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Background: The ratio method has been proposed as a means to remove the reaction model dependence in the
study of halo nuclei.
Purpose: Originally it was developed for higher energies, but given the potential interest in applying the method
at lower energy, in this work we explore its validity at 20 MeV/nucleon.
Method: The ratio method takes the ratio of the breakup angular distribution and the summed angular distribution
(which includes elastic, inelastic, and breakup) and uses this observable to constrain the features of the original
halo wave function. In this work we use the continuum discretized coupled channel method and the Coulomb-
corrected dynamical eikonal approximation for the study.
Results: We study the reactions of 11Be on 12C, 40Ca, and 208Pb at 20 MeV/nucleon. We compare the various
theoretical descriptions and explore the dependence of our result on the core-target interaction.
Conclusions: Our study demonstrates that the ratio method is valid at these lower beam energies.
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I. INTRODUCTION

The development of the halo phenomena when approaching
the nuclear drip lines has become a focus of many studies. New
candidates for halos continue to emerge [1–4] and specific
properties of known halos continue to provide challenges
to nuclear theory [5]. Detailed reaction studies with halos
continue to help us understand the complexity of the reaction
mechanism (e.g., Refs. [6,7]). Given the different energy scales
involved in the halo nucleons relative to the excitation energies
of the core, effective field theories are now being used to
explore halo nuclear structure [8,9]. The halo phenomenon
is one that connects nuclear physics to other areas, such as
atomic and molecular physics, where it can be better controlled
through external fields (e.g., Ref. [10]).

The continued interest in nuclear halos calls for improved
methods in the extraction of their properties from reaction
observables. The most popular way to study halo nuclei
is through breakup reactions. Breakup cross sections are
large, and they contain information about the binding energy,
angular momentum, and size of the original halo system [11].
However, the analysis of a breakup experiment contains also
uncertainty in the reaction model, particularly the effective
interactions used to describe the system. Of special concern is
the core-target interaction, which is usually not well known.
In Refs. [12,13] we propose the ratio method that circumvents
this ambiguity. There were two works that inspired this new
method. A recent detailed analysis of the elastic-scattering
and breakup cross sections for a one-neutron halo showed
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that the angular distributions for these two processes exhibit
very similar diffraction patterns [14]. This interesting result
is easily explained within the recoil and excitation breakup
model (REB) developed in Ref. [15], in which the angular
distributions for both elastic scattering and breakup factorize
into a cross section for a pointlike projectile times a form
factor that accounts for the extension of the projectile’s halo.
The point cross section being identical for both processes
explains the strong similarities between the elastic-scattering
and breakup cross sections observed in Ref. [14]. This also
means that by taking the ratio of breakup and elastic angular
distributions, one can remove most of the dependence on the
reaction mechanism and hence obtain a reaction observable
sensitive only to the projectile structure.

The original studies on the ratio method [12,13] focused
on reactions at around 70 MeV/nucleon, because many of
previous breakup experiments had been performed in this
energy regime [16–18]. However, it is experimentally very
challenging to determine both the elastic and the breakup
angular distributions with good precision at 70 MeV/nucleon
because the process is very forward focused. At lower energy,
a much wider angular range would be available for placing
detectors, without having to deal with beam dump issues. With
this motivation in mind, the goal of this work is to determine
whether the ratio method is valid at around 20 MeV/nucleon
[appropriate for facilities such as SPIRAL2 (GANIL, Caen,
France) and FRIB (Michigan State University)] and to what
extent will it still be sensitive to the projectile structure.

In our earlier studies [12,13], the reaction theory used to
describe the processes was the dynamical eikonal approxi-
mation (DEA) [19]. A comparative study [20] showed that,
around 70 MeV/nucleon, DEA compares very well with the
continuum discretized coupled channel (CDCC) method [21].
However, it is also shown that the validity of DEA is no
longer true at 20 MeV/nucleon, and therefore a better theory
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is necessary. Studies have shown that most of the limitations of
DEA at the lower energies arise from the Coulomb deflection
[20]. A semiclassical Coulomb correction of the DEA was
tested in Ref. [22] (we will refer to it as CC-DEA) and the
results demonstrate that this low-energy correction fixes the
problem with the original DEA model and allows an extended
use at lower energies in Coulomb-dominated reactions.

Our goal being to test the ratio method on both light
and heavy nuclei, we need a reaction model that provides
reliable elastic-scattering and breakup cross sections on light
targets. CDCC has been a very successful tool in describing
reactions of loosely bound systems over the last few decades.
Accordingly, it is widely used to study reactions with halo
nuclei (e.g., [7,23,24]). CDCC has been recently tested through
a detailed comparison with the exact Faddeev formulation
for deuteron collisions on various targets at different energies
[25]. The results of this benchmark show that CDCC perfectly
reproduces the Faddeev predictions for elastic scattering of
the deuteron but at low energy (Ed ∼ 10 MeV) and large
angles (θ � 40◦). The CDCC predictions for deuteron breakup
deteriorate at low energy (i.e., at Ed ∼ 10–20 MeV), but are in
excellent agreement with Faddeev for both angular and energy
distributions from Ed ∼ 40 MeV, which is about the energy
range we are interested in. A major difficulty pointed out in
Ref. [25] is the coupling with the transfer channel. The present
study involves a heavier projectile than deuteron. This leads
to a larger amount of absorption within the projectile-target
interaction, implying that the coupling to the transfer channel
will play a much weaker role, and hence that the CDCC
expansion will be much more efficient than for a deuteron
projectile.

We will thus rely on both CDCC and CC-DEA to perform
the investigation of the ratio method at 20 MeV/nucleon. In
our study we will look at the reactions of 11Be on 12C, 40Ca,
and 208Pb. For the lighter target, for which the CDCC method
converges well, we will present CDCC results along with
CC-DEA. The agreement of CDCC and CC-DEA predictions
provides reassurance that indeed these methods are valid
at these energies. For the heavier targets, for which CDCC
exhibits convergence issues, we will rely only on CC-DEA.
In all cases, we will compare the computed ratio with the
prediction from the REB model to ultimately test the validity
of the method at lower energies.

The paper is organized as follows. In Sec. II we introduce
our theoretical framework as well as a brief summary of the
REB model and the ratio idea. In Sec. III we discuss the
sensititivy of the ratio observable to the beam energy and
the details of the halo wave function. In Sec. IV we present
our results for the various targets and perform a comparison
between the ratios obtained. Finally, in Sec. V we draw our
conclusions.

II. THEORETICAL FRAMEWORK

To describe the collision of one-neutron halo nuclei on a
target, we consider a three-body model of the reaction. The
projectile P of mass mP is described as a two-body structure:
a neutron n of mass mn loosely bound to a core c of mass mc

(mP = mc + mn). The core is assumed to be in its ground state

of spin and parity 0+ and its internal structure is neglected. To
reduce the computational time, the spin of the halo neutron is
neglected. This simplification does not have any effect on the
ratio observable. The Hamiltonian H0 corresponding to this
description reads

H0 = − �
2

2μ
�r + Vcn(r), (1)

where r is the relative coordinate of the halo neutron n to the
core c, μ = mcmn/mP is the c-n reduced mass, and Vcn is
a phenomenological potential simulating the c-n interaction.
The eigenstates of H0 describe the physical states of the
projectile

H0 φlm(E,r) = E φlm(E,r), (2)

where E is the c-n relative energy, l is the c-n orbital angular
momentum, and m is its projection. The negative-energy states
(E < 0) are discrete and correspond to the bound states of the
projectile. The positive-energy states (E > 0) correspond to
the c-n continuum, they describe the broken-up projectile.
The parameters of Vcn are fitted to reproduce the energies and
quantum numbers of the low-lying states of the projectile.

The target T is seen as a structureless particle of mass
mT and charge ZT e, whose interaction with the projectile
constituents is simulated by optical potentials VcT and VnT .
These potentials, chosen from the literature, reproduce the
elastic-scattering cross section of the core and the neutron
with the target.

Within this three-body model, describing the collision of
the projectile onto the target reduces to solving the three-body
Schrödinger equation[

− �
2

2μPT

�R + H0 + VcT (RcT ) + VnT (RnT )

]
�(r,R)

= Etot �(r,R), (3)

where R is the projectile-target relative coordinate, μPT is
their reduced mass, and � is the three-body wave function.
Within this Jacobi set of coordinates, the c-T and n-T rel-
ative coordinates are RcT = R − mn

mP
r and RnT = R + mc

mP
r ,

respectively.
Equation (3) must be solved with the condition that the

projectile is initially in its ground state φl0m0 of energy E0.
With Z as the direction of the incoming beam, this condition
reads

�(r,R) −→
Z→−∞

ei{K0Z+η ln [K0(R−Z)]} φl0m0 (E0,r), (4)

where �K0 is the P -T initial relative momentum, which
is related to the total energy by Etot = �

2K2
0 /2μPT + E0,

and η = ZT ZP e2/(4πε0�
2K0/μPT ) is the P -T Sommerfeld

parameter, ZP e being the charge of the projectile.
In the continuum discretized coupled channel method

(CDCC), the three-body wave function is written in terms of
the complete set of eigenstates of the c-n system, including
bound and continuum states. In our implementation, the
continuum is discretized into continuum bins, averaging the
scattering states over energy or momentum. Introducing this
expansion of the three-body wave function into Eq. (3) gives
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rise to the CDCC equations, which are then solved in a
truncated model space, with scattering boundary conditions.
More details can be found in Ref. [26].

The dynamical eikonal approximation (DEA) is based
on the eikonal approximation [27], which assumes that at
sufficiently high energy the projectile-target relative momen-
tum does not deviate much from the incoming one �K0 Ẑ.
Following that assumption, the three-body wave function �
can be factorized as a plane wave times a function varying
smoothly with R. This factorization leads to a significant
simplification of the Schrödinger equation (3) [19,28], hence
enabling us to perform reaction calculations within a shorter
computational time than within a full CDCC framework. In
the following low-energy calculations, we use the Coulomb-
corrected version of the DEA (CC-DEA) detailed in Ref. [22].

In the recoil excitation and breakup model [15] Eq. (3) is
solved exactly under two simplifying assumptions: neglecting
the n-T interaction, i.e., assuming VnT = 0, and considering
the adiabatic—or sudden—approximation, i.e., H0 − E0 ≈ 0.
Under these conditions, Johnson et al. [15] prove that the
elastic-scattering cross section factorizes into a cross section
for a pointlike projectile times a form factor that accounts
for the spatial extension of the c-n wave function. This same
factorization occurs for the inelastic and breakup cross sections
as shown in Ref. [29], page 160, Eq. (18), and exploited in
Refs. [12,13].

In Refs. [12,13] we introduce then the ratio observable

Rsum(E, Q) = (dσ/dEd
)bu

(dσ/d
)sum
, (5)

where the summed cross section corresponds to(
dσ

d


)
sum

=
(

dσ

d


)
el

+
∑
i>0

(
dσi

d


)
inel

+
∫ (

dσ

dEd


)
bu

dE.

(6)

As described in Refs. [12,13], if the REB model is valid,
then this ratio of cross sections should correspond exactly to the
form factor connecting the halo ground state and the continuum
state with relative energy E populated in the breakup:

Rsum(E, Q)
(REB)= |FE,0( Q)|2. (7)

The form factor introduced reflects the structure of the
projectile:

|FE,0( Q)|2

= 1

2l0+1

∑
m0

∑
lm

∣∣∣∣
∫

φlm(E,r)φl0m0 (E0,r)ei Q·rd r

∣∣∣∣
2

, (8)

and depends on Q = mn

mP
(K0̂Z − K ′) which is proportional to

the momentum transferred during the scattering process.

III. SENSITIVITY OF THE RATIO OBSERVABLE

A. Dependence on beam energy

In order to understand what happens to the form factor when
changing the beam energy or the target, we investigate Eq. (8).
The dependence of |FE,0( Q)|2 on the beam energy or the
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FIG. 1. Ratio form factor as a function of different beam energies
and different targets. Results for a carbon target are shown by the
solid line (at 20 MeV), the dashed line (at 50 MeV), and the dotted
line (at 70 MeV). The other lines are for the lead target.

target mass appears only through Q. The momentum transfer
modulates the diffraction pattern contained in the pointlike
cross section and dictates the relevant scattering angles to be
considered in the process:

Q = 2
mn

mP

K0 sin(θ/2). (9)

For a given target, the larger the beam energy, the larger K0, and
therefore increasing the beam energy squeezes the distribution
to smaller angles. Identically, for a given beam energy, if one
increases the target mass, K0 increases, producing a similar
effect. This is illustrated in Fig. 1.

B. Sensitivity to the projectile structure

To evaluate the information that can be obtained from the
ratio observable at 20 MeV/nucleon for a 12C target, we
plot a figure (Fig. 2) similar to the Fig. 1 of Ref. [12]. As
expected from our previous analysis, we observe a significant
dependence on the projectile description. The ratio varies in
both shape and magnitude when the binding energy is changed.
It is also strongly dependent on the angular momentum of the
bound state. However, as explained above, a lower energy and
target mass leads to a ratio that extends over a larger angular
range, more favorable to an experimental use of the method.

We have also looked at the sensitivity to the radial wave
function and have observed a similar result as in Ref. [13].
Using different geometries of the c-n potential, we have
generated a set of bound-state radial wave functions that vary
both in their internal and external parts [Fig. 3(a)]. Although
less sensitive to this part of the wave function, the ratio provides
a clean test of the projectile radial wave function, unlike
most of the other reaction observables [see Fig. 3(b)]. As
already observed, it probes different parts of the wave function
depending on the scattering angle [13]. At forward angle,
the ratio scales perfectly with the square of the asymptotic
normalisation constant (ANC) of the wave function, as shown
in Fig. 3(c), where the form factor (8) has been scaled by
the square of the ground-state ANC. At larger angles, this is
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FIG. 2. Sensitivity of the form factor to the binding energy and
the partial wave of the halo neutron to the core: included at the
realistic 11Be, a 1s state bound by 0.5 MeV (solid line), a loosely
bound 1s state Sn = 0.05 MeV (short-dashed line), and a well bound
1s state Sn = 5 MeV (dotted line). Also shown are the ratios for a 1p

state with Sn = 0.5 MeV (long-dashed line) and for a 0d state with
Sn = 0.5 MeV (dash-dotted line).

no longer the case, indicating that it becomes sensitive to the
internal part of the wave function.

IV. REACTION CALCULATIONS

A. Numerical details

As mentioned in the Introduction, to test the validity of
the ratio method at low beam energy, we compare the REB
prediction (7) to dynamical calculations within the CDCC and
CC-DEA frameworks, which are considered to provide the
exact ratio. In this section, we provide the numerical details of
these calculations.

We first define the effective interactions used in constructing
our three-body Hamiltonian. For the 10Be -n interaction, we
take the same parameters as those of Ref. [13], but neglect
the spin of the halo neutron for simplicity. As to the optical
potentials, we use the Koning-Delaroche global parametriza-
tion for the neutron-target interaction [30]. For the 10Be-target
interactions, we adapt the 12C-target potentials from Ref. [31],
simply scaling their radius to account for the mass of the
projectile. The mathematical expression and parameters of
these optical potentials are given in the Appendix.

CDCC calculations are performed with the code FRESCO

[32]. We were only able to obtain fully converged breakup
cross sections at these lower beam energies for the 12C target.
In this case, the model space is defined as follows: 10Be -n
partial waves up to lmax = 6 and Qmax = 6 multipoles in the
expansion of the coupling potentials. The coupled equations
are integrated up to Rmax = 60 fm, and the scattering wave
functions are matched at Rasym = 1000 fm. Cross sections
include up to total angular momentum Jmax = 20 000.

The CC-DEA calculations are performed following
Ref. [28] including the semiclassical Coulomb correction
detailed in Ref. [22]. The DEA equation is solved with the
algorithm presented in Ref. [33], in which the projectile
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FIG. 3. Sensitivity of the form factor to the radial wave function.
(a) The different reduced radial wave function considered in this test:
the original 11Be wave function (solid line), for a small radius (dotted
line) and a large radius (dashed line). Also included is the results for
a 0s state (dash-dotted line), to show the effect of the node in the
wave function. (b) The corresponding form factors (8). (c) The form
factor divided by the square of the ANC of the ground state wave
function φl0m0 .

wave-function is expanded over a spherical mesh. Lowering
the projectile energy requires an increase of the number of
points on the unit sphere. At 20 MeV/nucleon, it has to go up
to Nθ×Nφ = 16×31 for the C target, Nθ×Nφ = 14×27 for
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FIG. 4. Comparison between CDCC (solid black lines) and
CC-DEA (dashed lines) calculations for a 11Be projectile impinging
on a C target at 20 MeV/nucleon. Also shown is the REB form
factor (8) (thick grey line). We consider the breakup to a final core-n
scattering state of E = 125 keV.

the Ca target, and Nθ×Nφ = 12×23 is sufficient for the Pb
target. The quasi-uniform radial grid contains 600 points (800
for the Pb target) and extends up to 600 fm (800 fm for the Pb
target). The calculations are performed for impact parameters
b = 0–100 fm (C target) or 160 fm (Ca and Pb targets) with
a discretization step that varies between 0.25 and 5 fm. As
explained in Ref. [28], the angular distributions are obtained
with an extrapolation up to bmax = 200 fm (C target) or 300
fm (Ca and Pb targets).

B. Carbon target

We begin our analysis of the ratio method at low energy
considering a carbon target. At such an energy and for
such a target, the CDCC method is the most reliable model
on the market. However, because CC-DEA is much more
cost effective than CDCC, we will use this case to test the
validity of that model in a nuclear-dominated collision. The
comparison between CDCC (solid line) and CC-DEA (dashed
line) is illustrated in Fig. 4. This figure displays the summed
cross section (6) (ratio to Rutherford) and the differential
breakup cross section as a function of the center-of-mass
scattering angle for a 10Be -n continuum energy E = 125 keV
(in b/MeV sr). The rapid drop of the latter indicates that
practical measurements could probably be made up to 40◦.
Hence we have limited our study a bit beyond that angle.

We observe that at forward angles, where the reaction is
dominated by the Coulomb interaction, CC-DEA is in perfect
agreement with CDCC, thanks to the semiclassical correction.
At larger angles, i.e., beyond 15◦, CC-DEA deviates from
CDCC. At these angles, the reaction is fully dominated by
the far side of the T matrix, i.e., by the attractive part of the
projectile-target interaction [34], and the Coulomb correction
alone is no longer sufficient to obtain reliable individual cross
sections. As already observed in Ref. [35], the discrepancy
between CC-DEA and CDCC is due to non-eikonal effects
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FIG. 5. Sensitivity of the ratio to the P -T interaction for a C
target at 20 MeV/nucleon. We consider the breakup to a final core-n
scattering state of E = 125 keV. The original calculation (solid lines)
is compared to the results obtained with VnT = 0 (dotted lines) and
when VcT = RPP (dash-dotted lines). The REB form factor (8) is
plotted as well (thick grey line). (a) Full angular range (using CDCC).
(b) Forward-angle region (using CC-DEA).

which increase at low energy. Nevertheless, it is interesting
to note that even though the correct individual angular
distributions are not reproduced by the CC-DEA, their ratio
(5) is in agreement with CDCC. This is probably related to
the strong independence of the ratio to the reaction process,
and hence to the details of the model used to describe it. We
plan to investigate this promising fact in a later work. In any
case, this result indicates that CC-DEA can indeed be used to
test the validity of the REB prediction (7). Since CC-DEA is
much more cost-effective than CDCC, we will use it to study
the ratio method for the heavier targets (Ca and Pb), for which
the (repulsive) Coulomb force between the projectile and the
target plays a more dominant role (see Secs. IV C and IV D).

In Fig. 5, we analyze the sensitivity of the ratio method
to the P -T interaction. The upper panel shows the sensitivity
of the ratio in a wide angular range using CDCC, while the
lower panel zooms in on the forward angle region (CC-DEA
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calculations). The solid lines correspond to the full calculation,
which includes both c-T and n-T interactions as mentioned
in Sec. IV A. As already observed at higher energy [12–14],
the breakup and summed cross sections exhibit very similar
features: the same oscillatory pattern at forward angles and
similar decay at larger angles. Accordingly, their ratio is very
smooth, confirming that this reaction observable removes most
of the sensitivity to the reaction process (note that the ratio
has been divided by 100 for readability); we merely observe
remnant oscillations in the 5◦–15◦ range [see Fig. 5(b)].
In addition, the actual ratio follows very closely the REB
prediction (8) (thick grey line), indicating that information
about the projectile structure can be reliably extracted from
the ratio as emphasized in Sec. III B.

Besides that full calculation, Fig. 5 displays the results
obtained including only the c-T interaction (i.e., setting
VnT = 0, dotted lines). As already observed before [12,13],
switching off that interaction leads to a near-perfect agreement
with the REB prediction: the dotted-line ratio is nearly
superimposed to the form factor |FE,0|2. This confirms the
role played by the n-T interaction, which is to shift slightly
the angular distribution [15], leading to the small remnant
oscillations in the actual ratio between 5◦ and 15◦.

More interesting is the result obtained changing VcT to
another potential. Following Ref. [36], we have considered a
potential developed by Robson [37] and listed in the Perey and
Perey compilation [38] that reproduces the elastic scattering of
10B on a carbon target at 18 MeV (RPP, dash-dotted lines). The
large difference with the potential of Ref. [31] enables us to test
the (in)sensitivity of the ratio to that interaction. As already
seen in Ref. [36], this second potential leads to a complete
change in the cross section: not only is the oscillatory pattern
shifted in angle, but for both elastic scattering and breakup the
cross sections are significantly increased. However, the ratio
remains nearly unchanged. This spectacular result confirms
that even at low energy, the ratio method enables us to remove
most of the dependence on the P -T interaction, leading to an
observable uniquely sensitive to the projectile structure.

C. Ca target

To study the target dependence of the ratio, we perform a
series of calculations for a calcium target at 20 MeV/nucleon.
For this target, we could not obtain converged CDCC cross
sections. Fortunately, the angular range of interest is limited to
the region of near-far interferences, up to which the CC-DEA
is reliable as shown in the previous section.

The results are summarized in Fig. 6. Compared to the
carbon target, we observe significant changes in the angular
distributions. The summed cross section shows that at forward
angles the collision is dominated by Rutherford scattering,
due to the higher Z of the target. We also note that both
angular distributions fall off more rapidly with the scattering
angle θ than for the carbon target, meaning that the breakup
cross section becomes very small beyond 25◦. The oscillatory
pattern due to the near-far interference is more pronounced
and extends over a larger angular range than for the carbon
target. Yet, as observed in Ref. [14], both the summed and
breakup cross sections exhibit similar features, as predicted

VnT = 0

full

|FE,0|2

θ (deg)

Rsum

dσbu/dEdΩ

dσsum/dσR

302520151050

102

10

1

0.1

10−2

10−3

10−4

10−5

10−6

FIG. 6. Ratio prediction for 11Be impinging on a Ca target at
20 MeV/nucleon (CC-DEA calculations). We consider the breakup
to a final core-n scattering state of E = 125 keV.

by the REB. Considering their ratio (5) removes most of
these angular dependences leading to a reaction observable in
excellent agreement with the REB prediction (7). As observed
at higher energies [12,13] and on the carbon target, the remnant
oscillations caused by the n-T interaction disappear when
VnT = 0 (dotted lines).

These results confirm the validity of the ratio method at
low energy and its independence of the target choice and of
the reaction process.

D. Lead target

We have also performed calculations for a Pb target at
20 MeV/nucleon (see Fig. 7). For such a heavy target, we
could not obtain convergence of the summed and breakup
cross sections in CDCC. While the rate of convergence of the
ratio was better than the individual angular distributions, these
were also not converged, although they were approaching the
REB prediction. Instead we have used the CC-DEA, which

VnT = 0

full

|FE,0|2

θ (deg)

Rsum

dσbu/dEdΩ

dσsum/dσR

20151050

102

10

1

0.1

10−2

10−3

10−4

FIG. 7. Same as Fig. 6 but for a Pb target.

054621-6



EXTENSION OF THE RATIO METHOD TO LOW ENERGY PHYSICAL REVIEW C 93, 054621 (2016)

proved to work very well at this energy [22]. In CC-DEA,
we were only able to make predictions out to 20◦ due to
numerical instabilities. Results from CC-DEA for Pb are not
so promising as those for C and Ca. The CC-DEA predictions
for the ratio follows the same trend as the REB prediction, but
remains away from it. At the most forward angles, the adiabatic
approximation leads to an underestimation of the REB ratio. As
already observed in Ref. [13], this underestimation worsens at
low beam energy. Hopefully, a nonadiabatic correction, such
as the one developed by Summers et al. in Ref. [39], could
improve the REB prediction of the ratio for heavy targets at low
energies. We plan to study such a correction in the near future.
At larger angles, the n-T interaction keeps the DEA result
away from the form factor as already discussed in Ref. [13].

These results show that although the REB predicts a target
independent ratio, it is best to use light targets due to the break-
down from the REB prediction for the heaviest systems. This
comes mostly from the adiabatic approximation at these low
energies, which works better for nuclear-dominated reactions.
Moreover, as shown in Sec. III, the use of light targets helps
spreading the range of the ratio form factor towards larger
angles, better suited for an experimental application of the
method.

V. CONCLUSIONS

The ratio (5) is a new reaction observable suggested to
study the structure of loosely bound quantal structures, such
as halo nuclei. It is predicted to be nearly independent of the
reaction mechanism while capturing the projectile structure.
In this work we test the validity of the method at low energies,
given the potential interest of applying the method at facilities
such as SPIRAL 2 and FRIB. We have performed CDCC and
CC-DEA calculations for 11Be impinging on C, Ca, and Pb at
20 MeV/nucleon, to obtain elastic and breakup cross sections,
from which the ratio is obtained. We have then compared the
results of the calculations with the REB prediction for the form
factor |FE,0|2 to determine the validity of the method.

Our results show that the ratio method is valid at lower
energy and thus can be used in a larger number of facilities.
The fact that the form factor is spread over a larger angular
range makes it easier for the setup of the experiment. At the
same time one needs to be aware of the magnitude of the
breakup cross section when moving toward the larger angles,
as it becomes very low. We expect measurements with 11Be
beams on carbon targets to be possible out to at least 40
degrees. Although breakup cross sections are larger for the
heaviest targets, the method works best for lighter targets
because the adiabatic approximation assumed within the REB
breaks down in Coulomb-dominated processes at low energy.
A nonadiabatic correction to the REB form factor may solve
that problem [39]. According to these results, it seems very
likely that the ratio method could be extended to even lighter
targets, and in particular to protons. Experimentally, elastic
and inelastic scattering off a proton target can be measured by
the missing mass method. Albeit promising, this possibility
would require testing within a reliable reaction model valid
for such light targets, viz., the Faddeev theory [40].

TABLE I. Parameters of the core-n potential.

Vr Rr ar

(MeV) (fm) (fm)

62.52 2.585 0.6

We have also demonstrated that the sensitivity to the
projectile description is equally present in the ratio observables
extracted from these lower energy reactions. Indeed, although
measurements at these energies may allow a larger angular
range, the sensitivity to the internal part of the wave function
is also pushed out to larger angles.

Another important result coming from the present study is
the realization that even though at larger angles the CC-DEA
cross sections do not reproduce the CDCC results, the ratio
predicted by CC-DEA is in complete agreement with CDCC.
This suggests that even a simple dynamical description of
the reaction may provide an accurate ratio. This is another
appealing motivation to use the ratio method: thanks to
its independence of the reaction mechanism, it may not
require the use of state-of-the-art reaction models to analyze
accurately experimental data. We plan to study this aspect of
the ratio method in a future analysis within the framework of
perturbative approaches.

This work opens the ratio method to a larger number of
facilities, particularly those with lower beam energies, and
will motivate groups to collect data for an experimental test of
the method.
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APPENDIX: TWO-BODY INTERACTIONS

This appendix details the form factors of the optical
potentials and the parameters used in this study to describe
the core-n, core-target, and n-target interactions.

As presented in Sec. II, the projectile is described as a
two-body structure. The Vcn potential contains only a central
real volume term

Vcn(r) = −Vrf (r,Rr,ar ), (A1)

with the Woods-Saxon form factor

f (r,Rr,ar ) =
[

1 + exp

(
r − Rr

ar

)]−1

(A2)

of radius Rr and diffuseness ar . The parameters of the core-n
potentials are listed in Table I. We take the same parameters as
those of Ref. [13], but neglect the spin of the halo neutron for
simplicity. This potential reproduces the experimental binding
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TABLE II. Parameters of the optical potentials simulating the interaction between the fragments of the projectile and the target nucleus.

P T Ref. Vr Rr ar Wi Ri ai WD RD aD RC

(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm)

n 12C [30] 46.9395 2.5798 0.676 1.8256 2.5798 0.676 28.6339 2.9903 0.5426
40Ca [30] 46.709 4.054 0.672 1.728 4.054 0.672 28.926 4.406 0.538
208Pb [30] 41.4872 7.3202 0.6469 1.1858 7.3202 0.6469 26.4580 7.3973 0.5102

10Be 12C [31] 250 3.053 0.788 247.9 2.982 0.709 0 5.777
12C [37,38] 100 5.40 0.5 18 5.40 0.5 0 5.40

40Ca [31] 200 4.465 0.837 276.9 5 0.653 0 4.465
208Pb [31] 95 7.0129 1.168 250 7.9582 0.662 0 10.503

energy 0.5 MeV in the 1s orbital to describe the 1/2+ ground
state of 11Be. The same Vcn potential is used to obtain the
continuum wave functions appearing in Eq. (8).

The nuclear part of the VxT potential that simulates the
interaction between the projectile fragment x (c or n) and the
target contains both real and imaginary volume terms as well
as an imaginary surface term:

VxT = −Vrf (r,Rr,ar ) − iWrf (r,Ri,ai)

− iWD aD

d

dr
f (r,RD,aD). (A3)

The Coulomb part of VcT is simulated by the potential due to
a uniformly charged sphere of radius RC .

We use the Koning-Delaroche global parametrization for
the neutron-target interaction [30]. For the 10Be-target inter-
actions, we adapt the 12C-target potentials from Ref. [31],
by simply scaling their radius to account for the mass of the
projectile. In Fig. 5 we also display results obtained using a
potential developed by Robson [37] and listed in the Perey and
Perey compilation [38]. The parameters used in this study are
listed in Table II.
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