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Bubble dynamics and the quark-hadron phase transition in nuclear collisions
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We study the nucleation of a quark-gluon plasma (QGP) phase in a hadron gas at low temperatures and
high baryon densities. This kind of process will presumably happen very often in nuclear collisions at the GSI
Facility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion Collider Facility (NICA). When
the appropriate energy densities (or baryon densities) and temperatures are reached the conversion of one phase
into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new
phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate
it we solve the Relativistic Rayleigh–Plesset equation which governs the dynamics of a relativistic spherical
bubble in a strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka
model and the QGP is described by the MIT bag model and also by a mean field model of QCD.
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I. INTRODUCTION

It is now believed that a quark gluon plasma (QGP) is
formed at high temperatures in the high energy heavy ion colli-
sions performed at the Relativistic Heavy Ion Collider (RHIC)
and the CERN Large Hadron Collider (LHC). Presumably the
QGP will also be formed at low temperatures in collisions
performed in the future at the GSI Facility for Antiproton
and Ion Research (FAIR) [1] and the Nuclotron-based Ion
Collider Facility (NICA) [2]. After its formation the QGP
expands, cools, and hadronizes, creating the observed hadrons.
It is a complex process and some of its aspects need to be
better understood. One of these aspects is the transition from
compressed hadronic matter, which we will call hadron gas
(HG), to quark-gluon plasma at the initial stage of the collisions
at lower energies and high baryon densities.

In most of the existing hydrodynamical codes this transition
is performed just by following the behavior of some variables,
such as the energy density, ε. During a collision, the regions
where the energy density exceeds the critical value, εc, are
assumed to be made of QGP, and the corresponding equation
of state starts to be used. In particular, the transition is assumed
to occur instantaneously, as soon as some criterion is fulfilled
(such as ε > εc). However, we might expect that even when
this condition is satisfied the system needs some time to convert
itself to the other phase. As we will discuss below, nucleation
theory can be used to incorporate this transition time in the
theoretical description of these nuclear collisions.

The matter produced at RHIC and LHC is at high tem-
perature and small chemical potential (and baryon density).
A few years ago, lattice QCD studies established that, under
these conditions the quark-hadron phase transition is actually
a crossover. On the other hand, in the forthcoming nuclear
collisions to be performed at FAIR [1] and NICA [2] the
temperature is expected to be low and the chemical potential is
expected to be high. Indeed, in these accelerators, in contrast
to what happens at the RHIC and at the LHC, the stopping
power is large and most of the projectile and target baryons
get trapped in the dense region. The QGP, when formed, will be
surrounded by compressed nuclear matter. Model calculations
strongly suggest that, at low temperatures and high baryon

densities, the quark-hadron conversion is a first-order phase
transition, for which the nucleation theory should apply.

Nucleation (or bubble formation) of a quark phase in
hadronic matter has been extensively studied in the context of
compact stars and also in relativistic heavy ion physics, where
we may have both the nucleation of a QGP bubble [3–7] in
a hadron gas and also the nucleation of a HG bubble in the
QGP [8,9]. Most of the recent works on the subject were
devoted to improve the calculation of the surface tension, free
energy, critical radius, and nucleation rate [10]. In the context
of heavy ion collisions there is an extensive literature on the
nucleation process [11,12]. However, apart from Refs. [13,14],
there are not many other studies about the space-time evolution
of the bubbles. This evolution is described by differential
equations, all of them based on variants of the Rayleigh
equation [15] and, in particular, the Rayleigh-Plesset (RP)
equation [16]. Nucleation theory and its differential equations
can be applied to the nuclear collisions to be performed at
FAIR to estimate the transition time from the initial HG to the
QGP. This transition time depends on several variables, such
as the probability of bubble formation, the number of produced
bubbles, their sizes, and the velocity with which the bubbles
expand (or collapse). This last aspect is the main subject of
this work.

The collision dynamics at FAIR is very complex and is the
subject of the whole Part III of The CBM Physics Book [1].
The models described there are very detailed and also very
different from each other. In this context, we believe that
it is interesting to have a simple theoretical tool to help in
estimating the transition time discussed above. To this end, we
can use the relativistic Rayleigh-Plesset equation, as will be
explained below.

A qualitative sketch of a nucleus-nucleus collision at
intermediate energies is depicted in Fig. 1. Two nuclei collide
[Fig. 1(a)]. After the collision a compound system of hadronic
matter (H) is formed which, under strong compression and
at low temperatures, goes from the hadronic (H) phase to the
QGP (Q) phase. The system is at high density (ρB > ρc) and
at high pressure, the hadronic phase is unstable and bubbles
of QGP may form and grow. In Fig. 1(b) we see QGP bubbles
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FIG. 1. Schematic picture of the initial stage of a nuclear collision
at intermediate energies. (a) Two nuclei collide. (b) Bubbles of QGP
(Q) start to form and grow in a hadron medium (H). (c) The remaining
hadronic matter is in bubbles which shrink. In the end the QGP is
formed.

growing and filling the whole system. Later, the plasma phase
is dominant, except for some regions where the hadronic
phase persists. These regions are represented by bubbles of
the hadronic phase, which start to shrink. This is shown in
Fig. 1(c). Actually the study of the growth of the QGP bubbles
would be enough to give an estimate of the transition time. For
completeness we will also study the evolution and collapse of
the hadron gas bubbles.

In the literature related to the Rayleigh-Plesset equation,
typically one speaks of a bubble of gas (G) immersed in a
liquid (L). In the context of the present work there is already a
gas (the hadron gas) and hence, to avoid confusion, we will use
a different notation. All the quantities which refer to the matter
inside a bubble will be labeled with “in”, such as the pressure,
pin, and energy density, εin. The quantities which refer to the
matter outside (external to) the bubble, will be labeled with
“ex”, such as pex and εex.

Following the spirit of Refs. [13,14] but considering a
different physical scenario, in this work we study the evolution
of both HG and QGP bubbles in warm and compressed
hadronic matter. We find the solutions of the relativistic
Rayleigh-Plesset (RRP) equation derived in Ref. [17] for
various plausible choices of parameters. These solutions will
help us in determining the time scales associated with the
hadron-to-quark phase transition and QGP formation.

The work is organized as follows. In Sec. II we generalize
the RRP equation and the definitions of the involved quantities
to the finite temperature case. The detailed derivation is shown
in the Appendix. We also present the nonrelativistic version
of the Rayleigh-Plesset equation and its analytical solution. In
Sec. III we show the equations of state which we are using. In
Sec. IV we show the numerical solutions of the RRP equation
and discuss their implications, and in Sec. V we present some
conclusions.

II. RELATIVISTIC BUBBLE EVOLUTION EQUATION

A. Rayleigh-Plesset equation in relativistic fluid dynamics

The Rayleigh-Plesset equation can be derived in different
ways. It describes the motion of a spherical bubble filled with
a medium (in) immersed in another medium (ex). Here we
follow the notation, the conventions (� = c = kB = 1) and
the approximations made in Ref. [17], where the relativistic
Rayleigh-Plesset equation was, to the best of our knowledge,
derived for the first time. In the Appendix we extend the
formalism to finite temperatures, in which the RRP equation
reads

d

dt
[(I1 + I2)R3Ṙ] + (I1 − 2I2) R2 Ṙ 2 = F, (1)

where the integrals are given by (with x = r/R)

I1 ≡
∫ 1

0
dx x4

(
εin + peff

in

)
γ 2

in, (2)

I2 ≡
∫ ∞

1

dx

x2

(
εex + peff

ex

)
γ 2

ex, (3)

where the ε and p are the energy density and the pressure
respectively. The “effective pressures” are given by

peff
ex ≡ pex − Tex

∂pex

∂T

∣∣∣∣
T =Tex

and

peff
in ≡ pin − Tin

∂pin

∂T

∣∣∣∣
T =Tin

, (4)

with Tex being the temperature of the external medium and Tin

the temperature inside the bubble.
In the derivation of (1) the following Hubble-like velocity

profile was assumed:

vin(r) = r

R
Ṙ for 0 < r < R (5)

and

vex(r) = R2
(
R3

∞ − r3
)

r2
(
R3∞ − R3

) Ṙ for R < r < R∞, (6)

where Ṙ denotes the time derivative of the bubble radius, R(t),
and R∞ is the radius of the fluid, assumed to be very large.
These fields are used in the Lorentz factors:

γin = 1√
1 − (

r
R
Ṙ

)2
and γex = 1√

1 − (R2(R3∞−r3)
r2(R3∞−R3) Ṙ

)2
(7)
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The function F is given by

F ≡ −R2

[
(εin − εex)|R +

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
∞

]

+ 3

R

∫ R

0
dr r2

(
εin + pin − T

∂pin

∂T

)
. (8)

In what follows we will focus on the case where the phase
boundary (i.e., the bubble surface) moves slowly compared
to the sound velocity of the medium (Ṙ � cs � 0.4–0.6) [6].
Thus the system can adjust adiabatically to the changes of the
bubble radius, and each phase retains its pressure, which can
be considered constant, i.e., independent of the bubble radius.
In this approximation, in each phase ε and p are independent
of the radial coordinate. The energy density for each phase has
then the following form:

εex(r = R) = εex(r → ∞) = εex and

εin(r = R) = εin(r → 0) = εin. (9)

Inserting (9) into (8) we obtain

F =
[

(pin − pex) −
(

Tin
∂pin

∂T

∣∣∣∣
T =Tin

− Tex
∂pex

∂T

∣∣∣∣
T =Tex

) ]
R2

= −(
peff

ex − peff
in

)
R2. (10)

In the case of zero temperature, we have F = −(pex − pin) R2

as found in Ref. [17]. Looking at (1), we see that the left side
contains the “acceleration” whereas the right side contains
the “force.” When the pressure outside the bubble is larger
than inside, i.e., peff

ex > peff
in , the function F will have negative

values, implying a force towards the center of the bubble,
which leads to its collapse. On the other hand if peff

ex < peff
in ,

the bubble will expand. We could add a term in Eq. (1) with the
surface tension. However, we postpone the introduction of this
term because we do not know its precise form in the relativistic
formulation of the RP equation and also because we expect it
to produce small effects compared to the uncertainties in the
equations of state.

In the next subsection, we will obtain the nonrelativistic
limit of (1) and will solve it analytically, confirming that when
peff

ex > peff
in (and pex > pin at zero temperature), the bubble

shrinks.

B. Nonrelativistic limit

The non-relativistic limit for the RRP equation (1) is
obtained by expanding the Lorentz factors around small values
of Ṙ 2. Using this expansion and recalling that x = r/R we find

I1
∼= 1

R5

∫ R

0
dx x4(εin + peff

in

) + Ṙ 2

R7

∫ R

0
dx x6(εin + peff

in

)
,

(11)

I2
∼= R

∫ ∞

R

dx

x2

(
εex + peff

ex

) + R5 Ṙ 2
∫ ∞

R

dx

x6

(
εex + peff

ex

)
.

(12)

The effective pressure and energy density of the gas and fluid
phases are assumed to be constant in the radial coordinate and

hence (11) and (12) can be simplified. Substituting (10)–(12)
into (1) and keeping only the linear terms in Ṙ 2 we find[

4
5

(
εin + peff

in

) + (
εex + peff

ex

)]
Ṙ 2

+ [
1
5

(
εin + peff

in

) + (
εex + peff

ex

)]
R R̈ = −(

peff
ex − peff

in

)
,

(13)

which is the nonrelativistic limit of the relativistic equation (1).
We can rewrite the above equation in a compact form as

R R̈ + α Ṙ 2 = β, (14)

where

α ≡
4
5

(
εin + peff

in

) + (
εex + peff

ex

)
1
5

(
εin + peff

in

) + (
εex + peff

ex

) and

β ≡ −(
peff

ex − peff
in

)
1
5

(
εin + peff

in

) + (
εex + peff

ex

) . (15)

Using the Sundman transformation method as described in
Ref. [18], we can find the analytical solution of (14), which is
given by

t(R) =
(−2Cα

β

)1+ 1
2α

{√
1

2Cα2 R2α
+ β

4C2 α3 2F1

×
(

1 + 1

2α
,
1

2
;

3

2
;

4C2 α3

β

[
1

2Cα2 R2α
+ β

4C2 α3

])

+ A 2F1

(
1 + 1

2α
,
1

2
;

3

2
;

4C2 α3 A2

β

)}
, (16)

where the constants are

C =
(

v2
0 − β

α

)
R2α

0

2
and

A = R
1/4α
0

2Cα2

√
2Cα2 + α β R

−1/2α
0 . (17)

The initial bubble radius is R0 = R(0) and v0 = Ṙ(0) is the
initial velocity of the bubble frontier. The hypergeometric
functions in Eq. (16) are given by [19]

2F1(a,b; c; z) = �(c)

�(b) �(c − b)

∫ 1

0
dξ

ξb−1 (1 − ξ )c−b−1

(1 − ξ z)a
(18)

for Re(c) > Re(b) > 0. When the radius R tends to zero,
we have the collapse time (tcollapse) of the bubble. Defining
the following variable in the first hypergeometric function in
Eq. (16):

w ≡ 4C2 α3

β

[
1

2Cα2 R2α
+ β

4C2 α3

]
, (19)

we have w → ∞ when R → 0, and in this regime the
hypergeometric function is given by

2F1

(
1 + 1

2α
,
1

2
;

3

2
; w → ∞

)
∼= −i

√
π

2

�
(

1
2 + 1

2α

)
�

(
1 + 1

2α

) 1√
w

.

(20)
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Inserting (20) into (16) we have

tcollapse =
(−2Cα

β

)1+ 1
2α

{√
π

2

√
−β

4C2 α3

�
(

1
2 + 1

2α

)
�

(
1 + 1

2α

)
+A 2F1

(
1 + 1

2α
,
1

2
;

3

2
;

4C2 α3 A2

β

)}
. (21)

We notice in Eq. (16) and clearly in Eq. (21) that β must
be negative for the bubble collapse condition to hold. This
means that from (15) we must have peff

ex > peff
in . In the zero

temperature case we must have pex > pin.

III. EQUATIONS OF STATE

The temperature of the hadronic matter formed in the
early stage of the nuclear collisions to be performed at FAIR
and NICA can be in the range of tens of MeV going up
to �100–150 MeV. In the following calculations we will
discuss two extreme case, one with T = 0 and another with
temperatures around 100 < T < 140 MeV.

A. Zero temperature

In the literature there are numerous equations of state for
both phases. Here we shall employ two of them in the zero
temperature case which are very well known and another one
(mQCD) which is very stiff and, when applied to the study of
compact stars, is able to generate quark stars with two solar
masses.

1. MIT bag model at zero temperature

The MIT bag model equation of state (EOS) for the QGP
with quarks (equal masses mq) has pressure [20]

pMIT =
d,s∑
q=u

γq

6π2

∫ kF

0
dk

k4√
m2

q + k2
− B (22)

and energy density

εMIT =
d,s∑
q=u

γq

2π2

∫ kF

0
dk k2

√
m2

q + k2 + B, (23)

where B is the bag constant, mq = 10 MeV and γq =
2(spins) × 3(colors) = 6 is the statistical factor for each quark
flavor. The quark density is given by [20]

ρMIT =
d,s∑
q=u

γq

2π2

∫ kF

0
dk k2, (24)

which defines the highest occupied level kF . Recalling that the
baryon density is ρB = ρMIT

3 , we have from (24) the relation

ρB = k3
F

π2
, (25)

which defines (22) and (23) as functions of the baryon density
pMIT = pMIT(ρB) and εMIT = εMIT(ρB).

2. Nonlinear Walecka model at zero temperature

The energy density and pressure of the nonlinear Walecka
model (NLWM) are given respectively by [21–23]

εW (ρB) = g2
V

2m2
V

ρ2
B + m2

S

2gS
2

(M − M∗)2 + b
(M − M∗)3

3gS
3

+ c
(M − M∗)4

4gS
4

+ γs

(2π )3

∫ kF

0
d3k

√

k2 + M∗2

(26)

and

pW (ρB) = g2
V

2m2
V

ρ2
B − m2

S

2g2
S

(M − M∗)2 − b
(M − M∗)3

3g3
S

− c
(M − M∗)4

4g4
S

+ γs

3(2π )3

∫ kF

0
d3k


k2√
k2 + M∗2
,

(27)

where the baryon density is given by

ρB = γs

6π2
k3
F (28)

and the nucleon effective mass by

M∗(ρB) = M − g2
S

m2
S

γs

(2π )3

∫ kF

0
d3k

M∗√
k2 + M∗2

+ g2
S

m2
S

[
b

g3
S

(M − M∗)2 + c

g4
S

(M − M∗)3

]
, (29)

and γs = 4 is the nucleon degeneracy factor. As usual, mS and
mV are the masses of the scalar and vector mesons and gS and
gV are their coupling constants to the nucleon.

3. Mean field theory of QCD

The mean field theory of QCD (mQCD) EOS was de-
veloped in Ref. [24] and it was successfully applied to
stellar structure calculations of compact stars [25] and also
to nonlinear wave propagation in the QGP [26]. This EOS is
essentially the MIT one supplemented with a term proportional
to the square of the baryon density, which is included both in
the pressure and in the energy density, yielding

pmQCD (ρB) =
(

27 g2

16 m2
G

)
ρ2

B + pMIT(ρB) (30)

and

εmQCD (ρB) =
(

27 g2

16 m2
G

)
ρ2

B + εMIT(ρB), (31)

where g is the QCD coupling constant and mG is the dynamical
gluon mass [24]. Setting g = 0 or performing mG → ∞ we
recover the MIT bag model EOS. As before, the baryon density
ρB is given by (25).

B. Finite temperature

In the finite temperature case, we shall consider the lattice
QCD simulation for the QGP and the nonlinear Walecka
model.
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1. Lattice QCD

The recent parametrization of a lattice simulation of SU(3)
QCD matter at finite temperature, with gluons and quarks (u,
d, and s with equal masses) has the trace anomaly at finite
chemical potential given by [27,28]

εLatt(T ,μ) − 3 pLatt(T ,μ)

T 4

= T
∂

∂T

[
pLatt(T ,μ)

T 4

]
+ μ2

T 2
χ2

= εLatt(T ,0) − 3 pLatt(T ,0)

T 4
+ μ2

2T

dχ2

dT
, (32)

where the chemical potential contribution is given by the
function [27]

χ2(T ) = e−h3/τ−h4/τ
2
f3[tanh(f4 τ + f5) + 1]. (33)

At zero chemical potential the parametrization is given
by [27,28]

εLatt(T ,0) − 3 pLatt(T ,0)

T 4

= e−h1/τ−h2/τ
2

[
h0 + f0[tanh(f1 τ + f2) + 1]

1 + g1 τ + g2 τ 2

]
. (34)

In the last two expressions the variable τ is given by τ =
T/Tc, with Tc = 200 MeV being the critical temperature.
The dimensionless parameters are [28] h0 = 0.1396, h1 =
−0.1800, h2 = 0.0350, f0 = 1.05, f1 = 6.39, f2 = −4.72,
g1 = −0.92, and g2 = 0.57. From [27]: h3 = −0.5022, h4 =
0.5950, f3 = 0.1359, f4 = 6.3290, and f5 = −4.8303. The
pressure is calculated from (32)

pLatt(T ,μ) = T 4
∫ T

0
dT ′ e−h1/τ

′−h2/τ
′2

T ′

×
[
h0 + f0[tanh(f1 τ ′ + f2) + 1]

1 + g1 τ ′ + g2 τ ′2

]
+ χ2

2
μ2T 2.

(35)

Inserting (35) into (32) we find the following expression for
the energy density [29]:

εLatt(T ,μ) = T 4 e−h1/τ−h2/τ
2

[
h0 + f0[tanh(f1 τ + f2) + 1]

1 + g1 τ + g2 τ 2

]

+ μ2

2
T 3 dχ2

dT
+ 3 T 4

∫ T

0
dT ′ e−h1/τ

′−h2/τ
′2

T ′

×
[
h0 + f0[tanh(f1 τ ′ + f2) +1]

1 + g1 τ ′ + g2 τ ′2

]
+ 3 χ2

2
μ2T 2.

(36)

2. Nonlinear Walecka model at finite temperature

The equation of state of the nonlinear Walecka model
(NLWM) at finite temperature was developed in Refs. [21,22].
The energy density and pressure are given respectively

by

εW (T ,ν) = g2
V

2m2
V

ρ2
B + m2

S

2g2
S

(M − M∗)2

+ b
(M − M∗)3

3g3
S

+ c
(M − M∗)4

4g4
S

+ γs

(2π )3

∫
d3k

√

k2 + M∗2(n + n̄) (37)

pW (T ,ν) = g2
V

2m2
V

ρ2
B − m2

S

2g2
S

(M − M∗)2

− b
(M − M∗)3

3g3
S

− c
(M − M∗)4

4g4
S

− T
γs

(2π )3

∫
d3k [ln (1 − n) + ln (1 − n̄)].

(38)

The baryon density is given by

ρB(T ,ν) = γs

(2π )3

∫
d3k (n − n̄). (39)

The particle and antiparticle occupation numbers are

n ≡ 1

1 + e(
√


k2+M∗2−ν)/T
and n̄ ≡ 1

1 + e(
√


k2+M∗2+ν)/T
,

(40)
where ν is the chemical potential. The nucleon effective mass
(M∗) is given by the self-consistency relation

M∗(T ,ν) = M − g2
S

m2
S

γs

(2π )3

∫
d3k

M∗(n + n̄)√
k2 + M∗2

+ gS2

m2
S

[
b

g3
S

(M − M∗)2 + c

g4
S

(M − M∗)3

]
. (41)

The nucleon degeneracy factor is γs = 4 and the masses
and couplings are given by [21,22] M = 939 MeV, mS =
550 MeV, mV = 783 MeV, gS = 8.81, gV = 9.197, b =
13.47 fm−1, and c = 43.127.

We consider the case where the chemical potential is larger
than the temperature; in this case we can calculate the integrals
in Eqs. (37)–(39) and (41) in a simple way, following the
approximations performed in Ref. [30]. The results are

εW (T ,ν) = g2
V

2m2
V

ρ2
B + m2

S

2gS
2

(M − M∗)2 + b
(M − M∗)3

3g3
S

+ c
(M − M∗)4

4g4
S

+ 2 T 2 (M∗)2

π2

∞∑
n=0

(−1)n

(n + 1)2

× [e(n+1)ν/T + e−(n+1)ν/T ]

{
3K2[(n + 1)M∗/T ]

+ (n + 1)M∗

T
K1[(n + 1)M∗/T ]

}
. (42)
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pW (T ,ν) = g2
V

2m2
V

ρ2
B − m2

S

2g2
S

(M − M∗)2 − b
(M − M∗)3

3g3
S

− c
(M − M∗)4

4g4
S

− 2 T 2 (M∗)2

π2

∞∑
n=1

(−1)n

n2

× [enν/T + e−nν/T ]K2[nM∗/T ], (43)

ρB(T ,ν) = 2 T (M∗)2

π2

∞∑
n=0

(−1)n

(n + 1)
[e(n+1)ν/T − e−(n+1)ν/T ]

×K2[(n + 1)M∗/T ], (44)

and

M∗(T ,ν) = M + g2
S

m2
S

2 T (M∗)2

π2

∞∑
n=1

(−1)n

n

× [enν/T + e−nν/T ]K1[nM∗/T ]

+ g2
S

m2
S

[
b

g3
S

(M − M∗)2 + c

g4
S

(M − M∗)3

]
, (45)

where K1 and K2 are the modified Bessel functions.

IV. NUMERICAL RESULTS AND DISCUSSION

The thermodynamical functions ε and p are assumed to be
independent of the time and of the radial coordinate, and hence
the integrals in Eqs. (2) and (3) can be simplified as follows:

I1 = (
εin + peff

in

) ∫ 1

0
dx x4 γ 2

in

= (
εin + peff

in

) ∫ 1

0
dx

x4

(1 − x2 Ṙ 2)
(46)

and

I2 = (
εex + peff

ex

) ∫ ∞

1

dx

x2
γ 2

ex

= (
εex + peff

ex

) ∫ ∞

1
dx

x2

(x4 − Ṙ 2)
(47)

These integrals can be written in terms of hypergeometric
functions. Inserting (46) and (47) into (1) we obtain (after
some algebra) the RRP equation

AR Ṙ 2 R̈ + B R R̈ + C Ṙ 2 = −(
peff

ex − peff
in

)
, (48)

where

A = [
2
7

(
εin + peff

in

)
2F1

(
2, 7

2 ; 9
2 ; Ṙ 2

)
+ 2

5

(
εex + peff

ex

)
2F1

(
2, 5

4 ; 9
4 ; Ṙ 2

)]
, (49)

B = [
1
5

(
εin + peff

in

)
2F1

(
1, 5

2 ; 7
2 ; Ṙ 2)

+ (
εex + peff

ex

)
2F1

(
1, 1

4 ; 5
4 ; Ṙ 2)], (50)

C = [
4
5

(
εin + peff

in

)
2F1

(
1, 5

2 ; 7
2 ; Ṙ 2

)
+(

εex + peff
ex

)
2F1

(
1, 1

4 ; 5
4 ; Ṙ 2

)]
. (51)

A. Zero temperature

In this subsection we present the results obtained at T = 0.
This is an extreme case. In the collisions relevant for this work
the temperature is certainly bigger than zero, although there
are no definitive conclusions about its value. From the practical
point of view, the thermodynamics of strongly interacting
systems at T = 0 and at T = 10–40 MeV is qualitatively not
very different. For example, in the NLWM the effective mass
M∗ is almost constant with T in this region and p(T ) and ε(T )
change slowly with T . In view of this, it is interesting to do
calculations at T = 0 because we can compare the results with
those obtained in the context of compact stars. In the case of
higher temperatures (T � 100 MeV) we use the formalism at
finite temperature. This will be done in the next subsection.

In order to estimate the importance of the relativistic effects,
in Fig. 2 we compare the solutions of Eq. (48) with the solutions
of Eq. (14). The figure illustrates what happens during the
initial stage of an intermediate energy nuclear collision. If the
critical density is reached, bubbles of the quark phase start to
grow [Figs. 2(a) and 2(b)] and later the bubbles of the hadron
phase start to shrink [Figs. 2(c) and 2(d)]. From the figures we
see that the relativistic effects are very small. For completeness
we also show (in thick long-dashed lines) in Figs. 2(c) and 2(d)
the analytical results obtained with (16), rewritten as R(t). As
expected, there is a almost complete agreement between the
numerical solution of (14) and the analytical solution.

In all cases the initial velocity of the surface is small and
grows up to values which are still smaller than the typical
values of the sound velocity. This result is welcome and does
not contradict the “adiabatic” assumption made before. The
only significant, although still small, difference between the
relativistic and non-relativistic cases arises at late times, when
the pressure difference acted long enough to accelerate the
bubble frontier to large velocities. The nonrelativistic solutions
do not have any velocity upper bound and thus they exhibit
steeper slopes in the figures at late times. This same conclusion
was reached in Ref. [17] with a polytropic equation of state and
for the cases where pin � pex. From Fig. 2 we can conclude
that the collapse of a hadron gas bubble merged in a soft
quark-gluon plasma occurs at 3.3 fm in the relativistic case
and at 3.0 fm in the nonrelativistic case for both numerical and
analytical solutions. Using a much stiffer equation of state for
the QGP the collapse occurs sooner, at 2.5 fm in the relativistic
case at 2.2 fm in the nonrelativistic case for both numerical
and analytical solutions.

In Fig. 3 we present the numerical solutions of Eq. (48) in
the case of a QGP (with the MIT or mQCD equation of state)
bubble in a hadron external medium (with NLWM equation
of state). We use the three equations of state mentioned in the
previous section.

From the top to bottom the equations of state are harder
and, as a consequence, the expansion is faster. Since the scales
are the same we can observe this feature just by looking at the
increasing slopes of the curves. Changing the initial velocity
of the bubble frontier [Ṙ(t = 0)] does not significantly change
the trajectory R(t), especially for harder equations of state.
Since Eq. (48) is a nonlinear equation we might expect some
nontrivial dependence of the solutions on the initial conditions.
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(a) (b)

(c) (d)

FIG. 2. Comparison between the solutions of the relativistic and nonrelativistic RP equations in the high density phase (ρB > ρc). (a) and
(b) Expanding trajectories of a QGP bubble for different EOS. (c) and (d) Collapsing trajectories of a hadron gas bubble for the same two EOS.

To check this we have repeated the calculation changing
the initial radius of the bubble from 1 fm (the left panels
in Fig. 3) to 2 fm (the right panels in Fig. 3). We observe
that the initially larger bubbles expand somewhat slower than
the smaller ones. However this difference is less pronounced
for harder equations of state. Looking at these numbers we
conclude that both the smaller and the larger QGP bubbles
will take at least 10 fm [see Figs. 3(d) and 3(f) with the hardest
EOS] to reach a typical size of the system �6 fm. This is
too long compared with 1–2 fm, which, according to several
simulations, is the starting time of the QGP hydrodynamical
evolution in heavy ion collisions at RHIC and LHC. This time
is also large compared to the typical total collision times at
FAIR, which are in the range 15–20 fm.

In Fig. 4 we show the time evolution of a hadron gas bubble
immersed in QGP given by the numerical solutions of the
RRP equation (48) with the equations of state discussed in
the previous section. This figure is quite similar to Fig. 3, the
only difference being which phase is “inside” and “outside.”
Now, when we move from top to bottom (to harder QGP EOS),
the hadron gas bubbles shrink faster. They shrink even if the
initial velocity is outward. As expected, the time of collapse is
smaller for harder QGP EOS. In any case it is relatively large
and it is approximately proportional to the initial size of the
bubble.

While the trends observed in Figs. 3 and 4 were expected,
now we have quantitative estimates for the relevant time scales
of these processes, which could be useful for nuclear collisions
at FAIR. From the results in the figures we conclude that
the time scale of the bubble motion is too large compared
to previous expectations based on high energy collisions.
This suggests that this route to the quark gluon plasma, i.e.,
formation and expansion of QGP bubbles, is not very effective.
Either some extra ingredient is missing or the route is a
different one.

B. Finite temperature

In this subsection we solve the Rayleigh-Plesset equation
at finite temperature. The derivation of the new equation is
in the Appendix. Essentially, the changes with respect to the
zero temperature case can be incorporated in the pressure,
which is redefined and called peff . In Fig. 5 we present the
numerical solutions of equation (48) at high chemical potential
μ = 350 MeV. In Figs. 5(a) and 5(b) a QGP bubble (described
by lattice QCD) expands in a hadron gas medium (with NLWM
EOS), and in Figs. 5(c) and 5(d) a hadron gas bubble collapses
in a QGP medium. We use the two equations of state at finite
temperature presented in the previous section. In Figs. 5(a)
and 5(b) the expansion happens because peff

in > peff
ex while in
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Time evolution of a QGP bubble immersed in a hadron gas: numerical solutions of (48) for several initial conditions. In all situations
ρex = 0.35 fm−3 and ρin = 1.0 fm−3.

Figs. 5(c) and 5(d) the collapse occurs because peff
in < peff

ex .
Comparing Figs. 5 and 3 we can conclude that, at finite
temperatures, a QGP bubble in a hot hadron gas expands faster
than at zero temperature. However, even in this case, the time
required for a bubble to grow and reach a radius comparable
to the size of the system (R � 6 fm) is still large (t � 6 fm).
On the other hand, according to (52) at larger temperatures
the nucleation rate is larger. At finite temperature the hadron
gas to QGP transition is thus easier but the typical transition
times are still large. The same considerations made for the zero
temperature case apply here. It seems very difficult to create

a large region with QGP. We would really need many more
bubbles. The complete conversion of the hadronic system to a
quark gluon plasma happens only after the remaining hadron
bubbles collapse. In Figs. 5(c) and 5(d) we observe how the HG
bubble collapse occurs and how, with increasing initial radial
velocity, the bubble lives longer. In any case this collapse
takes a few fm and this gives further support to the previous
conclusion that the transition takes a long time.

The fireball produced at FAIR may have a lifetime of τ �
15–20 fm and a typical size of RF � 10–15 fm. Our results
suggest that, if the number of bubbles is small (one or a few)
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Time evolution of a hadron gas bubble immersed in QGP: numerical solutions of (48) for several initial conditions. For (a) and (b),
ρex = 1.0 fm−3 and ρin = 0.3 fm−3. For (c) to (f), ρex = 0.6 fm−3 and ρin = 0.4 fm−3.

and if they have an initial radius of 1 fm, the system will spend
a relatively long time to change from the hadronic to the QGP
phase. In the most favorable scenario, shown in Fig. 3(f), the
time needed to fill the system with QGP would be at least 10 fm
or more. Therefore in order to have a significant fraction of the
initial hadronic matter converted to QGP, it would be necessary
to have a large number of bubbles and/or bubbles with a larger
radius. However, as shown in Ref. [7] (for low temperatures T
and neglecting the surface tension) the formation of bubbles
with a larger radius is suppressed, with the nucleation rate

given by

R � exp

{
−16π

3

γ rc

T

}
, (52)

where γ is the curvature energy density and rc is the critical
radius, i.e., the radius of the smallest bubble capable of
growing, which is given by

rc =
√

2γ

(pQ − pH )
,
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(a) (b)

(c) (d)

FIG. 5. Time evolution of a bubble given by the numerical solutions of (48). QGP bubble with an initial radius 1 fm (a) and 2 fm (b)
expanding in a hadron gas medium (Tex = 140 MeV and Tin = 120 MeV). Hadron gas bubble of radius 1 fm (c) and 2 fm (d) surrounded by
QGP (Tex = 120 MeV and Tin = 138 MeV).

where pQ and pH are the pressure in the quark and hadron
phase respectively. The number of bubbles is proportional
to the nucleation rate and should be larger for bubbles with
smaller radius. The inclusion of the surface tension, α, would
not help to make the hadron-quark transition faster. Concerning
this last point we note that, in a state of mechanical equilibrium
between the quark bubble and the external hadronic medium,
we have the following relation between the pressures pQ and
pH [3]:

pQ = 2α

R
+ 2γ

R2
+ pH .

For the quark bubble to expand, departing from equilibrium,
the left side of this equality must be greater than the right side.
Nonzero values of α and γ will make the expansion more
difficult.

The discussion of the last paragraph is only qualitative,
but is suggests that, in the bubble nucleation approach to the
hadron-quark phase transition, it is not so easy to have an
instantaneous phase conversion. In view of the large bubble
expansion times found in our calculations, it is possible that,
even taking into account the other aspects of nucleation, the
phase transition time is non-negligible. A large transition time
implies that the matter in the fireball, even with the right density

and/or right energy density, is not immediately in the QGP
phase and hence it would not be correct to treat it with a
QGP equation of state. Instead one would have to treat the
system as being in a superdense hadronic phase or in a mixed
phase. This would be our message to realistic model makers.
Given the approximations made, this message is, for now, only
a cautionary remark. In order to make a stronger statement
we would have to improve our calculations in, at least, three
aspects: (i) abandon the hypothesis that the external medium
is infinite and include the effects of a finite size fireball;
(ii) allow for a dependence of the pressure and energy density
on the bubble radius; (iii) include surface tension and curvature
energy terms in the RRP.

V. CONCLUSIONS

In the early stages of relativistic heavy ion collisions at
FAIR and NICA bubbles of quark gluon plasma are expected
to be formed. We have estimated the expansion time of a
QGP bubble immersed in a hadron gas solving numerically the
relativistic Rayleigh-Plesset equation. As input we have used
reasonable equations of state for the hadron and quark-gluon
plasma phases. In spite of the approximations used and the
uncertainties in the inputs, we can safely say that the expansion
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time is not small, being of the order of a few fm or even more.
This result suggests that the duration of the hadron-quark phase
transition has to be taken into account in the simulations of
the intermediate energy collisions to be performed at FAIR
and NICA. Our results depend strongly on the QGP equation
of state. The calculations were performed at zero and finite
temperature, with similar conclusions.

The present work can be extended to the study of the
QGP-to-hadron gas transition in the final stage of nuclear
collisions. During the expansion it may happen that a QGP
bubble survives as a supercooled domain, which eventually
disappears, emitting hadrons. The dynamics of this super-
cooled QGP bubble was studied in detail in Ref. [13]. Later, the
effects of finite chemical potential were discussed in Ref. [14].
During the fluid evolution another phenomenon may take
place: the formation of a bubble of hadrons in a still hot QGP,
a “superheated” hadron domain. This might happen if there
is cavitation in the QGP [31–33]: due to the bulk viscosity
the pressure in the QGP drops reaching a value where the
existence of the hadron phase becomes possible. Once formed,
the hadron bubble suffers the pressure of the surrounding QGP
and, depending on the pressure difference between the two
phases, may expand or collapse, reforming the quark gluon
plasma in that region. All these situations can be treated with
the RRP equation.
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APPENDIX

In natural units � = c = kB = 1 the Lagrangian for a spher-
ically symmetric system can be obtained from a variational
principle and is given by [17]

L = −4π

∫ ∞

0
dr r2 ε(n), (A1)

where ε is the energy density, n is the density given by n =
ρ/γ , where ρ is the number of particles per volume (number
density), and γ is the Lorentz factor: γ = (1 − v2)−1/2.

We consider the following scenario: a relativistic bubble of
radius R at a fixed temperature immersed in a medium with
other fixed temperature. These temperatures will be introduced
later in the calculations with the use of thermodynamical
relations.

The Lagrangian (A1) is decomposed into the contributions
of internal (in) and external (ex) phases:

L = Lin + Lex = −4π

∫ R

0
dr r2 εin(nin)

− lim
R∞→∞

{
4π

∫ R∞

R

dr r2 εex(nex)

}
, (A2)

where the subscript in refers to the matter inside the bubble
and the subscript ex refers to the matter outside the bubble. For
simplicity we omit the limit of R∞ in the text, performing it in
the end of calculations. The number density for each phase is
given by

ρin = Nin(
4
3πR3

) and ρex = Nex[
4
3π (R3∞ − R3)

] , (A3)

where Nin is the number of particles inside the bubble and Nex

is the number of particles outside the bubble. The field velocity
for each phase is given by (5) and (6). The Lorentz factors are
given by (7).

The relativistic version of the Rayleigh-Plesset equation
(RRP) is obtained by the Euler-Lagrange equation,

d

dt

(
∂L
∂Ṙ

)
= ∂L

∂R
. (A4)

Inserting (A2) in Eq. (A4) yields

d

dt

[ ∫ R

0
dr r2 ∂εin

∂Ṙ
+

∫ R∞

R

dr r2 ∂εex

∂Ṙ

]

= ∂

∂R

[ ∫ R

0
dr r2 εin +

∫ R∞

R

dr r2 εex

]
. (A5)

Recalling the Leibniz integral rule, we can calculate the two
derivatives with respect to R from (A5):

∂

∂R

∫ R

0
dr r2 εin =

∫ R

0
dr

∂

∂R
(r2 εin) + R2 (εin|r=R)

∂R

∂R
− 02 (εin|r=0)

∂0

∂R
,

∂

∂R

∫ R

0
dr r2 εin =

∫ R

0
dr r2 ∂εin

∂R
+ R2 (εin|r=R) (A6)

and

∂

∂R

∫ R∞

R

dr r2 εex =
∫ R∞

R

dr
∂

∂R
(r2 εex) + R∞2 (εex|r=R∞ )

∂R∞
∂R

− R2 (εex|r=R)
∂R

∂R
,

∂

∂R

∫ R∞

R

dr r2 εex =
∫ R∞

R

dr r2 ∂εex

∂R
− R2 (εex|r=R). (A7)
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Recalling that εin = εin(nin), εex = εex(nex) and inserting (A6) and (A7) in Eq. (A5) we have

d

dt

∫ R

0
dr r2 ∂εin

∂nin

∂nin

∂Ṙ
+ d

dt

∫ R∞

R

dr r2 ∂εex

∂nex

∂nex

∂Ṙ

= R2 (εin|r=R − εex|r=R) +
∫ R

0
dr r2 ∂εin

∂nin

∂nin

∂R
+

∫ R∞

R

dr r2 ∂εex

∂nex

∂nex

∂R
(A8)

To proceed with the calculations at finite temperature, we use the thermodynamic relation from [34]:

dε = T ds + μdn, where μ = ∂ε

∂n
,

and also the Gibbs relation (ε + p = μn + T s) becomes

∂ε

∂n
= (ε + p)

n
− T s

n
. (A9)

The entropy density is given by [34]

s = ∂p

∂T
. (A10)

By inserting (A10) in Eq. (A9) we have

∂ε

∂n
= (ε + p)

n
− T

n

∂p

∂T
, (A11)

and this relation will introduce the temperature in our calculations. Performing the substitution of (A11) in Eq. (A8) we have

d

dt

∫ R

0
dr r2 (εin + pin)

nin

∂nin

∂Ṙ
− d

dt

∫ R

0
dr r2 T

nin

∂pin

∂T

∂nin

∂Ṙ
+ d

dt

∫ R∞

R

dr r2 (εex + pex)

nex

∂nex

∂Ṙ
− d

dt

∫ R∞

R

dr r2 T

nex

∂pex

∂T

∂nex

∂Ṙ

= R2 (εin|r=R − εex|r=R) +
∫ R

0
dr r2 (εin + pin)

nin

∂nin

∂R
−

∫ R

0
dr r2 T

nin

∂pin

∂T

∂nin

∂R

+
∫ R∞

R

dr r2 (εex + pex)

nex

∂nex

∂R
−

∫ R∞

R

dr r2 T

nex

∂pex

∂T

∂nex

∂R
. (A12)

From (A3) we have the following results:

∂nex

∂R
= − 3

R
nex +

(
γex

Ṙ

R

)2
r2

R
nex, (A13)

∂nex

∂Ṙ
= −

(
γex

r

R

)2

Ṙ nex, (A14)

∂nin

∂R
= 3R2(

R3∞ − R3
) nin − R3

(
2R3

∞ + R3
)(

R3
∞ − R3

)2

r4
(
R3∞ − R3

)3 (γin Ṙ)
2
nin. (A15)

and

∂nin

∂Ṙ
= −

(
γin R2

r2

)2 [ (
R3

∞ − r3
)

(
R3∞ − R3

)]2

Ṙ nin. (A16)

Inserting (A13) to (A16) in Eq. (A12) we find that

− d

dt

{
Ṙ

R2

∫ R

0
dr r4

(
εin + pin − T

∂pin

∂T

)
γ 2

in + R4Ṙ

∫ R∞

R

dr

r2

(
εex + pex − T

∂pex

∂T

)
γ 2

ex

[ (
R3

∞ − r3
)

(
R3∞ − R3

)]2}

= R2
(
εin|r=R − εex|r=R

) +
∫ R

0
dr r2

(
εin + pin − T

∂pin

∂T

)[
− 3

R
+

(
γin

Ṙ

R

)2
r2

R

]

+
∫ R∞

R

dr r2

(
εex + pex − T

∂pex

∂T

)[
3R2(

R3∞ − R3
) − R3

(
2R3

∞ + R3
)(

R3
∞ − R3

)2

r4
(
R3∞ − R3

)3 (γex Ṙ)
2
]
. (A17)
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We now consider the approximation of large R∞ before taking the limit R∞ → ∞; this allows writing

[ (
R3

∞ − r3
)

(
R3∞ − R3

)]2
∼=

(
R3

∞
)2(

R3∞
)2

∼= 1, (A18)

3R2(
R3∞ − R3

) ∼= 3R2

R3∞
, (A19)

and

−R3
(
2R3

∞ + R3
)(

R3
∞ − R3

)2

r4
(
R3∞ − R3

)3
∼= −R3

(
2R3

∞
)(

R3
∞

)2

r4
(
R3∞

)3
∼= −2R3

r4

(
R3

∞
)3(

R3∞
)3

∼= −2R3

r4
. (A20)

For large R∞, Eq. (7) for the Lorentz factor outside the bubble tells us that

γex =
[

1 −
(

R2
(
R3

∞ − r3
)

r2
(
R3∞ − R3

)
Ṙ

)2]−1/2
∼=

[
1 −

(
R2 R3

∞
r2 R3∞ Ṙ

)2]−1/2

=
[

1 −
(

R2

r2 Ṙ

)2]−1/2

. (A21)

We use Eqs. (A18) through (A21) in order to rewrite Eq. (A17) as

− d

dt

{
Ṙ

R2

∫ R

0
dr r4

(
εin + pin − T

∂pin

∂T

)
γ 2

in + R4Ṙ

∫ R∞

R

dr

r2

(
εex + pex − T

∂pex

∂T

)
γ 2

ex

}

= R2 (εin|r=R − εex|r=R) +
∫ R

0
dr r2

(
εin + pin − T

∂pin

∂T

)[
− 3

R
+

(
γin

Ṙ

R

)2
r2

R

]

+
∫ R∞

R

dr r2

(
εex + pex − T

∂pex

∂T

)[
3R2

R3∞
− 2R3

r4
(γex Ṙ)

2
]
. (A22)

Now, following [17] we make the approximation:∫ R∞

R

dr r2

(
εex + pex − T

∂pex

∂T

)
3R2

R3∞
∼= 3R2

R3∞

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
R∞

∫ R∞

R

dr r2

= 3R2

R3∞

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
R∞

(
R3

∞
3

− R3

3

)

= R2

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
R∞

− R5

R3∞

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
R∞

. (A23)

Inserting (A23) into (A22) and performing the limit R∞ → ∞ in the resulting expression, we have

− d

dt

{
Ṙ

R2

∫ R

0
dr r4

(
εin + pin − T

∂pin

∂T

)
γ 2

in + R4Ṙ

∫ ∞

R

dr

r2

(
εex + pex − T

∂pex

∂T

)
γ 2

ex

}

= R2 (εin − εex)|R − 3

R

∫ R

0
dr r2

(
εin + pin − T

∂pin

∂T

)
+ Ṙ 2

R3

∫ R

0
dr r4

(
εin + pin − T

∂pin

∂T

)
γ 2

in

+ R2

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
∞

− 2R3Ṙ 2
∫ ∞

R

dr

r2

(
εex + pex − T

∂pex

∂T

)
γ 2

ex. (A24)

Introducing the new variable x = r/R it is possible to rewrite the integrals which contain Lorentz factors and then (A24) becomes

− d

dt

{
R3Ṙ

[ ∫ 1

0
dx x4

(
εin + pin − T

∂pin

∂T

)
γ 2

in +
∫ ∞

1

dx

x2

(
εex + pex − T

∂pex

∂T

)
γ 2

ex

]}

= R2

[
(εin − εex)|R +

(
εex + pex − T

∂pex

∂T

)∣∣∣∣
∞

]
− 3

R

∫ R

0
dr r2

(
εin + pin − T

∂pin

∂T

)

+ R2 Ṙ 2

[ ∫ 1

0
dx x4

(
εin + pin − T

∂pin

∂T

)
γ 2

in − 2
∫ ∞

1

dx

x2

(
εex + pex − T

∂pex

∂T

)
γ 2

ex

]
, (A25)

in which we can identify the integrals (2) and (3), the effective pressures (4), and also the function F given by (10). With these
already determined quantities, Eq. (A25) is the Relativistic Rayleigh-Plesset equation that appears in Eq. (1).
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Knoll, S. Leupold, J. Randrup, R. Rapp, and P. Senger, Lecture
Notes in Physics Vol. 814 (Spinger, Berlin, 2011).

[2] theor.jinr.ru/twiki-cgi/view/NICA/NICAWhitePaper; see also
K. A. Bugaev, arXiv:0909.0731 and references therein.

[3] For a recent review see G. Lugones, Eur. Phys. J. A 52, 53
(2016).

[4] H. Heiselberg, C. J. Pethick, and E. F. Staubo, Phys. Rev. Lett.
70, 1355 (1993); J. E. Horvath, Phys. Rev. D 49, 5590 (1994);
J. E. Horvath, O. G. Benvenuto, and H. Vucetich, ibid. 45, 3865
(1992).

[5] D. Logoteta, C. Providencia, I. Vidana, and I. Bombaci,
Phys. Rev. C 85, 055807 (2012); D. Logoteta, I. Bombaci,
C. Providencia, and I. Vidana, Phys. Rev. D 85, 023003
(2012); I. Bombaci, D. Logoteta, C. Providencia, and I. Vidana,
Astron. Astrophys. 528, A71 (2011).

[6] I. Bombaci, I. Parenti, and I. Vidana, Astrophys. J. 614, 314
(2004).

[7] M. L. Olesen and J. Madsen, Phys. Rev. D 49, 2698
(1994).

[8] L. P. Csernai and J. I. Kapusta, Phys. Rev. Lett. 69, 737 (1992);
Phys. Rev. D 46, 1379 (1992).

[9] G. Neergaard and J. Madsen, Phys. Rev. D 62, 034005 (2000);
60, 054011 (1999); I. Mardor and B. Svetitsky, ibid. 44, 878
(1991).

[10] D. Kroff and E. S. Fraga, Phys. Rev. D 91, 025017 (2015);
A. F. Garcia and M. B. Pinto, Phys. Rev. C 88, 025207 (2013);
M. B. Pinto, V. Koch, and J. Randrup, ibid. 86, 025203 (2012);
L. F. Palhares and E. S. Fraga, Phys. Rev. D 82, 125018 (2010).

[11] T. Biro, H. W. Barz, B. Lukacs, and J. Zimanyi, Phys. Rev. C 27,
2695 (1983); H. W. Barz, B. L. Friman, J. Knoll, and H. Schulz,
Phys. Lett. B 242, 328 (1990); I. N. Mishustin, Phys. Rev. Lett.
82, 4779 (1999); I. N. Mishustin and O. Scavenius, ibid. 83, 3134
(1999); O. Scavenius, A. Dumitru, E. S. Fraga, J. T. Lenaghan,
and A. D. Jackson, Phys. Rev. D 63, 116003 (2001); J. Randrup,
Phys. Rev. Lett. 92, 122301 (2004); G. Torrieri, B. Tomasik, and
I. N. Mishustin, Phys. Rev. C 77, 034903 (2008).

[12] L. P. Csernai and I. N. Mishustin, Phys. Rev. Lett. 74, 5005
(1995).

[13] J. J. Bjerrum-Bohr, I. N. Mishustin, and T. Dossing, Nucl. Phys.
A 882, 90 (2012).

[14] J. J. Bjerrum-Bohr, I. N. Mishustin, and T. Dossing, Nucl. Phys.
A 923, 19 (2014).

[15] Lord Rayleigh, Philos. Mag. 34, 94 (1917).
[16] See for example http://authors.library.caltech.edu/25021/

1/chap4.pdf

[17] H. T. Elze, Y. Hama, T. Kodama, M. Makler, and J. Rafelski,
J. Phys. G 25, 1935 (1999).

[18] N. A. Kudryashov and D. I. Sinelshchikov, Phys. Lett. A 379,
798 (2015).

[19] W. N. Bailey, Generalized Hypergeometric Series, 1st ed.,
Cambridge Tracts in Mathematics and Mathematical Physics
No. 32 (Cambridge University Press, Cambridge, UK, 1935);
http://mathworld.wolfram.com/HypergeometricFunction.html

[20] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F.
Weisskopf, Phys. Rev. D 9, 3471 (1974); T. DeGrand, R. L.
Jaffe, K. Johnson, and J. Kiskis, ibid. 12, 2060 (1975); E. Farhi
and R. L. Jaffe, ibid. 30, 2379 (1984).

[21] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
[22] R. J. Furnstahl, in Extended Density Functionals in Nuclear

Structure Physics, edited by G. A. Lalazissis, P. Ring, and Dario
Vretenar, Lecture Notes in Physics Vol. 641 (Springer, Berlin,
2004), p. 1; B. D. Serot, Int. J. Mod. Phys. A 19 (Suppl. 1), 107
(2004) and references therein.

[23] For recent applications, see D. A. Fogaça, F. S. Navarra, and
L. G. F. Filho, Phys. Rev. C 88, 025208 (2013); A. L. Espindola
and D. P. Menezes, ibid. 65, 045803 (2002); A. M. S. Santos
and D. P. Menezes, Braz. J. Phys. 34, 833 (2004).

[24] D. A. Fogaça and F. S. Navarra, Phys. Lett. B 700, 236
(2011).

[25] B. Franzon, D. A. Fogaça, F. S. Navarra, and J. E. Horvath,
Phys. Rev. D 86, 065031 (2012).

[26] D. A. Fogaça, F. S. Navarra and L. G. Ferreira Filho, Phys. Rev.
D 84, 054011 (2011); D. A. Fogaça, F. S. Navarra, and L. G. F.
Filho, Commun. Nonlinear Sci. Numer. Simulat. 18, 221 (2013).

[27] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, C.
Ratti, and K. K. Szabo, J. High Energy Phys. 08 (2012) 053;
Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo,
Nature (London) 443, 675 (2006).

[28] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and
K. K. Szabo, Phys. Lett. B 730, 99 (2014).

[29] S. M. Sanches, F. S. Navarra, and D. A. Fogaça, Nucl. Phys. A
937, 1 (2015).

[30] R. F. Tooper, Astrophys. J. 156, 1075 (1969).
[31] K. Rajagopal and N. Tripuraneni, J. High Energy Phys. 03 (2010)

018.
[32] M. Habich and P. Romatschke, J. High Energy Phys. 12 (2014)

054.
[33] S. M. Sanches, Jr., D. A. Fogaça, F. S. Navarra, and H.

Marrochio, Phys. Rev. C 92, 025204 (2015).
[34] K. Yagi, T. Hatsuda, and Y. Miake, Quark-Gluon Plasma: From

Big Bang to Little Bang, 1st ed. (Cambridge University Press,
Cambridge, UK, 2008).

055204-14

http://arxiv.org/abs/arXiv:0909.0731
http://dx.doi.org/10.1140/epja/i2016-16053-x
http://dx.doi.org/10.1140/epja/i2016-16053-x
http://dx.doi.org/10.1140/epja/i2016-16053-x
http://dx.doi.org/10.1140/epja/i2016-16053-x
http://dx.doi.org/10.1103/PhysRevLett.70.1355
http://dx.doi.org/10.1103/PhysRevLett.70.1355
http://dx.doi.org/10.1103/PhysRevLett.70.1355
http://dx.doi.org/10.1103/PhysRevLett.70.1355
http://dx.doi.org/10.1103/PhysRevD.49.5590
http://dx.doi.org/10.1103/PhysRevD.49.5590
http://dx.doi.org/10.1103/PhysRevD.49.5590
http://dx.doi.org/10.1103/PhysRevD.49.5590
http://dx.doi.org/10.1103/PhysRevD.45.3865
http://dx.doi.org/10.1103/PhysRevD.45.3865
http://dx.doi.org/10.1103/PhysRevD.45.3865
http://dx.doi.org/10.1103/PhysRevD.45.3865
http://dx.doi.org/10.1103/PhysRevC.85.055807
http://dx.doi.org/10.1103/PhysRevC.85.055807
http://dx.doi.org/10.1103/PhysRevC.85.055807
http://dx.doi.org/10.1103/PhysRevC.85.055807
http://dx.doi.org/10.1103/PhysRevD.85.023003
http://dx.doi.org/10.1103/PhysRevD.85.023003
http://dx.doi.org/10.1103/PhysRevD.85.023003
http://dx.doi.org/10.1103/PhysRevD.85.023003
http://dx.doi.org/10.1051/0004-6361/201015783
http://dx.doi.org/10.1051/0004-6361/201015783
http://dx.doi.org/10.1051/0004-6361/201015783
http://dx.doi.org/10.1051/0004-6361/201015783
http://dx.doi.org/10.1086/423658
http://dx.doi.org/10.1086/423658
http://dx.doi.org/10.1086/423658
http://dx.doi.org/10.1086/423658
http://dx.doi.org/10.1103/PhysRevD.49.2698
http://dx.doi.org/10.1103/PhysRevD.49.2698
http://dx.doi.org/10.1103/PhysRevD.49.2698
http://dx.doi.org/10.1103/PhysRevD.49.2698
http://dx.doi.org/10.1103/PhysRevLett.69.737
http://dx.doi.org/10.1103/PhysRevLett.69.737
http://dx.doi.org/10.1103/PhysRevLett.69.737
http://dx.doi.org/10.1103/PhysRevLett.69.737
http://dx.doi.org/10.1103/PhysRevD.46.1379
http://dx.doi.org/10.1103/PhysRevD.46.1379
http://dx.doi.org/10.1103/PhysRevD.46.1379
http://dx.doi.org/10.1103/PhysRevD.46.1379
http://dx.doi.org/10.1103/PhysRevD.62.034005
http://dx.doi.org/10.1103/PhysRevD.62.034005
http://dx.doi.org/10.1103/PhysRevD.62.034005
http://dx.doi.org/10.1103/PhysRevD.62.034005
http://dx.doi.org/10.1103/PhysRevD.60.054011
http://dx.doi.org/10.1103/PhysRevD.60.054011
http://dx.doi.org/10.1103/PhysRevD.60.054011
http://dx.doi.org/10.1103/PhysRevD.44.878
http://dx.doi.org/10.1103/PhysRevD.44.878
http://dx.doi.org/10.1103/PhysRevD.44.878
http://dx.doi.org/10.1103/PhysRevD.44.878
http://dx.doi.org/10.1103/PhysRevD.91.025017
http://dx.doi.org/10.1103/PhysRevD.91.025017
http://dx.doi.org/10.1103/PhysRevD.91.025017
http://dx.doi.org/10.1103/PhysRevD.91.025017
http://dx.doi.org/10.1103/PhysRevC.88.025207
http://dx.doi.org/10.1103/PhysRevC.88.025207
http://dx.doi.org/10.1103/PhysRevC.88.025207
http://dx.doi.org/10.1103/PhysRevC.88.025207
http://dx.doi.org/10.1103/PhysRevC.86.025203
http://dx.doi.org/10.1103/PhysRevC.86.025203
http://dx.doi.org/10.1103/PhysRevC.86.025203
http://dx.doi.org/10.1103/PhysRevC.86.025203
http://dx.doi.org/10.1103/PhysRevD.82.125018
http://dx.doi.org/10.1103/PhysRevD.82.125018
http://dx.doi.org/10.1103/PhysRevD.82.125018
http://dx.doi.org/10.1103/PhysRevD.82.125018
http://dx.doi.org/10.1103/PhysRevC.27.2695
http://dx.doi.org/10.1103/PhysRevC.27.2695
http://dx.doi.org/10.1103/PhysRevC.27.2695
http://dx.doi.org/10.1103/PhysRevC.27.2695
http://dx.doi.org/10.1016/0370-2693(90)91770-C
http://dx.doi.org/10.1016/0370-2693(90)91770-C
http://dx.doi.org/10.1016/0370-2693(90)91770-C
http://dx.doi.org/10.1016/0370-2693(90)91770-C
http://dx.doi.org/10.1103/PhysRevLett.82.4779
http://dx.doi.org/10.1103/PhysRevLett.82.4779
http://dx.doi.org/10.1103/PhysRevLett.82.4779
http://dx.doi.org/10.1103/PhysRevLett.82.4779
http://dx.doi.org/10.1103/PhysRevLett.83.3134
http://dx.doi.org/10.1103/PhysRevLett.83.3134
http://dx.doi.org/10.1103/PhysRevLett.83.3134
http://dx.doi.org/10.1103/PhysRevLett.83.3134
http://dx.doi.org/10.1103/PhysRevD.63.116003
http://dx.doi.org/10.1103/PhysRevD.63.116003
http://dx.doi.org/10.1103/PhysRevD.63.116003
http://dx.doi.org/10.1103/PhysRevD.63.116003
http://dx.doi.org/10.1103/PhysRevLett.92.122301
http://dx.doi.org/10.1103/PhysRevLett.92.122301
http://dx.doi.org/10.1103/PhysRevLett.92.122301
http://dx.doi.org/10.1103/PhysRevLett.92.122301
http://dx.doi.org/10.1103/PhysRevC.77.034903
http://dx.doi.org/10.1103/PhysRevC.77.034903
http://dx.doi.org/10.1103/PhysRevC.77.034903
http://dx.doi.org/10.1103/PhysRevC.77.034903
http://dx.doi.org/10.1103/PhysRevLett.74.5005
http://dx.doi.org/10.1103/PhysRevLett.74.5005
http://dx.doi.org/10.1103/PhysRevLett.74.5005
http://dx.doi.org/10.1103/PhysRevLett.74.5005
http://dx.doi.org/10.1016/j.nuclphysa.2012.03.001
http://dx.doi.org/10.1016/j.nuclphysa.2012.03.001
http://dx.doi.org/10.1016/j.nuclphysa.2012.03.001
http://dx.doi.org/10.1016/j.nuclphysa.2012.03.001
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.011
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.011
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.011
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.011
http://dx.doi.org/10.1080/14786440808635681
http://dx.doi.org/10.1080/14786440808635681
http://dx.doi.org/10.1080/14786440808635681
http://dx.doi.org/10.1080/14786440808635681
http://authors.library.caltech.edu/25021/1/chap4.pdf
http://dx.doi.org/10.1088/0954-3899/25/9/312
http://dx.doi.org/10.1088/0954-3899/25/9/312
http://dx.doi.org/10.1088/0954-3899/25/9/312
http://dx.doi.org/10.1088/0954-3899/25/9/312
http://dx.doi.org/10.1016/j.physleta.2014.12.049
http://dx.doi.org/10.1016/j.physleta.2014.12.049
http://dx.doi.org/10.1016/j.physleta.2014.12.049
http://dx.doi.org/10.1016/j.physleta.2014.12.049
http://mathworld.wolfram.com/HypergeometricFunction.html
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevD.12.2060
http://dx.doi.org/10.1103/PhysRevD.12.2060
http://dx.doi.org/10.1103/PhysRevD.12.2060
http://dx.doi.org/10.1103/PhysRevD.12.2060
http://dx.doi.org/10.1103/PhysRevD.30.2379
http://dx.doi.org/10.1103/PhysRevD.30.2379
http://dx.doi.org/10.1103/PhysRevD.30.2379
http://dx.doi.org/10.1103/PhysRevD.30.2379
http://dx.doi.org/10.1142/S0217751X04018634
http://dx.doi.org/10.1142/S0217751X04018634
http://dx.doi.org/10.1142/S0217751X04018634
http://dx.doi.org/10.1142/S0217751X04018634
http://dx.doi.org/10.1103/PhysRevC.88.025208
http://dx.doi.org/10.1103/PhysRevC.88.025208
http://dx.doi.org/10.1103/PhysRevC.88.025208
http://dx.doi.org/10.1103/PhysRevC.88.025208
http://dx.doi.org/10.1103/PhysRevC.65.045803
http://dx.doi.org/10.1103/PhysRevC.65.045803
http://dx.doi.org/10.1103/PhysRevC.65.045803
http://dx.doi.org/10.1103/PhysRevC.65.045803
http://dx.doi.org/10.1590/S0103-97332004000500033
http://dx.doi.org/10.1590/S0103-97332004000500033
http://dx.doi.org/10.1590/S0103-97332004000500033
http://dx.doi.org/10.1590/S0103-97332004000500033
http://dx.doi.org/10.1016/j.physletb.2011.05.011
http://dx.doi.org/10.1016/j.physletb.2011.05.011
http://dx.doi.org/10.1016/j.physletb.2011.05.011
http://dx.doi.org/10.1016/j.physletb.2011.05.011
http://dx.doi.org/10.1103/PhysRevD.86.065031
http://dx.doi.org/10.1103/PhysRevD.86.065031
http://dx.doi.org/10.1103/PhysRevD.86.065031
http://dx.doi.org/10.1103/PhysRevD.86.065031
http://dx.doi.org/10.1103/PhysRevD.84.054011
http://dx.doi.org/10.1103/PhysRevD.84.054011
http://dx.doi.org/10.1103/PhysRevD.84.054011
http://dx.doi.org/10.1103/PhysRevD.84.054011
http://dx.doi.org/10.1016/j.cnsns.2012.07.006
http://dx.doi.org/10.1016/j.cnsns.2012.07.006
http://dx.doi.org/10.1016/j.cnsns.2012.07.006
http://dx.doi.org/10.1016/j.cnsns.2012.07.006
http://dx.doi.org/10.1007/JHEP08(2012)053
http://dx.doi.org/10.1007/JHEP08(2012)053
http://dx.doi.org/10.1007/JHEP08(2012)053
http://dx.doi.org/10.1007/JHEP08(2012)053
http://dx.doi.org/10.1038/nature05120
http://dx.doi.org/10.1038/nature05120
http://dx.doi.org/10.1038/nature05120
http://dx.doi.org/10.1038/nature05120
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1016/j.nuclphysa.2015.02.004
http://dx.doi.org/10.1016/j.nuclphysa.2015.02.004
http://dx.doi.org/10.1016/j.nuclphysa.2015.02.004
http://dx.doi.org/10.1016/j.nuclphysa.2015.02.004
http://dx.doi.org/10.1086/150036
http://dx.doi.org/10.1086/150036
http://dx.doi.org/10.1086/150036
http://dx.doi.org/10.1086/150036
http://dx.doi.org/10.1007/JHEP03(2010)018
http://dx.doi.org/10.1007/JHEP03(2010)018
http://dx.doi.org/10.1007/JHEP03(2010)018
http://dx.doi.org/10.1007/JHEP03(2010)018
http://dx.doi.org/10.1007/JHEP12(2014)054
http://dx.doi.org/10.1007/JHEP12(2014)054
http://dx.doi.org/10.1007/JHEP12(2014)054
http://dx.doi.org/10.1007/JHEP12(2014)054
http://dx.doi.org/10.1103/PhysRevC.92.025204
http://dx.doi.org/10.1103/PhysRevC.92.025204
http://dx.doi.org/10.1103/PhysRevC.92.025204
http://dx.doi.org/10.1103/PhysRevC.92.025204



