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Proton radius from electron scattering data
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Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements
is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The
discrepancy has become known as the proton radius puzzle.
Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from
Mainz, Jefferson Lab, Saskatoon, and Stanford.
Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information
criterion to systematically determine the predictive variables to use for a given set and range of electron scattering
data as well as to provide multivariate error estimates.
Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon
(1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information
criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the
result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria
to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a
radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range
of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high
Q2, we find that a Padé (N = M = 1) statistical model works remarkably well, as does a dipole function with a
0.84 fm radius, GE(Q2) = (1 + Q2/0.66 GeV2)−2.
Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in
the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from
linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a
larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the
electron scattering results and the muonic hydrogen results are consistent. It is the atomic hydrogen results that
are the outliers.
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I. BACKGROUND

The visible universe is primarily comprised of protons, yet
many of this particle’s properties are not yet well understood,
including its charge radius. In recent muonic hydrogen Lamb
shift experiments, it was determined that the proton’s charge
radius is 0.8409(4) fm [1,2]. This result is in significant
disagreement with the 2010 CODATA recommended value of
0.878(5) fm based on spectroscopic data and elastic electron
scattering fits [3]. The muonic result is also in disagreement
with the most recent value of 0.879(5)stat(4)sys(2)model(4)group

fm obtained from electron scattering [4]. This disagreement
has become known as the proton radius puzzle [5,6].

II. METHOD

In contrast to other groups that have focused on re-analysis
of recent data [7–10], our study began by reviewing the high-
precision experiments from Mainz [11] and Saskatoon [12],
referred to herein as Mainz80 and Saskatoon74. These low-Q2

(0.14–1.4 fm−2) electron scattering measurements were made
using hydrogen gas targets. The Saskatoon74 measurements
involved detecting the recoiling protons, while the Mainz80

measurements involved detecting the scattered electrons.
These were both high-precision experiments, with great
care taken to control point-to-point systematic uncertainties.
Prior to these measurements, the value of the proton radius
was generally believed to be 0.81(1) fm [13], while after
Mainz80 data the accepted value from electron scattering
began approaching the current CODATA value.

As noted by Hand et al. [13], one clear advantage of
using low-Q2 data for analysis of the proton’s charge radius
is that experimental cross sections are dominated by the
electric (charge) form factor GE , making the results relatively
insensitive to the magnetic form factor. Also, since the low-Q2

data are fit such that GE(0) ≡ 1, corrections which shift all
points at once are automatically taken into account. Of course,
the major disadvantage of using just the lowest Q2 is the
relatively limited amount of high-precision data; although,
paradoxically, not all global fits include the Saskatoon74 data
(see, e.g., Refs. [9,14,15]).

In principle, the charge radii of nuclei can be determined
from elastic electron scattering data by fitting the extracted
charge form factors and using the Fourier transform to extract
the corresponding charge distribution and rms radius [16,17].
For heavy nuclei, the locations of diffraction minima of the
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form factor also provide a significant constraint on the radius.
For the proton, however, no such diffraction minimum has
been found and, due to the light masses of the quarks within
the proton, relativistic corrections preclude simply using the
Fourier transform to extract its charge density [18].

Instead, the proton’s charge radius rp can be extracted
by determining the slope of the electric form factor as Q2

approaches zero. The relation between the slope and the radius
can be derived in the Born approximation by integrating out
the angular dependence of the form factor, resulting in the
series

GE(Q2) = 1 +
∑
n�1

(−1)n

(2n + 1)!
〈r2n〉Q2n.

Hence, rp can be determined from

rp ≡
√

〈r2〉 =
(

− 6
dGE(Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

.

Of course, electron scattering cannot reach the exact Q2 =
0 limit. Thus, we must extrapolate from the lowest Q2 data
available to Q2 = 0. In order to more accurately determine
a slope at the origin, a range of data over the smallest
experimentally accessible Q2 values is favorable. There are
many methods which may be employed for extrapolation; one
such method involves fitting a model to available data over a
selected range, typically nearest to the interval over which the
extrapolation is to be applied. The 1963 fit to (and extrapolation
of) the GE(Q2) data [13] determined the proton radius to be
0.805 fm by using the expansion

f (Q2) = n0GE(Q2) ≈ n0

(
1 +

m∑
i=1

aiQ
2i

)
. (1)

Here n0 is a normalization factor in recognition that certain
experimental parameters, such as beam current and target
thickness, are not known exactly and variations in them will
affect all elements of a data set the same way.

While extrapolations to regions beyond available data can
be misleading, requiring GE(Q2 = 0) = 1 alleviates some of
the uncertainty. In general, extrapolations using linear regres-
sion with the points nearest to the extrapolation region can be
employed with reasonable success. When using polynomial
extrapolations, both the interval over which the model is fit and
the degree of the polynomial must be carefully chosen to avoid
pathological behavior. In particular, while adding higher-order
terms will improve χ2, they can also magnify small statistical
or systematic deviations, as can be seen in the recent Monte
Carlo study [19]. Thus, great care must be taken to use only
statistically justified terms when fitting a given data set.

To mitigate the effects of using an inappropriate number of
variants, standard statistical methods were used to determine
the degree of polynomial to fit a given data set spanning
a given interval. Taking the Mainz80 and Saskatoon74 data
in their overlap region, 0.14 � Q2 � 0.8 fm−2, F tests were
used to compare first- and second-order polynomial fits. These
tests indicated that the higher-order term was not statistically
significant in this region; thus, the Q4 term was rejected (see
Appendix A). We also made use of a full stepwise regression

analysis using the Akaike information criterion and obtained
the same result (see Appendix B and Ref. [20]).

III. LINEAR EXTRAPOLATIONS

Accordingly, linear extrapolation functions were chosen
as the statistical model of the combined Saskatoon74 and
Mainz80 data with cutoffs up to Q2 � 0.8 fm−2 as shown in
Table I. As this is a multivariate fit, where both the slope and
intercept are simultaneously needed, we use the two-parameter
�χ2 of 2.30 [21] to estimate the 68.3% probability content
(see Appendix C). The fit was done using MINUIT’s order-
independent χ2 minimization with

χ2 =
∑

i

[f (Q2)i − data(Q2)i]
2/[σ (Q2)i]

2.

Thus, we do not attempt to shift the normalization of the data
as was done in some works but instead have added flexibility
to the model via an n0 term [see Eq. (1)] to allow for possible
normalization differences.

It is important to note that all statistical quantities such
as standard errors, confidence intervals, etc., while rigorously
determined in the region where existing data are used in the fit,
are not as accurate over the extrapolated region. But given the
small range of the extrapolation, we nonetheless apply them
to estimate the uncertainty of the charge radius. The results
obtained with the linear extrapolations are all within one sigma
(68.3% confidence interval) of the radius extracted from the
muonic Lamb shift data. These results are also in statistical
agreement with the rp = 0.840(16) fm found by Griffioen,
Carlson, and Maddox [7] with their power series [Eq. (1) with
m = 1,2] and continued-fraction fits of the new high-precision
low-Q2 Mainz14 data [4].

These results seem to systematically disagree with the
Mainz14 reported radius of 0.88 fm where much-higher-order
functions (ninth- and tenth-degree polynomial and spline
functions [22]) and large Q2 ranges were used to extract the
proton radius. Now, while the high-order functions can be used
for precisely interpolating the data those same functions are not
typically used for accurate extrapolations. This same tension
between low-Q2-cutoff vs high-Q2-cutoff extrapolations can
be explicitly seen in the recent global fits of Lee, Hill, and
Arrington [9] where they systematically get a smaller proton
radius when they use only low-Q2 data and a much larger
charge radius as they include high-Q2 data.

TABLE I. Linear extrapolations to Q2 = 0 [Eq. (1) with m = 1]
of the Saskatoon74 and Mainz80 data for various Q2 cutoffs (upper
limits). These fits are used solely to find the slope and intercept at
Q2 = 0 and have no meaning beyond the cutoff.

Q2
max [fm−2] n0 a1 [fm2] χ 2 χ 2

red rp [fm]

0.4 1.000(4) −0.111(14) 6.8 0.684 0.816(51)
0.5 1.002(3) −0.110(10) 8.9 0.636 0.840(35)
0.6 1.001(3) −0.118(7) 9.3 0.547 0.840(27)
0.7 1.002(2) −0.120(4) 10.7 0.534 0.851(16)
0.8 1.002(2) −0.119(4) 13.7 0.623 0.844(14)
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IV. QUADRATIC EXTRAPOLATIONS

To investigate how the next degree of the fitting polynomial
affects the extracted charge radius, we employed a three-
parameter fit [Eq. (1) with m = 2] encompassing the full
range of the Mainz80 (0.14–1.4 fm−2) and Saskatoon74
(0.15–0.8 fm−2) data. With the full range of these data, one
is now statistically justified in including the Q4 term as can
be seen in the analysis of variance (ANOVA) Table VI in
Appendix B. For the three-parameter fits, the values X and the
covariance matrix � are given by

X =
⎛
⎝n0

a1

a2

⎞
⎠, � =

⎛
⎝ σ 2

0 ρ01σ0σ1 ρ02σ0σ2

ρ10σ0σ1 σ 2
1 ρ12σ1σ2

ρ20σ0σ2 ρ21σ1σ2 σ 2
2

⎞
⎠,

where σi are the uncertainties and ρij are the correlation
coefficients. Because we are not using orthogonal polynomials,
there will be significant correlations between the fit parame-
ters. An example of the effect of these correlations can be
seen by simply shifting the highest Q2 point in the combined
Mainz80 and Saskatoon74 data set by one standard deviation
and refitting the data. This one small change has the effect of
systematically shifting all three fit parameters and changing
the extracted proton radius by 0.010 fm. This is a substantial
amount, considering that the difference between the CODATA
and the muonic hydrogen values is only 0.037 fm.

The confidence region for the parameter set of a multivariate
fit can be defined by

χ2 � χ2
min + �χ2,

where χ2
min is the χ2 found when fitting the data and �χ2

(also called K2
β [21]) defines the confidence region. By doing

this, we are generating a covariance matrix normalized to our
desired confidence level (see Appendix A for details). Thus, in
order to have a 68.3% probability content for a three-parameter

FIG. 1. The 68% (inner) and 95% (outer) confidence ellipsoids
associated with the covariance matrix from the three-parameter
fit [Eq. (2)] of the Mainz80 and Saskatoon74 data. The plane
representing the muonic Lamb shift result of rp = 0.84 fm is shown
at its corresponding a1 value of −0.1176 fm2 and is clearly not ruled
out by this fit.

multivariate fit, one should use �χ2 = 3.53 (see Table 38.2 of
the Review of Particle Properties [23]). Using this confidence
region, a fit of the combined Mainz80 and Saskatoon74 data
yields

X =
⎛
⎝ 1.003

−0.127
0.011

⎞
⎠, �=

⎛
⎝ 1.26 −3.66 2.46

−3.66 12.6 −9.26
2.46 −9.26 7.44

⎞
⎠×10−5.

(2)

Thus one finds n0 = 1.003(4), a1 = −0.127(11), and a2 =
0.011(8), resulting in a radius of rp = 0.873(39) fm. This is
within one sigma of the muonic result where we have again
assumed that uncertainties determined for the fitted region are
valid when extrapolated to Q2 = 0.

FIG. 2. Shown are monopole, dipole, Gaussian, and the linear
extrapolations with the radius set to the muonic Lamb shift result of
0.84 fm (top panel) and 0.88 fm (bottom panel) for Q2 up to 0.8 fm−2,
along with the high-precision, low-Q2 data from Saskatoon74 (open
circles) and Mainz80 (solid squares). At very low Q2 these functions
overlap as we know they should from their power-series expansions.
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FIG. 3. Shown are various fits to Mainz14 Rosenbluth GE data.
One can see that Maclaurin series fits quickly diverge when not
constrained by the data. The dipole (a special case of a rational
function) and the N = M = 1 Padé approximant not only extrapolate
to high Q2 reasonably well but, unlike the Maclaurin series, produces
nearly the same Q2 = 0 slope and intercept for different cutoffs.

To visualize the parameter correlations, we generated both
the 68% and 95% confidence ellipsoids as well as the plane
indicating the a1 given by the muonic hydrogen Lamb shift
result (Fig. 1). The intersection of these regions shows that the
muonic hydrogen result is within even the tighter confidence
ellipsoid.

We note that the statistical models, which are being used
to extrapolate the slope of GE to Q2 = 0, are only valid near
where they are constrained by data and are not intended for
extrapolation far beyond the data that is being fit. Even so, it
is important to research whether the function being used can
reasonably be expected to extrapolate reliably. In mathematics,
there is well-known tension between high-order functions
which precisely interpolate a set of data and lower-order
functions which can accurately extrapolate.

Since the linear extrapolations generally agree with the
muonic hydrogen Lamb shift result, we tried simply using the
muonic hydrogen radius, 0.84 fm, to set the slope parameter,
a1 = −0.1176 fm2, in the linear, monopole (1 − a1Q

2)−1,
dipole (1 − a1Q

2/2)−2, and Gaussian (exp(a1Q
2)) functions.

The results are shown in Fig. 2 (top panel) with the published
GE(Q2) results, i.e., without any renormalization, for 0 <
Q2 < 0.8 fm−2. The linear extrapolation shown in this plot
is indistinguishable from the a1 of −0.1163 fm2 [i.e., rp =

0.835(3) fm] found in the low-Q2 re-analysis of the Mainz14
data by Griffioen, Carlson, and Maddox [7]. Interestingly,
these results are also in agreement with the inverse-polynomial
fits of Arrington 2004 [14] where the slopes at Q2 = 0 yield
radii between 0.835 and 0.856 fm. Many other fits, such as
found in Mainz14 [4], yield larger radii. The latter fits include
far more free parameters, involve data from a wider range of
Q2, and do not always go through the published low-Q2 values
of GE . Figure 2 (bottom panel) shows the same functions as the
panel above, but with rp = 0.88 fm. It is important to realize
that, in a global χ2 minimization with floating normalizations,
the lowest-Q2 dataset can easily be shifted by the relatively
large amount of higher-Q2 data.

V. HIGH- Q2 FITS

To further investigate the source of this discrepancy, we next
studied the Mainz GE(Q2) Rosenbluth data [4]. For these fits,
we allow for a 0.2% systematic uncertainty to the statistical
uncertainty in line with other high-precision measurements
that were not statistics limited [17].

Using the simplest function that has not been ruled out for
this range in Q2, the dipole function, we first fit this data set
alone and find

X =
(

0.991
−0.1140

)
, � =

(
18.16 5.449
5.449 2.260

)
× 10−7,

with a reduced χ2 of 0.725. This parameter set yields rp =
0.827(2) fm and again favors the muonic hydrogen result. We
next perform Maclaurin series fits, Eq. (1), by using the F test
to determine the optimal order of the fits (see Fig. 3) and find
rp = 0.823(2) fm and rp = 0.857(2) fm from the five- and
six-parameter fits, respectively. Finally, we fit using a rational
(N = M = 1 Padé) approximant

f (x) = n0
1 + a1x

1 + b1x

a well-behaved function often used for extrapolations [24] and
again use an F test to determine the order of the fit. Here
the radius at Q2 = 0 is given by

√
6(b1 − a1). We fit these 77

points using �χ2 = 3.53 to find

X =
⎛
⎝ 0.994

−0.0193
0.0980

⎞
⎠, � =

⎛
⎝5.74 1.41 4.58

1.41 0.825 1.97
4.58 1.97 5.29

⎞
⎠ × 10−6,

with a reduced χ2 of 0.624 and a radius of rp = 0.839(9) fm.
We also tried fixing the radius to 0.84 fm and 0.88 fm

(i.e., a1 = −0.1176 fm2 and −0.1292 fm2, respectively) and
performing a five-parameter Maclaurin fits of the Mainz14
Rosenbluth GE data: see Table II. Interestingly, even here the
χ2 is significantly better for the smaller radius.

TABLE II. Repeating the Maclaurin j = 6 fits, but with the a1 term fixed to the atomic-hydrogen and muonic-hydrogen values of the proton
radius, 0.84 fm and 0.88 fm, respectively.

Fixed radius χ 2 χ 2/ν n0 a2 a3 a4 a5

0.84 fm 56.34 0.783 0.994(1) 1.12(1) × 10−2 −0.93(2) × 10−3 5.0(1) × 10−5 1.20(5) × 10−6

0.88 fm 142.1 1.97 1.003(1) 1.62(1) × 10−2 −1.78(1) × 10−3 1.14(1) × 10−4 −2.90(7) × 10−6
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Recent asymmetry data have shown that GE stays positive
beyond 220 fm−2 [25], so we next decided to compare our
simple form factor functions to the highest measured values of
GE . We repeated our two-parameter dipole function fits of the
low-Q2 Mainz80 and Saskatoon74 data, but now included the
Stanford94 [26] and Jefferson Lab04 [27] Rosenbluth results.
By including these data, the monopole and Gaussian functions
can be rejected with a high degree of certainty due to their
reduced χ2 of 34 and 25, respectively [28]. On the other
hand, the two-parameter dipole form factor fit of these four
independent data sets, two at extremely low Q2 and two at
extremely high Q2, yields

X =
(

0.9995
−0.1201

)
, � =

(
2.443 −3.430

−3.430 6.773

)
× 10−6,

with a reduced χ2 of 1.25 and a normalization of nearly
one. If the a1 term of this fit is interpreted in terms of a
charge radius, one finds rp = 0.848(9) fm. This two-parameter
fit, describing and bridging the lowest and highest GE(Q2)
results, is again consistent with the muonic hydrogen Lamb
shift radius. Repeating as a one-parameter fit, i.e., n0 = 1
from the low-Q2 fits above, gives a1 = −0.1188(14) fm2 for
a radius of 0.844(5) fm and reduced χ2 of 1.23. We note
that the model-dependent part of the two-photon exchange
correction can reduce the high-Q2 GE values, but we also
know that GE remains positive [25]. Thus, the absolute range
of high-Q2 GE values is actually quite small and within the
included systematic uncertainty.

In Fig. 4, we plot GE for all the data we have studied along
with the monopole, dipole, and Gaussian functions with rp set
to 0.84 fm in each case. The general agreement between the

FIG. 4. Shown are the monopole, dipole, and Gaussian form
factor parametrizations with rp set to the muonic Lamb shift result
of 0.84 fm. Here the low-Q2 points are the same as in Fig. 2, the
intermediate Q2 data are from Mainz14 [4] and the highest Q2 data
are from Jefferson Lab04 [27] and Stanford94 [26]. On this scale, the
0.84 fm dipole function is indistinguishable from the four-parameter
continued-fraction fit of Griffioen, Carlson, and Maddox [7].

FIG. 5. Shown are the residuals, f (rp)/f (0.84fm) − 1, to the
0.84 fm dipole function for the published experimental values of
GE(Q2) along with various dipole forms. Also shown is the residual
to the GCM fit [7] with GE(0) = 1. The shading indicates a ±0.5%
band around the 0.84 fm dipole function to indicate the uncertainty
of the experimental normalization, n0. While the classic 0.81 fm
dipole function is ruled out, the data clearly follow the 0.84 fm dipole
function.

dipole function and the data is striking. In Fig. 5, we zoom
in on the low-Q2 region and plot the fractional difference
between the data and the dipole function corresponding to rp =
0.84 fm as well as between dipole functions corresponding
to the standard (CODATA) rp = 0.81 fm (0.88 fm) dipole
function. Note that both the standard and the CODATA dipole
functions fail to describe the data, while the rp = 0.84 fm
dipole function is within normalization uncertainties and does
indeed adequately describe the data. While agreement of the
extracted radius, employed in the dipole function, for values
of Q2 beyond the low-Q2 region is, strictly speaking, not
germane to the determination of rp using statistical methods,
it does lend support for our initial results and to our statistical
approach to the analysis.

VI. CONCLUSIONS

In summary, we have analyzed several high-quality mea-
surements of the proton charge form factor by using stepwise
linear regression. By performing numerous fits over several
intervals of Q2, we find that statistically justified linear
extrapolations of the extremely-low-Q2 data produce a proton
charge radius which is consistent with the muonic results and
is systematically smaller than the one extracted using higher-
order extrapolation functions. We also find that the simple
dipole function incorporating the muonic radius provides a
significantly better description of the charge form factor than
the often-used standard dipole. While the uncertainties in the
charge radius extracted from the data at finite Q2 are not
mathematically rigorously determined at Q2 = 0, by using
multivariate estimates of the uncertainties we tried to provide
a reasonable error estimate.
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TABLE III. Comparison of the nested functions with j = 2,3
for a cutoff of 0.8 fm−2. The j = 3 function is rejected at a 95%
confidence level by the F test. Smaller cutoffs, of course, also all
reject the j = 3 term. Here, ν = N − j − 1 is the number of degrees
of freedom. For the uncertainty, we have used �χ2 of 2.3 and 3.5 for
the two- and three-parameters fits, respectively, in order to maintain
a 68.3% probability content.

N j χ 2 χ 2/ν n0 a1 a2

24 2 13.71 0.623 1.002(2) −0.119(4)
24 3 13.71 0.652 1.002(5) −0.120(20) 0.00(2)

The fits were performed with the MINUIT package [29], R
statistical computing language [30], and Wolfram’s Mathe-
matica. This material is based on work supported by the U.S.
Department of Energy, Office of Science, Office of Nuclear
Physics under Contracts No. DE-AC05-060R23177 and No.
DE-SC0014325.

APPENDIX A: TEST OF ADDING TERMS IN A
POLYNOMIAL FIT AND INSPECTION OF RESULTS

A common problem when fitting data is determining
the level of complexity of the fitting function required to
accurately model the data. The χ2 statistic alone is not
sufficient to determine if more complexity is required because
χ2 will generally improve with increased complexity, i.e.,
the addition of more parameters. In the main paper, the
decision to apply a linear model to the fits of the Mainz80
and Saskatoon74 GE(Q2) data over the Q2 interval [0.14, 0.8]
fm−2 was founded on the observation that the data, when
plotted against Q2, appears linear and the assumption that
higher-order terms in a polynomial model may be neglected at
low Q2. Because general polynomials of degree m and m + 1
are nested, the significance of the higher-degree polynomial
may be tested by using a statistical test such as the F
test.

In general, an F test is simply any statistical test where
the test statistic has an F distribution under the null hypothe-
sis [31,32]. This is a common way of determining the statistical
significance of additional complexity of the fitting function. In
this case, we use the test since the true function, GE(Q2), is
not known and thus χ2 alone is not sufficient for determining
the degree one should use.

To approximate the true function, GE(Q2), we are using
the Maclaurin series

f
(
Q2) = n0GE

(
Q2)

≈ n0
(
1 + a1x + a2x

2 + · · · + amxm
)
,

where m is the highest degree of the polynomial in x = Q2

and n0 is to account for normalization offsets.

1. Low- Q2 F test

Theoretically, the radius of the proton can be determined
by measuring the slope of GE(Q2) at Q2 = 0. Thus, in the
low-Q2 region, it is perhaps justified to only consider terms of
order Q2 and neglect higher-order terms. To test this ansatz,
we consider the two nested functions

f1(Q2) = n0(1 + a1Q
2), (A1)

f2
(
Q2

) = n0
(
1 + a1Q

2 + a2Q
4
)
, (A2)

where n0 is simply a coefficient used to normalize the data
such that, at Q2 = 0, one has GE(0) = 1. We are checking to
see if the a2 term should be included in the fit.

For the F test, we use the ratio

F = χ2(j − 1) − χ2(j )

χ2(j )
(N − j − 1), (A3)

where N is the number of data points, j is the number of
parameters being fit, and χ2(j − 1) and χ2(j ) are the total
χ2 obtained from fitting at j − 1 and j . This test is applied
to determine, to a specified confidence level, if the next order
of a given function should be used to describe the data or
rejected. For the case of power series, the calculation of F
could even be built into a robust linear regression program, as
suggested by Bevington [33], and the number of terms in the
series determined automatically.

In an F test, if the simpler function is sufficient (which is
the null hypothesis), it is expected that the relative increase in
the χ2 is approximately proportional to the relative increase
in the degrees of freedom. The test may be applied when the
functions under comparison are linear in the parameters (ai)
and when the simpler function can be nested in a function of
more generality [31,32,34]. No stipulations on the correlations
between the fit parameters are required.

When comparing the fit results between (j = 2) and (j =
3), as shown in Table III, we obtain F = 0.00025. This is far
less than the F -distribution CL = 95% critical value of 4.3
(see Ref. [21], Table 10.2 or Ref. [33], Table C.5) and the
more complicated function [Eq. (A2)] is rejected.

TABLE IV. Comparison of the nested Maclaurin functions j = 5,6,7 for the Mainz14 Rosenbluth GE data, 0.39 to 14.2 fm−2, where a
0.2% systematic uncertainty has been included. Using the F test, the j = 7 function is rejected. The lower-order fits should be inspected. The
68.3% uncertainties for the j = 5, 6, 7 fits are calculated by using �χ2 = 5.9, 7.0, 8.2, respectively.

N j χ 2 χ 2/ν n0 a1 a2 a3 a4 a5 a6

77 5 49.57 0.688 0.991(2) −0.113(1) 0.88(1) × 10−2 −0.44(2) × 10−3 9.7(8) × 10−6

77 6 41.34 0.582 0.996(2) −0.121(1) 1.25(1) × 10−2 −1.14(2) × 10−3 6.8(1) × 10−5 −1.62(7) × 10−6

77 7 41.32 0.590 0.995(3) −0.119(1) 1.18(1) × 10−2 −0.93(2) × 10−3 3.9(1) × 10−5 0.12(6) × 10−6 −4.2(5) × 10−8

055207-6



PROTON RADIUS FROM ELECTRON SCATTERING DATA PHYSICAL REVIEW C 93, 055207 (2016)

In the analysis by Griffioen, Carlson, and Maddox, the
authors fit the low-Q2 Mainz14 data with a power series. In
their linear vs quadratic fits, they show very little change in
χ2/ν for the extra degree of freedom. In fact, applying the F
test to their results once again suggests that, within this range,
the a2 term is not needed.

2. Moderate- Q2 F test

Of course, as the range in Q2 is increased, the higher-order
terms may be needed to fit the data. As an example, we consider
the Mainz14 Rosenbluth GE data. In this case, the data range
from 0.39 to 14.2 fm−2 and likely require a relatively-high-
order Maclaurin series to be fit precisely.

By using a Maclaurin expansion of the standard dipole
for the initialization parameters of the fit, we find the results
summarized in Table IV. In this case, we reject the j = 7
function, for which F = 0.02. Note that the test is only for
rejecting unneeded complexity and is not an acceptance test of
which of the lower-order functions should be used to describe
the data and thus it is not correct to simply select the highest-
order function that is not rejected.

For a term-by-term comparison, we now write the 0.84 fm
radius dipole function in terms of a Maclaurin expansion [note
that (�c)2/0.66 GeV2 ≈ 0.0588 fm2]:

1

(1 + 0.0588x)2
=1 − 0.118x + 1.04 × 10−2x2

− 0.81 × 10−3x3+5.98 × 10−5x4

− 4.22 × 10−6x5+2.89 × 10−7x6 + O(x7).

By comparing the coefficients of the Maclaurin expansion of
the dipole function (rp = 0.84 fm) with the corresponding fit
parameters an for the j = 5 and j = 6 cases (Table IV), one
sees that the coefficients of the dipole function fall between
those of the two fits to all overlapping orders. This arises
because the first neglected terms in the two cases are of
opposite sign. Thus, in each case the remaining terms must
adjust in opposite directions to account for the neglected
contribution, suggesting strongly that the dipole coefficients
are very close to the proper ones.

APPENDIX B: ANALYSIS OF VARIANCE TABLES AND
AKAIKE INFORMATION CRITERION

There are certainly many other techniques that can be used.
For example, it is common in statistics to generate an analysis

TABLE V. ANOVA table information generated by R for the
linear-regression models fits of the limited (0.14 to 0.8 fm−2)
Saskatoon74 and Mainz80 data. Here there is no question that the data
only justify being fit with the linear statistical model. (DOF means
“degrees of freedom” and RSS means “residual sum of squares”.)

j DOF RSS Sum of squares F value p value

2 22 13.706 1695.5 2721.6 <2.2 × 10−16 ***
3 21 13.706 0.00017 0.0003 0.9875 −

TABLE VI. ANOVA table information generated by R for the
linear-regression model fits of the full Saskatoon74 and Mainz80 data
(0.14 to 1.4 fm−2). Here the two-star significance of the polynomial
justifies trying the polynomial function for that range as done within
the paper.

j DOF RSS Sum of squares F value p value

2 27 24.169 3462.9 4773.2 <2.2 × 10−16 ***
3 26 18.869 5.2995 7.4894 0.01236 **
4 25 18.835 0.0344 0.0486 0.82768 −

of variance (ANOVA) table. It is convenient to use R [30] to
generate the table, the residual sum of squares, F , as well as to
calculate the corresponding p value (the probability of F being
higher than the critical value) on which the significance code is
based: smaller values of p imply high significance and values
near unity imply lower significance; see Tables V, VI, and VII.
Following the standard notation of R, three stars signify a
significant effect while no stars imply that the hypothesis can
be rejected with a high degree of certainty.

While using a slightly different criteria, these tables support
the same conclusions as we draw from our F test; namely,
that for the very-low-Q2 data the only statistical model that
is justified is the linear one. This result neither confirms
nor invalidates any physical models, because all the physical
models possess a linear term in their Maclaurin expansions.
The difference is that the statistical model is only valid within
the range of the data while a physical model can have a
significance over all Q2.

What one can see is that, as one increases the range of the
data, one can add terms to the statistical model. While this
makes perfect sense for describing the range of the data, it
also means that, as the range of the data increases, higher-and-
higher-order functions are being used to find the slope and
intercept to Q2 = 0 by extrapolation.

Going beyond just the ANOVA tables, it is possible to do
the stepwise linear regression by using the Akaike information
criterion (AIC). The beauty of using AIC is that non-nested
models can be compared although, for the following two
examples, the models are the nested Maclaurin series. In Fig. 6
the results of a stepwise linear regression of the Saskatoon74
and Mainz80 data is presented and, using the same code, Fig. 7
shows a stepwise linear regression of the Mainz 14 GE data.

TABLE VII. ANOVA table information generated by R for the
linear-regression model fits of the complete Mainz14 data, with
significance codes based on p values.

j DOF RSS Sum of squares F value p value

2 75 45842 935636 418059.3 <2.2 × 10−16 ***
3 74 1838 44004 19570.6 <2.2 × 10−16 ***
4 73 289 1549 688.9 <2.2 × 10−16 ***
5 72 191 98 43.7 6.623 × 10−9 ***
6 71 159 32 14.1641 0.0003482 ***
7 70 159 ≈0 0.0095 0.9224837 −
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FIG. 6. Shown is the result of stepwise regression of the combined
and truncated Saskatoon74 and Mainz80 data by using AIC to
determine that a degree-one polynomial sufficiently describes the
data. This log-likelihood-based result is in agreement with the
χ 2-based F test.

For both of these fits, the order of polynomial to use was chosen
by using AIC. The code to produce these results as well as to
make the ANOVA tables makes use of the R programming
language for statistical computing [30] and is freely available
on GitHub [20].

APPENDIX C: MULTIVARIATE ERRORS

By default, MINUIT’s MINOS algorithm performs minimiza-
tion in multiple dimensions; however, the errors which it
calculates by default are still only single-parameter errors.
In other words, the default output shows the one-sigma
uncertainty only of that one parameter regardless of the
other parameters. Now if the intention of the fit is to make
simultaneous statements about multiple parameters, the error

FIG. 7. Shown is the result of stepwise regression of the Mainz14
data using AIC to determine that a fifth-degree polynomial sufficiently
describes the data. This log-likelihood-based result is in agreement
with the χ 2-based F test.

estimate is complicated by the fact that the confidence region
is not simply an interval on an axis but rather a hypervolume.
Thus, it left to the user to set the desired probability content
of the hypervolume and the code will calculate the errors that
correspond to such a content. This prescription for handling
multivariate errors is in fact explicitly noted as required in the
statistics section of the Review of Particle Physics [23].

For the proton radius experiments, even the linear fits are
trying to simultaneously determine the slope and normaliza-
tion at Q2 = 0 and thus we required a �χ2 of 2.3 instead of the
default 1 in order to keep the desired 68% probability content
inside the probability contour. Further details and examples
of this type of multivariate error analysis can be found in Y.
Avni’s highly cited article on the analysis of x-ray spectra in
galactic clusters [35].
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