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Octupole correlations in the 144Ba nucleus described with symmetry-conserving
configuration-mixing calculations
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We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A
symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF)
has been used. The method includes particle number, parity, and angular momentum restoration as well as axial
quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation
energies and electromagnetic transition probabilities are in good agreement with the most recent experimental
data.
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Permanent octupole deformation is a rare phenomenon in
atomic nuclei produced by the octupole interaction between
two opposite-parity single-particle levels with �l = �j = 3
near the Fermi surface [1]. The distribution of single-particle
levels for a certain number of particles such as 56, 88, 134,
etc., favor such an interaction. As a consequence, when both
protons and neutron numbers are close to these values, strong
octupole correlations are expected. This happens, for instance,
in heavy nuclei around 220Rn and 224Ra [2] or in medium-
mass nuclei around 144Ba where low-lying negative-parity
states have been found experimentally as an indication of
this kind of correlations. In fact, recent multistep Coulomb
excitation experiments performed at the ATLAS-CARIBU
facility with state-of-the-art γ -ray (GRETINA) and charged-
particle (CHICO2) detectors have shown large E3 transitions
that evidence permanent octupole deformation in the isotope
144Ba [3].

The study of octupole correlations and the associated
breaking of the reflection symmetry is still a challenge for
nuclear theory. Microscopic self-consistent mean-field (MF)
methods [4] based on nuclear energy density functionals (EDF)
such as Skyrme, Gogny, and/or relativistic mean field (RMF)
are always the starting point as they have been largely improved
in the past fifteen years by including beyond-mean-field (BMF)
correlations. In particular, symmetry restorations and mixing
of different mean-field many-body states have been imple-
mented within the general framework provided by the gener-
ator coordinate method (GCM) [5]. These developments have
allowed us to study the impact of octupole correlations not only
in ground-state properties, such as binding energies and radii,
but also in nuclear spectra, electromagnetic transitions, and de-
cays all over the periodic table with Skyrme or Gogny function-
als [6–16]. An alternative to MF methods is the extension of
the interacting boson model to include negative-parity bosons
[17] to handle negative-parity states. A nice reproduction of
experimental data is obtained, see Refs. [18,19] as examples,
but at the cost of introducing several adjustable parameters.

On the other hand, the quadrupole degree of freedom
together with pairing play a dominant role in describing
low-energy nuclear correlations. Hence, the restoration of
the associated broken symmetries, i.e., particle number and
angular momentum, has been implemented with different

levels of complexity including axial [20–22] and nonaxial
[23–25] quadrupole deformed intrinsic states. Additionally,
other degrees of freedom such as pairing fluctuations [26,27]
and/or intrinsic (cranking) rotational frequencies [28,29] have
been studied in combination with the quadrupole deformation.
These symmetry-conserving configuration-mixing methods
(SCCM) show a nice performance in describing qualitatively
nuclear structure phenomena like appearance and degradation
of shell closures, shape coexistence, high-spin physics, etc.

Octupole shapes have been scarcely explored within the
angular momentum and particle number projected SCCM
framework despite the very likely coupling to quadrupole
and pairing degrees of freedom. Very recently, GCM calcu-
lations with simultaneous particle number, parity, and angular
momentum projected states have been reported within the
RMF framework [30,31] to study octupole excitations in 224Ra
and clustering of 20Ne. In this work, we report on the first
implementation of this scheme (particle number, parity, and
angular momentum projection plus GCM) with the Gogny
EDF and its application to the study of the lowest positive-
and negative-parity states of the nucleus 144Ba.

Nuclear states with angular momentum and parity quantum
numbers Jπ are obtained within the present SCCM method
through the GCM ansatz [5]

∣∣�Jπ
σ

〉 =
∑

q

f Jπ
σ (q)|�Jπ (q)〉, (1)

where σ = 1,2,... labels the different quantum states for a
given Jπ and |�Jπ (q)〉 are the projected intrinsic states

|�Jπ (q)〉 = P J P πP NP Z|q〉 (2)

with P J ,P π ,P N , and P Z being the projectors onto good
angular momentum, parity, neutron number, and proton
number respectively [5]. Furthermore, the intrinsic states,
|q〉, are obtained by solving Hartree-Fock-Bogoliubov (HFB)
equations, imposing the constraints on the corresponding
collective coordinates q = {qi,i = 1, . . . ,Nc} [5].

In the present work, axial quadrupole and octupole degrees
of freedom [q = (q20,q30)], or equivalently, (β2,β3), are ex-
plored explicitly. The dimensionless βλ parameters are defined
as βλ ≡ 4π〈q |rλYλ0|q〉/(3rλ

0 Aλ/3+1) with r0 = 1.2 fm and A
being the mass number.
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We impose axial, time-reversal, and simplex symmetries in
the HFB wave functions because these conditions significantly
reduce the computational cost of the calculations. In particular,
two of the three integrals in the Euler angles required to
perform the angular momentum projection are trivial in this
case. However, this choice presents some restrictions. On
the one hand, triaxial nuclear states are out of the present
description. Moreover, the accessible states are limited to those
satisfying the (−1)J = π rule (even J with positive parity and
odd J with negative parity). Finally, a systematic stretching
of the spectrum is expected because this kind of variational
method favors the ground-state energy over the energies of the
excited states [28,32].

The coefficients of the linear combination given in Eq. (1)
are found by solving the so-called Hill-Wheeler-Griffin
(HWG) equations, one for each value of the angular momen-
tum and parity [5]

∑

q′

[HJπ (q,q′) − EJπ
σ N Jπ (q,q′)

]
f Jπ

σ (q′) = 0 (3)

with the norm N Jπ (q,q′) = 〈�Jπ (q)|�Jπ (q′)〉 and Hamilto-
nian HJπ (q,q′) = 〈�Jπ (q)|Ĥ |�Jπ (q′)〉 overlaps. Given the
nature of the density-dependent term of the Gogny EDF,
a prescription is required for the evaluation of Hamiltonian
overlaps. We use the particle number projected spatial density
combined with the mixed prescription for the parity and
angular momentum projection and GCM parts. It avoids
the catastrophic behavior of the energy characteristic of
prescriptions based on densities preserving spatial symmetries
[33]. The impact of the use of the particle number projected
density has still to be elucidated.

The HWG generalized eigenvalue problem is routinely
solved by transforming it into a regular one by introducing a
set of orthonormal states—the natural basis—defined as linear
combinations of the nonorthonormal states, {|φJπ (q)〉}. Once
the equations are solved, the spectrum is directly given by EJπ

σ .
Furthermore, expectation values and transition probabilities
are computed from the coefficients f Jπ

σ (q) and the projected
matrix elements of the corresponding operators, Ô:

〈
�J1π1

σ1

∣∣Ô
∣∣�J2π2

σ2

〉

=
∑

q1,q2

(
f J1π1

σ1
(q1)

)∗OJ1π1,J2π2 (q1,q2)
[
f J2π2

σ2
(q2)

]
(4)

with OJ1π1,J2π2 (q1,q2) = 〈�J1π1 (q1)|Ô|�J2π2 (q2)〉 being the
overlap of the operator Ô, which is not necessarily a scalar
operator. Finally, the weights of the different natural basis
states in a given GCM wave function [5]

FJπ
σ (q) ≡

∑

q′
〈�Jπ (q)|�Jπ (q ′)〉1/2f Jπ

σ (q ′) (5)

are very useful quantities to analyze the character of the GCM
states.

The method described above is now used to compute
the low-lying energy spectrum and electromagnetic transition
probabilities of the nucleus 144Ba. A set of 130 intrinsic HFB
states in the ranges β2 ∈ [−0.4,0.5] and β3 ∈ [−0.5,+0.5] has
been chosen. Each of the HFB wave functions are expanded
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FIG. 1. HFB potential energy surface in the (β2,β3) plane nor-
malized to the energy of the minimum (−1180.772 MeV with eleven
HO shells) computed for 144Ba with the Gogny D1S parametrization.
Contour lines are separated by 0.5 MeV (dashed lines) and 2.0 MeV
(full lines) respectively. White dashed (dotted) lines represent the
paths for one-dimensional β2 (β3) constrained HFB calculations. The
spatial density of the HFB ground state is also plotted.

in eleven spherical harmonic oscillator (HO) shells. The
number of integration points in the β-Euler angle and ϕ-gauge
angle (particle number projection) are 32 and 9 respectively.
These values ensure a proper convergence of the expectation
values of the particle number and total angular momentum
operators between GCM states, as well as the SCCM spectrum
and collective wave functions (see, e.g., Refs. [4,24,34] for
more details). Finally, the Gogny D1S interaction has been
consistently used in this work both at the mean field level and
beyond.

The role of the different collective degrees of freedom can
be guessed by looking at the mean-field energy landscape
as a function of such coordinates. In Fig. 1 the potential
energy surface (PES) of the nucleus 144Ba in the β2-β3

plane is shown. Notice that the energy is symmetric under
a change in the sign of β3 due to the parity symmetry of the
nuclear interaction. Hence, two symmetric absolute minima
are obtained at (β2,β3) = (0.2, ± 0.1). The spatial density that
corresponds to one of these minima, showing its characteristic
pear shape, is also plotted in Fig. 1. Around these minima the
PES is rather soft in the interval β3 ∈ [−0.2,+0.2]. Moreover,
a secondary minimum (∼4 MeV above) is found at (β2,β3) =
(−0.1,0). The existence of the octupole deformed minima is
a consequence of the location of certain single-particle levels
around the Fermi level, in particular, the proton 1h11/2 − 2d5/2

and the neutron 1i13/2 − 2f7/2 (see, e.g., Fig. 3 of Ref. [35]).
We have also drawn in Fig. 1 the paths followed by two one-

dimensional constrained calculations, i.e., the energy obtained
when β2 (dashed line) or β3 (dotted line) is the only collective
constrained variable in the HFB equation. In the case where
only β2 is considered we observe a collective path along the
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FIG. 2. Particle number, parity, and angular momentum PES in
the (β2,β3) plane normalized to the energy of the minimum of the
0+-PES (−1185.600 MeV with eleven HO shells). Contour lines
are separated by 0.5 MeV (dashed lines) and 2.0 MeV (full lines)
respectively.

parity-conserving (β3 = 0) direction in the oblate part (β2 < 0)
and a spontaneous parity symmetry breaking in the prolate
part (β2 ∈ [0.0,+0.4]), where the absolute minimum is found.
On the other hand, only prolate deformed intrinsic states in
the range (β2 ∈ [+0.20,+0.35]) are obtained by constraining
only in β3, and leaving free the value of the quadrupole. In
fact, these two deformations are correlated in this case, having
larger values of β2 for larger values of β3.

The next step in the calculation of the spectrum of the
nucleus 144Ba is the simultaneous restoration of the particle
number, parity, and angular momentum quantum numbers. In
Fig. 2 we plot the PESs that correspond to Jπ = 0+,2+,1−,
and 3−, where the reflection symmetry about the β3 = 0 line is
obtained again. We observe first that the absolute minima of the
surfaces are located almost at the same (β2, ± β3) values as in
the mean-field case. However, the potential wells around those
points are a bit wider both in β2 and β3. For Jπ = 0+, around
∼4.5 MeV of correlation energy is gained by the restoration
of the symmetries at the absolute minima. Moreover, prolate
and oblate minima are now connected through the β3 degree of
freedom since the barrier through the spherical point is much
higher now. For Jπ = 2+, prolate minima are much lower in
energy than the oblate parity-symmetric (β3 = 0) minimum.
The same happens for Jπ = 1− and 3− where the prolate min-
ima are well separated from the rest of the surface. We have to
point out that for the intrinsic states with β3 = 0, projection to
odd angular momenta and negative parity is not possible. The
same happens at the spherical point (β2,β3) = (0,0) for even-
J 	= 0. In those cases, a white band (point) in the PES shown
in Fig. 2 represents states with projected norm equal to zero.

Once the symmetries are restored, the final stage is shape
mixing within the generator coordinate method. We have
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FIG. 3. Spectra (first two bands) obtained from SCCM calcula-
tions with (a) β2, (b) β3, and (c) β2 − β3 as generating coordinates
for 144Ba. Experimental data (d) are taken from Ref. [36].

performed three different GCM calculations, namely, two
one-dimensional GCM with β2 and β3 only as the collective
coordinates, and one two-dimensional GCM with (β2,β3)
simultaneously taken into account. In the first two cases
the states chosen to mix are those given by the collective
paths marked in Fig. 1. Energies of the lowest positive- and
negative-parity bands obtained by solving the corresponding
HWG equations in these three different SCCM calculations
are compared to the experimental spectrum in Fig. 3.1 In both
1D-GCM calculations we observe similar positive parity bands
with a rotational character. However, the negative-parity band
obtained with β3 [Fig. 3(b)] as the collective coordinate is
globally shifted to higher excitation energies with respect to
the one found with β2 [Fig. 3(a)], keeping almost the same
spacing between the levels. Including on the same footing axial
quadrupole and octupole degrees of freedom [Fig. 3(c)], we
observe a stretching of the positive-parity band and a negative-
parity band similar to the one obtained with β3 as the collective
coordinate. Nevertheless, the absolute energies of the yrast
states obtained in the 2D-GCM calculations are significantly
the lowest among the three SCCM calculations, showing
that the 2D-GCM calculation is better from the variational
point of view. In particular, ground-state energies calculated
with 1D-GCM-β2, 1D-GCM-β3, and 2D-GCM-(β2,β3) are
−1185.931,−1186.709, and −1187.547 MeV, respectively.

Comparing the theoretical results with the experimental
data we observe first that only the 2D-GCM calculations
can reproduce the relative position of the experimental
levels [Fig. 3(d)]. For instance, in the 1D-GCM results, the

1Please note that the GCM calculation with β2 as collective
coordinate produces meaningful results for negative-parity states
because the set of HFB generating states includes octupole deformed
states. If it not were the case, zero norm negative-parity states would
have been obtained.
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TABLE I. Absolute values of the transition matrix elements
|〈J π

i ||Eλ||J π
f 〉| (in ebλ/2) for several transitions of interest. The

experimental values are taken from Ref. [29].

J π
i → J π

f Eλ GCM β2 GCM β3 GCM β2 − β3 Exp

0+ → 2+ E2 1.148 1.121 1.023 1.042+17
−22

2+ → 4+ E2 1.865 1.803 1.845 1.860+86
−81

4+ → 6+ E2 2.371 2.287 2.360 1.78+12
−10

6+ → 8+ E2 2.800 2.696 2.793 2.04+35
−23

0+ → 1− E1 0.007 0.006 0.008

1− → 2+ E1 0.005 0.009 0.006
0+ → 3− E3 0.450 0.477 0.460 0.65+17

−23

1− → 4+ E3 0.599 0.635 0.695
2+ → 5− E3 0.708 0.745 0.810 <1.2
3− → 6+ E3 0.804 0.865 0.810
4+ → 7− E3 0.887 0.945 1.031 <1.6

1− state is below the 4+ state in Fig. 3(a) and the 7− is
above the 8+ in Fig. 3(b). Additionally, although the 2+
and 4+ energies are reasonably well reproduced by these
two 1D calculations, these bands have a stronger rotational
character than the experimental one and the agreement with
the experiment is lost for larger values of J+. Finally,
the experimental negative-parity band is more compressed
than those obtained with the present calculations and the
energy of the band head state is well reproduced both by
the 1D-GCM-β3 and 2D-GCM-(β2,β3) calculations. It is
important to point out that a fully quantitative agreement
with the experimental data cannot be expected within the
present framework because neither triaxial (K mixing) nor
time-reversal symmetry breaking (cranking) intrinsic wave

functions are considered. As a consequence, the ground state
is better explored variationally than the excited states and
gains more correlation energy producing the stretching of the
spectrum. Including triaxial cranking intrinsic states would
thus produce a compression of the calculated spectrum, and a
better quantitative agreement with the experiments [28,29,32].
However, these major improvements of the SCCM method are
out of the scope of the present work.

The main advantage of the wave functions projected
to good angular momentum is that they allow a precise
calculation of electromagnetic transition strengths without
assuming the validity of the rotational approximation often
used to relate intrinsic multipole moments with those transition
strengths. The rotational approximation is valid in the strong
deformation limit, which is not reached for many of the
relevant configurations in the present calculation. This might
lead to substantial qualitative deviations in the evaluation of
transition strengths [37]. In Table I we compare our SCCM
results (1D and 2D) for the absolute value of the transition
strengths |〈Jπ

i ||Eλ||Jπ
f 〉| for selected transitions with the

available experimental data. We observe first that the results
with 1D and 2D calculations are rather similar for this nucleus.
In addition, for the positive-parity rotational band, the in-band
E2 transitions follow rather well the rotational behavior and
agree very well with experimental data for the two lowest
transitions. At higher spins, the experimental data deviate
from the rotational behavior probably due to the quenching
of pairing correlations that our calculations cannot reproduce.
For a proper theoretical description we would need to carry out
proper variation after projection (VAP) calculations that would
lead to cranking-type intrinsic states, a feat that is out of reach
with the present computational capabilities. Nevertheless, for
transitions to the ground state, the effect of including cranking
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FIG. 4. Collective wave functions for the ground state (upper part) and first excited negative-parity (lower part) bands.
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terms is expected to be small as they are related to changes
in the intrinsic deformations. For the 0+ → 3− transition, the
theoretical prediction is smaller than the experimental value
but within the error bars. Our result, expressed in Weisskopf
units is B(E3,3− → 0+) = 25 W.u., which is a bit too low
as compared to the experimental value of 48+25

−34 W.u. [3].
However, our result agrees well with systematic results in the
region [38]. On the other hand, the E1 transitions are rather
small, as a consequence of the small dipole moment of the
intrinsic states in this nucleus [35].

In Fig. 4 the square of the collective amplitudes in Eq. (5) are
plotted for the lowest lying states of each angular momentum
and parity. The amplitudes must be even (odd) functions under
the β3 → −β3 reflection for even (odd) J values. In the latter
case, this implies that the amplitudes must vanish along the
β3 = 0 line. As a consequence of this restriction the negative-
parity amplitudes are shifted towards larger octupole moments.
In Fig. 4 we also observe that the members of the same band,
which are strongly connected by electromagnetic transitions,
share a similar structure of their collective wave functions,
which is evident in the negative-parity band. In the positive-
parity band we see an evolution of the intrinsic state with
increasing spin that is associated to the stabilization of the
octupole deformation in this case [13]. As a consequence, the
collective amplitudes for J � 4+ peak at values of β3 	= 0. A
similar behavior of the collective wave functions is found in
the nucleus 224Ra calculated with the same SCCM method but
using a relativistic Lagrangian [30].

To summarize, we have carried out state-of-the-art calcu-
lations with the Gogny D1S interaction to describe the lowest
lying positive- and negative-parity states of 144Ba. Angular
momentum, parity, and particle number symmetries, broken
by quadrupole and octupole constrained HFB states, have been
restored and these projected states are allowed to mix within
the GCM framework. The results for the excitation energies
agree qualitatively with the experimental results when both
quadrupole and octupole degrees of freedom are treated on an
equal footing. A stretched theoretical spectrum is obtained due
to the lack of triaxial and time-reversal symmetry-breaking
components. Their inclusion would bring the predictions
closer to the experimental values. However, including these
terms requires major developments of the method that are out
of the scope of the present work. Finally, transition strengths
are in a rather good agreement with the experimental data. The
calculated B(E3,3− → 0+) strength is predicted to be lower
than the most recent measurements although it is within the
large experimental error bar and agrees well the systematics.
Future experiments would be very helpful to disentangle the
actual amount of octupole correlations in 144Ba.
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