NN interaction (see Refs. [34,36] for
more details). We observe that for this observable the implicit
(SNC+Siegert) and explicit (SNC+MEC) ways of including
many-body contributions to the current operator give quite
similar predictions, which are in a very good agreement with
the data, when the AV18 NN potential is used to generate the
2N states. Further, the SNC+Siegert approach to the current
operator works equally well with the chosen chiral and the
AV18 NN potentials. In both cases we obtain very similar
predictions, practically indistinguishable at photon energies
below approximately 30 MeV. At the higher energies a small
difference develops between the chiral and the AV18 potential,
with the chiral predictions lying closer to the data.

Next we study a more detailed observable, namely the
differential cross section at two photon laboratory energies

Eγ = 30 MeV (Fig. 2, the upper row) and Eγ = 100 MeV
(Fig. 2, the lower row). In the left panel we show the
convergence of predictions for R = 0.9 fm with respect to
the order of the chiral expansion. In the middle panel the
uncertainty of theoretical predictions due to the truncation of
higher-order contributions is given. Finally, in the right panel,
we demonstrate the dependence of predictions on the values of
the regulator R at N4LO using five different values of R: 0.8,
0.9, 1.0, 1.1, and 1.2 fm. Our best prediction, SNC+Siegert
for R = 0.9 fm is represented by the thick black dashed curve
and is shown both in the left and right panels. For the sake
of comparison, also the AV18 prediction given by the thick
violet dotted line is displayed in these two panels. The same
arrangement of curves will be preserved also in Figs. 3–6, 8,
and 12.

It is clear that for both energies one has to go beyond the
leading order (LO) to describe data. At the lower energy all
the higher-than-LO predictions are close to each other, but
at Eγ = 100 MeV the convergence is reached only at N3LO.
The truncation errors presented in the central panel confirm
this observation and the band at N4LO lies on the N3LO one.
A small but visible width of the N4LO band for the higher
energy suggests that some contributions from higher orders
are still possible for this observable. The cut-off dependence
of the cross section is very small at lower energy and
increases with energy, reaching at Eγ = 100 MeV about 20%
at small proton c.m. scattering angles. However, a more careful
analysis reveals that predictions obtained with R = 1.1 fm and
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FIG. 3. The deuteron analyzing powers T20 (top) and T22 (bottom) for the γ + d → p + n reaction at �c.m.
p = 88◦ and for Eγ up to

150 MeV. The left column shows the convergence of predictions at R = 0.9 fm with respect to the order of the chiral expansion (curves as
in Fig. 2). The middle column shows the truncation errors (see text) at different orders of the chiral expansion (bands as in Fig. 2). The right
column shows the dependence of predictions at N4LO on the value of the R parameter (curves as in Fig. 2). The data are from Ref. [52] (filled
circles) and Ref. [53] (open circles).

R = 1.2 fm are clearly far from the other ones, which are
closer to each other. This observation is in agreement with
the behavior of the cross section for the NN and Nd elastic
scattering [23,44] and provide yet another indication that the
theoretical uncertainty of the calculations using R = 1.1 fm
and R = 1.2 fm is dominated by finite-regulator artifacts, see
Ref. [21] for more details. Importantly, the cut-off dependence
of the cross section observed here for the semilocal chiral force
is much smaller than the cut-off dependence observed for the
older version of the potential with the nonlocal regularization.
As shown in Fig. 1 of Ref. [29] (pink band) for the older
potential the cut-off dependence reaches 25% already at
Eγ = 30 MeV and increases with photon energy. For the
improved chiral force at N4LO all predictions are slightly
above the cross section calculated with the AV18 potential.

The data at Eγ = 100 MeV and at small angles between proton
and photon momenta are better described by the AV18 force
while data at bigger angles are closer to the chiral predictions.

We choose the deuteron tensor analyzing powers T20 and
T22 as examples of polarization observables. Such observables
are supposed to be more sensitive to the NN interaction and
the current operator used in the calculations. A measurement
of these observables at proton scattering angle θ c.m.

p = 88◦,
where “c.m.” denotes center of mass, has been reported in
Ref. [52]. In Fig. 3 we compare our predictions for T20

(top) and T22 (bottom) with precise data from Ref. [52]
and with older data from Ref. [53] for photon laboratory
energies below Eγ = 140 MeV. The analyzing power T20 is
very well described by chiral predictions but for T22 a clear
discrepancy is seen with both sets of data above Eγ = 50 MeV.

2 2.5 3 3.5 4
Eγ [MeV]

0.4

0.6

0.8

1

Σ γ (Θ
p =

 9
0o )

LO
NLO

N LO

N LO

N LO
AV18

2 2.5 3 3.5 4
Eγ [MeV]

NLO

N LO

N LO

N LO

2 2.5 3 3.5 4
Eγ [MeV]

R=0.8 fm
R=0.9 fm
R=1.0 fm
R=1.1 fm
R=1.2 fm
AV18

FIG. 4. The photon asymmetry �γ (θp = 90◦) at proton center-of-mass scattering angle θp = 90◦ for the γ + d → p + n reaction at low
photon energies. The left column shows the convergence of predictions at R = 0.9 fm with respect to the order of the chiral expansion (curves
as in Fig. 2). The middle column shows the truncation errors (see text) at the different orders of the chiral expansion (bands as in Fig. 2). The
right column shows the dependence of predictions at N4LO on the value of the R parameter (curves as in Fig. 2 ). The data are from Ref. [55].
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FIG. 5. The photon asymmetry �γ for the γ + d → p + n reaction at Eγ = 19.8 MeV (top) and 60.8 MeV (bottom) as a function of
neutron center-of-mass scattering angle θ c.m.

n . The left column shows the convergence of predictions at R = 0.9 fm with respect to the order
of the chiral expansion (curves as in Fig. 2). The middle column shows the truncation errors (see text) at the different orders of the chiral
expansion (bands as in Fig. 2). The right column shows the dependence of predictions at N4LO on the value of the R parameter (curves as in
Fig. 2). The data are from Ref. [56] (filled circles), Ref. [57] (empty circles), and Ref. [58] (squares).

The predictions based on the chiral semilocal force show,
for both analyzing powers, similar behaviour as for the
differential unpolarized cross section—their convergence with
respect to the chiral expansion, truncation errors, and cut-off
dependence are very reasonable. Even for the highest energies
the difference between N3LO and N4LO predictions is below
1.6% (1.3%) and the difference between predictions based
on different values of the R parameter does not exceed 7.3%
(3.1%) for T20 (T22). Note that if we omit predictions with
R = 1.2 fm, the latter numbers change to 2.3% (1.4%). The
size of the truncation errors shows that only small contribution
from higher orders can be expected even at energies above
Eγ = 50 MeV.

It has been shown by Arenhövel and collaborators [52,54]
in calculations with semi-phenomenological NN forces that
a more complete 2N current operator including, in addition
to the implicit MEC (incorporated in the Siegert approach),
also other explicit 2N operators, isobar configurations, and
leading-order relativistic corrections leads to a much better
description of T22. Thus, the poor description of T22 data in
Fig. 3 can be attributed to the weaknesses of our model for
the 2N electromagnetic current. This is interesting in view of
future studies which will be performed with NN interactions
and current operators consistently derived within the χEFT
framework. We would like to stress that such studies would
benefit from precise measurements of the deuteron analyzing
powers at energies below Eγ = 140 MeV in the whole range
of scattering angles.

For the deuteron photodisintegration reaction also data for
the photon asymmetry are available. In a recent precision
experiment [55] the photon asymmetry �γ has been measured
at the proton center-of-mass scattering angle θ = 90◦, for the

low photon laboratory energies up to 4.05 MeV. In Fig. 4 we
compare our results with these data. As can be expected at such
low energies, even predictions at lower orders are sufficient to
describe the data. The results at N2LO, N3LO, and N4LO
practically overlap. Also the predictions for different values of
the R regulator are very close to each other. The agreement
with the data is excellent.

A precise measurement of the photon asymmetry in the
γ + d → p + n reaction as a function of the neutron center-
of-mass scattering angle at several photon energies has been
reported in Ref. [56]. We choose two of them, Eγ = 19.8 MeV
and 60.8 MeV, to give examples for small and medium
photon energies. In Fig. 5 we compare our results with
the data from Ref. [56] and Refs. [57,58]. At the lower
photon energy we observe a similar picture as for the photon
asymmetry �γ (θp = 90◦): Predictions are insensitive to the
regulator value and to the order of the NN interaction.
Even predictions at LO describe data at Eγ = 19.8 MeV
reasonably well. At Eγ = 60.8 MeV predictions for the photon
asymmetry become convergent only at N3LO. The truncation
errors and the range of predictions with the different values
of the R parameter at N4LO remain small. This again can
be compared with predictions for the nonlocal force [17]
shown in Ref. [29]. The improved interaction leads at Eγ =
60.8 MeV to a theoretical uncertainty approximately 2 times
smaller than for the older force. The chiral predictions at
the lower energy are in agreement with the data and are
slightly above them at the higher energy. This may indicate
that more sophisticated structures in the 2N current operator
are required. The AV18 predictions are closer to the data
but still overpredict them at the maximum of the photon
asymmetry.
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FIG. 6. The differential cross section d2σ/d� for the n + d → 3H + γ reaction at En = 9.0 MeV (top) and for the p + d → 3He + γ

reaction at Ep = 29 MeV (middle) and Ep = 95 MeV (bottom). The left column shows the convergence of predictions at R = 0.9 fm with
respect to the order of the chiral expansion (curves as in Fig. 2). The middle column shows the truncation errors (see text) at the different orders
of the chiral expansion (bands as in Fig. 2). The right column shows the dependence of the predictions at N4LO on the value of the R parameter
(curves as in Fig. 2 ). The data at En = 9.0 MeV are from Ref. [59], at Ep = 29 MeV from Ref. [60], and at Ep = 95 MeV from Ref. [61].

IV. RESULTS FOR NUCLEON-DEUTERON
RADIATIVE CAPTURE

The three-nucleon systems pose another possibility to test
models of nuclear dynamics. In Fig. 6 we show the differential
cross section for the neutron-deuteron radiative capture reac-
tion at the neutron laboratory energy En = 9.0 MeV (upper
row) and for the proton-deuteron radiative capture at the

proton laboratory energies Ep = 29.0 MeV (central row) and
Ep = 95.0 MeV (lower row). For the neutron capture process
the chiral predictions at next-to-leading order (NLO) and
N2LO agree with data but the N3LO or N4LO forces shift the
predictions about 10% above the experimental points. It was
shown in Ref. [31] that for the case of nonlocal regularization
the 3N force reduces the cross section for this process at low
energies also by about 10%. Thus it will be interesting to check
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FIG. 7. The truncation errors at different orders of the chiral expansion for the same cross section as shown in Fig. 6 but at the proton
energy Ep = 95 MeV only. The predictions have been obtained using the value of the regularization parameter R = 0.8 fm (left), R = 1.0 fm
(middle), and R = 1.2 fm (right). Bands are as in Fig. 2 and data are from Ref. [61].
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FIG. 8. The deuteron analyzing power Ay(d) for the p + d → 3He + γ reaction at the deuteron laboratory energies Ed = 17.5 MeV (top)
and Ed = 95 MeV (bottom). The left column shows the convergence of the predictions at R = 0.9 fm with respect to the order of the chiral
expansion (curves as in Fig. 2). The middle column shows the truncation errors at the different orders of the chiral expansion (bands as in
Fig. 2). The right column shows the dependence of predictions at N4LO on the value of the R parameter (curves as in Fig. 2). The data at
Ep = 17.5 MeV are from Refs. [62,63] and at Ep = 95 MeV from Ref. [61].

if the same is true for the locally regularized 3N force. The
width of the band representing the truncation errors at N4LO
is small and the cross section is practically independent from
the choice of the regulator value.

In the case of the proton-deuteron radiative capture at
presented here proton energies the 3N force effects (shown
in Fig. 5 of Ref. [31]) differ. At Ep = 29.0 MeV they are
small, so it is very likely that agreement of N4LO predictions
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FIG. 9. The semi-inclusive 3He(γ,p)pnpn cross section d3σ
d�pdEp

at Eγ = 40 MeV (top) and Eγ = 120 MeV (bottom) as a function of the
outgoing proton energy Ep for various angles �p of the outgoing proton momentum with respect to the photon beam in the laboratory system.
The predictions were obtained within the SNC+Siegert model and with the regulator R = 0.9 fm. The double-dotted-dashed green, dashed
blue, dotted black, solid red, and thick dashed black curves correspond to LO, NLO, N2LO, N3LO, and N4LO predictions, respectively.
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FIG. 10. The estimated higher-order truncation errors for the cross sections shown in Fig. 9. The yellow, green, turquoise, and red bands
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with the data, observed in Fig. 6, will remain if the locally
regularized 3N force is included. At Ep = 95 MeV 3N
force increases the cross section, so again it is possible that
the observed underprediction of the cross section will be
removed by the 3N interaction. It seems rather accidental that
even at the highest energy the LO predictions are relatively

close to the other ones. The truncation errors and cut-off
dependence remain small for both proton energies. This is
very different from results obtained with explicit chiral MEC
at LO and dominant terms at NLO for the old version of
the potential with nonlocal regularization which show strong
cut-off dependence—around 50% at Ep = 50 MeV (see Fig. 4
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FIG. 12. The differential capture rates for two- and three-nucleon breakup channels: d�nd

dEν
(top) and d�nnp

dEν
(bottom) as a function of the

outgoing neutrino energy Eν . The left column shows the convergence of predictions at R = 0.9 fm with respect to the chiral expansion order
(curves for chiral predictions only as in Fig. 2). The middle column shows the truncation errors at the different orders of the chiral expansion
(bands as in Fig. 2). The right column shows the dependence of predictions at N4LO on the value of the R parameter (curves for chiral
predictions only as in Fig. 2).

of Ref. [29]). However, one has to be careful comparing
predictions from Ref. [29] with the current ones since it is
expected that part of the cut-off dependence seen in Ref. [29]
should be absorbed into short-range currents, neglected in
Ref. [29]. Nevertheless, much smaller cut-off dependence and
truncation errors observed with the local force [21,22] are very
promising.

The size of the truncation errors clearly depends on the
value of the regularization parameter R. In Fig. 7 we compare
the truncation errors for the same differential cross section as
shown in the last row of Fig. 6, i.e., at Ep = 95 MeV but
for R = 0.8 fm (left), R = 1.0 fm (middle), and R = 1.2 fm
(right). In all cases the truncation errors decrease with the
growing chiral order and are very small at N4LO for R = 0.8
and 1.0 fm and much bigger for R = 1.2 fm. In particular, in
the maximum of the cross section the bands width at N4LO
are 0.003 μb/sr both for R = 0.8 and 1.0 fm and 0.017 μb/sr
for R = 1.2 fm. The latter value is still approximately twice
less than the spread of predictions at N4LO obtained with

different values of regularization parameter, which is 	 =
0.038 μb/sr in the maximum of the cross section. This shows
that fixing the value of regulator parameter is important for
the analysis of theoretical uncertainties. In Refs. [21,22] the
values of regularization parameter R = 0.9 fm and R = 1.0 fm
have been recommended due to the best description of the
nucleon-nucleon scattering data. Our findings on truncation
errors also support this choice.

As an example of a polarization observable we choose the
deuteron vector analyzing power AY and show it in Fig. 8
at two deuteron laboratory energies Ed = 17.5 MeV (top)
and Ed = 95 MeV (bottom). For both energies we observe
nice behavior at orders above N2LO—the convergence with
respect to chiral order is very good and truncation errors are
diminishing. Also the cut-off dependence is negligible. That
is a significant improvement when compared to the case of
the nonlocal regularization [31]. At both energies the data
description is poor; however, this observable depends strongly
on the details of the nuclear current operator [34].

TABLE I. The doublet capture rates �d in (s−1) for the μ− + d → n + n + νμ process obtained within the NN interaction at given order
and the SNC+RC model of the nuclear weak current operator (see text). In the next-to-last column the truncation error δ(�d ) at given order of
the chiral expansion for the doublet capture rate, obtained for R = 0.9 fm, is given. In the last column the spread of the results at a given chiral
order due to the different R values, 	 in (s−1), is shown.

Chiral order R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm δ(�d) 	

LO 396.0 397.4 398.4 398.9 399.2 21.02 3.2
NLO 384.2 385.8 387.2 388.6 389.8 4.84 5.6
N2LO 385.0 386.1 387.2 388.3 389.3 1.11 4.3
N3LO 386.8 386.4 385.2 384.3 383.2 0.26 3.6
N4LO 385.5 386.1 386.3 385.6 384.6 0.06 1.7
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TABLE II. The total capture rates � in (s−1) for the μ− + 3He → 3H + νμ process obtained within the NN interaction at given order and
the SNC+RC model of the nuclear weak current operator (see text). In the next-to-last column the truncation error δ(�) at the ith order of the
chiral expansion for the total capture rate, obtained for R = 0.9 fm, is given. In the last column the spread of the results at a given chiral order
due to the different R values, 	 in (s−1), is shown.

Chiral order R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm δ(�) 	

LO 1610 1618 1610 1594 1572 314.0 46
NLO 1330 1357 1381 1405 1427 72.2 97
N2LO 1337 1356 1376 1395 1415 16.6 78
N3LO 1314 1304 1289 1278 1266 3.8 48
N4LO 1296 1307 1308 1299 1285 0.9 23

V. THREE-BODY 3He PHOTODISINTEGRATION

We choose the semi-inclusive cross section d3σ
d�pdEp

as

an example of an observable for three-body 3He photodis-
integration. In this process only one of the three outgoing
nucleons is detected and we assume that it is a proton. For
this observable we have prepared three different Figs. 9–11,
showing the dependence on the chiral order, error estimates,
and the dependence on the regulator value at N4LO. In all
three figures we show the cross section at photon laboratory
energy Eγ = 40 MeV and 120 MeV as a function of the
final proton energy for the proton emerging at four angles
�p with respect to the photon beam: �p = 0◦,60◦,120◦, and
180◦. Since we focus here on predictions of the new local
chiral potential, we refer the reader to Refs. [64] and [36]
for the discussion on the origin of structures observed in the
spectra.

In Fig. 9 we show the convergence of predictions with
respect to the order of the chiral expansion for the detected
proton at Eγ = 40 MeV (top) and Eγ = 120 MeV (bottom).
Only predictions at LO are far from the rest and are surely not
sufficient to describe the data. The other predictions are close
to each other and, in particular, the N3LO and N4LO results
practically overlap.

The bands giving the truncation errors for the semi-
inclusive cross section are shown in Fig. 10. At the photon
laboratory energy Eγ = 40 MeV a big contribution from
higher orders is expected at the NLO (the yellow band)
and still noticeable addition is expected at N2LO (the green
band). At higher orders bands are very narrow and they
practically overlap. Thus one can conclude that for the
presented here cross section, calculations at N3LO should
be sufficient. At the higher photon laboratory energy Eγ =
120 MeV the magnitude of the truncation errors is sizable even
at N4LO.

Finally, in Fig. 11 we explicitly show the dependence of
the cross section on the value of the parameter R used to
regularize the chiral forces at N4LO. The cut-off dependence
at Eγ = 40 MeV is weak and its size is comparable with
the truncation errors. At the higher energy clear differences
between predictions based on different values of R are seen.
The range of predictions due to the different values of R usually
slightly exceeds the theoretical uncertainties at N4LO shown
in Fig. 10. Note, however, that the values R = 0.9 fm and
R = 1.0 fm are preferred [21,22].

VI. MUON CAPTURE

For the muonic deuterium atom the weak capture process
leads to two neutrons and a muon neutrino in the final state.
The total capture rates �d for this process are given in Table I.
We also give the truncation error δ(�d )(i) [Eq. (2.6)] at a
given order for R = 0.9 fm (the next-to-last column) and the
maximal difference between predictions with different values
of the regulator R at a given order, 	 (the last column). We
applied the SNC+RC model of the current operator and used
values of the regularization parameter R in the range from
0.8 to 1.2 fm. The truncation errors decreases significantly
with the increasing order of the chiral expansion, confirming
nice convergence of capture rate. At N4LO and R = 0.9 fm
δ(�d )(5) is about 0.02%. The truncation errors for R = 1.2 fm
(not shown in the table) are much bigger, reaching 0.18% at
N4LO. The cut-off dependence is also weak, at N4LO 	 =
1.7 s−1 what amounts to about 0.44% of the capture rate at
R = 0.9 fm. The new predictions are also in agreement with
the result based on the AV18 NN force, which for the same
model of the weak current is 382.3 s−1.

In the case of muon capture on 3He three different final
states are possible. First, the capture process can lead to
the non-break-up channel with the final 3H nucleus and the

TABLE III. The same as in the Table II but for the μ− + 3He → d + n + νμ process.

Chiral order R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm δ(�) 	

LO 262 282 312 350 392 304.0 130
NLO 536 525 515 504 492 69.9 44
N2LO 547 539 529 518 507 16.1 40
N3LO 584 586 592 596 603 3.7 19
N4LO 590 584 583 587 595 0.9 12
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TABLE IV. The same as in the Table II but for the μ− + 3He → p + n + n + νμ process.

Chiral order R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm δ(�) 	

LO 95 99 105 113 120 70.0 26
NLO 159 157 154 151 148 16.1 11
N2LO 161 159 157 154 151 3.7 10
N3LO 169 169 171 172 175 0.9 6
N4LO 170 169 169 170 173 0.2 4

outgoing neutrino. Results concerning the total capture rate for
this process are given in Table II. The LO predictions are far
from the other results, but starting from NLO we see a nice con-
vergence of results with respect to the order of the chiral expan-
sion for all the values of R. The truncation error δ(�)(0) at LO
is over two orders of magnitude bigger than the one at N4LO.
Its value at N4LO is approx. 0.07% (0.52%) of the capture rate
using R = 0.9 (1.2) fm. Also in this case the dependence on
the cut-off parameter is very weak. The last column in Table II
shows the maximal difference between predictions at a given
order and for different regulators R, 	, which at N4LO reaches
approximately 1.76% for 3He -3H transition. The capture rate
obtained for this process with the AV18 NN potential and
using the same model of weak current (SNC+RC) equals
1295 s−1 and is very close to the chiral value.

For both above-mentioned processes we observe that the
cut-off dependence dominates the truncation errors if all five
values of the regulator considered here are taken into account,
in agreement with the arguments given in Ref. [44]. If one
restricts oneself only to the suggested values of the regulator
(R = 0.9 fm or R = 1.0 fm), then the truncation errors and
the spread due to the different R are of the same order. We
also find, for both capture processes, a small value of 	 at
LO, which seems, however, to us somewhat accidental. It is
also interesting to notice that the total capture rates reach
their maxima at the same values of the regulator R = 0.9 fm
and 1.0 fm. Finally, we emphasize that the truncation error
δ(�d ) at N2LO and higher orders, δ(�d )(�3), estimated using
Eq. (2.6) does not include information about the actual size of
corrections 	�

(�3)
d , which is not available from the incomplete

calculations presented here. Also, the uncertainty from the
truncation of the chiral expansion of the exchange current
operators is not taken into account. Thus, the obtained values
of δ(�d ) may underestimate the actual theoretical uncertainty
at higher orders. In the future, more complete calculations will
provide information on the size of contributions beyond N2LO
which would allow us to perform a more reliable uncertainty
quantification.

In Fig. 12 we show the differential capture
rates for the μ− + 3He → d + n + νμ (top) and
μ− + 3He → p + n + n + νμ (bottom) processes as a
function of the outgoing neutrino energy Eν . For both
processes the convergence of differential capture rates at
R = 0.9 fm with respect to the chiral order looks similar.
The NN force at LO underestimates the higher-order capture
rates by a factor of approximately 3. The NLO and N2LO
predictions are close to each other and, finally, the values at
N3LO and N4LO are again very similar. The contributions
from orders beyond LO play a significant role only above

Eν ≈ 80 MeV in both channels. As in the case of observables
for electromagnetic processes presented in the previous
sections, the truncation errors are very small at the higher
orders, pointing to a full convergence of nuclear forces with
respect to the chiral expansion. The cut-off dependence is
small and predictions for different regulators overlap, except
for the region of the maximal capture rate values. However,
even in this case the difference between predictions based
on the different R values amounts only to 2.7% (2.3%) at
Eν = 95.5 (90.7) MeV for the two-body (three-body) channel.

The total capture rates for both breakup channels, given in
Tables III and IV, show similar behavior as the ones with the 3H
in the final state, given in Table II. Both measures of theoretical
uncertainties, δ(�) and 	, decreases with the chiral order,
and are below 2.5% at N4LO. The values of the capture rates
obtained here are in agreement with corresponding results [33]
for the AV18 force which are 604 s−1 and 169 s−1 for the n+d
and n+n+p final states, respectively.

VII. SUMMARY

We applied the recently developed improved chiral NN
forces with the semilocal regularization [21,22] to a theoretical
description of the deuteron and 3He photodisintegration
reactions as well as to the proton-deuteron radiative capture
and the muon capture processes on the deuteron and 3He.
The single nucleon electromagnetic current supplemented by
implicit many-body contributions included via the Siegert
theorem was used for the processes with real photons. For
the muon capture reactions the single nucleon weak current
operator was used, supplemented with the dominant, p2/M2

nucl
relativistic corrections. Despite their simplicity, such models
of nuclear currents are sufficient to realize the main goal of
this work, which is to verify the usefulness of the locally
regularized NN chiral forces in a description of electroweak
processes at energies below the pion production threshold.

For all investigated reactions we could confirm the desired
behavior of the used NN interaction. Namely, we observed
fast convergence of the predictions with respect to the order of
the chiral expansion—for all studied observables predictions
at N4LO are very close to the ones at N3LO. We also observe
very weak dependence of our results on the value of the local
regulator R. Especially, predictions with the recommended
values of regulator [21,22], R = 0.9 fm and R = 1.0 fm,
usually overlap at N4LO. The observed cut-off dependence is
much weaker than the one found in Ref. [31] for the older
chiral forces [17], which were regularized directly in mo-
mentum space using nonlocal regulators. Finally, we estimate
the truncation errors coming from neglecting higher-order
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contributions. These theoretical uncertainties decrease with
the chiral order and are very small beyond N2LO, except
for the highest energies studied here. The magnitude of the
truncation errors depends on the value of the regulator R and
is the biggest for R = 1.2 fm. The sizes of the truncation
errors at R = 0.9 fm and R = 1.0 fm are comparable; they
are of the same order as the difference between predictions
obtained using these regulators. When all the R values are
taken into account, the spread of predictions is usually bigger
than the truncation error, even for R = 1.2 fm. We conclude
that in the future only recommended values R = 0.9 fm and
R = 1.0 fm should be used. However, it would be interesting
to confirm this observation in nuclear structure calculations.

The quality of the description of the data is rather
satisfactory but leaves room for improvement by including
contributions from 3N forces and many-body parts of the
nuclear current operators. Thus, it will be important to
identify observables which are sensitive to the details of the
dynamical framework. One of the candidate is the deuteron
analyzing power T22 in the deuteron photodisintegration pro-
cess. Experimental efforts focused on precise and systematic
measurements of such observables would be very important to
provide a solid basis for a detailed study of chiral dynamics.

We may thus conclude that the present work confirms the
importance of the improved chiral NN potential with the local
regularization for few-body investigations in a broad range
of energies. Of course we are aware that the final conclusions
about the observed patterns can be drawn only when consistent
3N force and current operators at all the considered orders of
the chiral expansion are included, but the predictions presented
here constitute a promising, inescapable first step in this
direction.
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[20] R. Skibiński, J. Golak, K. Topolnicki, H. Witała, E. Epelbaum,
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