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We investigate the role of the breakup channel in the elastic and breakup cross sections, in collisions of
proton-halo nuclei. For this purpose, we perform continuum discretized couple channel (CDCC) calculations for
the 8B + 208Pb system and evaluate polarization potentials. One-channel calculations including the polarization
potential are shown to reproduce very well the elastic cross sections obtained by CDCC calculations. We also
study the individual contributions of the Coulomb and the nuclear couplings to the cross sections. To complement
our study, we compare the effects of the breakup channel in proton-halo and neutron-halo nuclei, performing
calculations treating 8B as a 7B + n core-nucleon system, with an artificially low breakup threshold. When only
the nuclear breakup is considered, this approach can reasonably describe the elastic scattering.
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I. INTRODUCTION

The scattering and reaction processes involving weakly
bound heavy ions, especially halo nuclei, have been a subject
of great interest in the last decade [1–5]. Interesting features of
the scattering of halo nuclei are similar to those of scattering
of highly deformed tightly bound nuclei. The common feature
of those very different nuclear systems is the presence of
long-range potentials, in addition to the Coulomb potential. In
both cases, the coupling interaction extends beyond the radius
of the Coulomb barrier. Thus, it excites nonelastic channels
even in distant collisions, which leads to small deflection
angles.

The general elastic cross section can be written as

dσ (θ )

d�
= |fRuth(θ ) + fN(θ )|2, (1)

where fRuth(θ ) is the amplitude for Rutherford scattering and
fN(θ ) is a correction arising from short-range interactions, such
as the nuclear potential and Coulomb and nuclear couplings.
Usually, instead of plotting the elastic scattering angular
distribution, one plots the ratio of this cross section to the
Rutherford cross section, σ/σRuth. Then, Eq. (1) leads to the
expression

σ (θ )

σRuth(θ )
= 1 + |fN(θ )|2

|fRuth(θ )|2 + 2 Re{f ∗
N (θ )fRuth(θ )}

|fRuth(θ )|2 . (2)

The first two terms on the right-hand side of the above
equation come respectively from fRuth and fN, whereas the
third gives the interference of the two amplitudes. Note that the
Rutherford and the nuclear contributions are positive definite
while the interference term is not. It may take positive values
(constructive interference) and negative values (destructive
interference). Diaz-Torres and Moro [6] have shown that,
for loosely-bound nuclei, the Coulomb-nuclear interference
around the Coulomb barrier is destructive, owing to the change
of the phases of each contribution (nuclear and Coulomb) and
to the reduction of their amplitudes in the angular region of
the peak of the elastic scattering angular distribution.

In typical collisions at near-barrier energies and forward an-
gles, the Coulomb contribution is dominant [7–9], so that this
ratio is essentially equal to 1. This angular region corresponds
to distant collisions, where the projectile remains outside the
reach of the nuclear forces. As the angle increases, there are
oscillations followed by a large bump and a fast decrease. This
pattern results from two effects: rainbow scattering, which
is associated with the real part of the potential, and Fresnel
diffraction, which results from a combination of Coulomb
repulsion and strong absorption.

This behavior changes when the collision is strongly
affected by long-range coupling potentials, like the dipole or
the quadrupole terms of the Coulomb interaction. In such a
situation, the usual pattern is modified by the longer range
of the imaginary potential. The Fresnel diffraction peak is
damped and the ratio σ/σRuth is close to unity only at very
forward angles. This effect can be clearly observed in collisions
of heavy projectiles with a highly deformed target [10]. In
this case, the long-range imaginary potential arises from the
Coulomb excitation of rotational states in the projectile.

Other examples of significant suppression of elastic scatter-
ing at small angles are the collisions of one- and two-neutron-
halo nuclei with heavy targets, such as 11Be on 64Zn [11],
11Be on 209Bi [12], 6He on 58Ni [13], 6He on 208Pb [14–16]
and 6He on 206Pb [17]. This effect is particularly impressive
in the data of Cubero et al. [18], on the elastic scattering
of 9,11Li projectiles on 208Pb system. The cross section for
the 9Li projectile exhibited the standard behavior of tightly
bound collision partners. However, the cross section for the
two-neutron-halo projectile, 11Li, was drastically suppressed,
even at very forward angles and collision energies below the
Coulomb barrier. The usual Fresnel peak disappeared com-
pletely. A study of the damping effect in collisions of tightly
bound and halo projectiles has recently been published [19].

Contrary to neutron-halo projectiles, the elastic scattering
of proton-halo projectiles has not been extensively investi-
gated. Important differences between them might exist. In the
case of the neutron halo, the Coulomb forces act on the charged
fragment but not on the neutron cloud. Thus, the Coulomb
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polarizability of the projectile tends to be strong, leading to
large Coulomb breakup cross section. This effect is expected
to be weaker in collisions of proton-halo projectiles, where the
Coulomb field of the target acts on the charged core and also
on the proton halo.

There are some theoretical studies of collisions of proton-
halo projectiles at near-barrier energies. Lubian et al. [20]
performed continuum discretized coupled channel (CDCC)
calculations for 8B + 58Ni system. They found that the
coupling with continuum states did not lead to appreciable
changes in elastic angular distributions. The same system
was studied by Tostevin, Nunes, and Thompson [21], who
performed CDCC calculations for angular distributions and
excitation functions of the 7Be fragment, produced by the
breakup process. Lubian et al. [22] investigated the effect
of breakup on the fusion and quasielastic cross sections for
the same system. The relative importance of Coulomb and
nuclear breakups on the elastic and total breakup cross section
for this system was investigated in Refs. [20,23]. The authors
concluded that both the Coulomb and the nuclear contributions
to the breakup cross section are important, and that there was
strongly destructive Coulomb-nuclear interference.

The present work reports results of CDCC calculations for
collisions of the same proton-halo projectile, but on 208Pb,
which is much heavier than the target considered in previous
works. Owing to the strong Coulomb field of the target and the
low breakup threshold of 8B, 0.137 MeV, Coulomb breakup is
expected to play a very important role. We evaluate 8B breakup
angular distributions and the influence of the breakup process
on elastic scattering. We perform calculations of cross sections
at energies above and below the Coulomb barrier, which is
at 50 MeV (or 52 MeV in the laboratory frame). There are
no experimental data for this system at near-barrier energies.
However, Yang et al. [24] measured the elastic scattering
angular distribution for 8B + natPb at a higher energy (around
three times the Coulomb barrier). In that work they observed
a Fresnel pattern in the elastic scattering angular distribution
and negligible effect (within the error bars) of the coupling to
continuum states from the CDCC calculation.

This paper is organized as follows. In Sec. II we describe
the main features of the CDCC method applied to the
8B + 208Pb system. We discuss the optical potentials used
in our calculations and the evaluation of the contributions
from the Coulomb and the nuclear couplings to the breakup
cross sections. In Sec. III we show results of our calculations
for elastic scattering, breakup, and polarization potentials.
These potentials are devised to simulate channel coupling
effects in single channel calculations. In Sec. IV we discuss
the difference between cross sections for proton-halo and
neutron-halo projectiles. Finally, in Sec. V we present a
summary and the conclusions of our work.

II. CDCC CALCULATIONS FOR THE 8B + 208Pb SYSTEM

We have performed three-body CDCC calculations to
describe collisions of 8B projectiles with a 208Pb target.
In our calculations, we adopted the same model space of
Refs. [25,26] and used the FRESCO computer code [27].
Calculations along these lines were able to describe the elastic

scattering and the breakup of 8B projectiles in collisions with
a 58Ni target [20,21], as well as the energy distribution of the
p and 7Be fragments [21] produced in the breakup process.
They were also able to describe the elastic scattering of the
same projectile on a 12C target [28].

Since the details of the model space are available in
Refs. [25,26], we give just a brief description here. The 8B
projectile can be modeled as a 7Be +p system. In its ground
state, the proton moves around the 7Be core in a 1p3/2 orbital.
The remaining projectile states included in the model space are
in the continuum. They are then approximated by a finite set
of square-integrable wave functions given by energy averages
of 7Be +p scattering states within a given energy range.
These bin states are labeled by the midpoint of the energy
interval and by its angular momentum. We consider orbital
angular momenta up to l = 5�. Using the bin states, one
builds an orthonormal basis to describe the continuum space
of the projectile. The details of this procedure can by found
in Refs. [29,30]. All intrinsic states of the projectile (bound
and unbound) used in our calculations were determined by
solving the Schrödinger equation for the 7Be-p system, with
the potential of Ref. [31]. Thus, there is no free parameter.

The angular momentum projected three-body wave func-
tions are then written as linear combinations of products of the
intrinsic projectile’s wave function and the wave function of
the projectile-target relative motion, coupled to total angular
momentum J and projection M . That is,

�JM (R,r) =
∑

α

fα,J (R)

R
YJM

α (R̂,r), (3)

where r is the internal coordinate of the projectile and R is
the projectile-target relative coordinate. In Eq. (3) YJM

α (R̂,r)
represents the tensor product of the angular part of the
projectile-target relative wave function with the intrinsic wave
function of the projectile. It is important to note that the in-
ternal structure of the target was not considered in the
coupled equations. This is justified by the fact that the cross
sections for excitations of the doubly-magic 208Pb target are
low [24]. However, the influence of target excitations on elastic
scattering and breakup reactions can be taken into account
adopting imaginary potentials with longer ranges. This point
will be discussed in the next sub-section.

Inserting Eq. (3) into the Schrödinger equation and carrying
out some algebra, one obtains the set of coupled equations

[Hα − (E − εα)]fα,J (R) +
∑
α′ �=α

iL′−L Vαα′ (R) fα′,J (R) = 0,

(4)

where

Hα = − �
2

2μ

[
d2

dR2
− L(L + 1)

R2

]
+ Vαα(R) (5)

is the Hamiltonian in channel α, and εα is the intrinsic energy of
the projectile in this channel. In the present calculation, α0 = 0
stands for the elastic channel, where the projectile is in its
ground state (ε0 = 0,l0 = 1,j0 = 3

2 ), and α �= 0 corresponds
to a projectile’s state in the continuum, in the bin state with
by εα .
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The projectile-target interaction is given by the sum

V (R,r) = Vp-T(rv) + V7Be-T(rc), (6)

where T stands for the target, Vp-T and V7Be-T are the optical
potentials responsible for the elastic scattering of the valence
particle (p) and the core (7Be) from the target (208Pb). They
are functions of the position vectors of the valence particle
(rv) and the core (rc), respectively. These vectors are given in
terms of the vector joining the centers of the collision partners
(R) and the vector between the valence particle and the core
(r), by the standard relations

rv = R + Ac

AP

r and rc = R − Av

AP

r, (7)

where Ac, Av, and AP are the mass numbers of the core, the
valence particle, and the projectile, respectively.

The matrix elements of Eq. (4) are given by

Vαα′ (R) = 〈φα(r)|V (R,r)|φα′ (r)〉, (8)

where φα(r) stands for both the bound states of the projectile
and the bin wave functions.

To solve the set of coupled equations [Eq. (4)], the matrix
elements Vαα′ (R) are expanded in multipoles up to λ = 4,
and their multipole components are evaluated by numerical
integration over a mesh of radial distances (between the core
and the valence particle) distributed bewteen r = 0 and rmax =
80 fm. The coupled equations are then solved numerically
considering projectile-target distances up to R = 500 fm and
angular momenta up to 1000�.

A. The real and imaginary parts of the fragment-target
potentials

For the real parts of Vp-T and V7Be-T, we adopt the Akyüz-
Winther potential [32], which is a common practice in heavy
ion scattering.

The choice of the imaginary parts of Vp-T and V7Be-T

requires some discussion. Clearly, they must account for the
fusion of the fragments with the target. If fusion is the only
relevant nonelastic process affecting the cross section, the
imaginary potentials should produce strong absorption and
have a short range. In this case, we parametrize them by
Woods-Saxon functions, with depth W0 = −50 MeV, radius
R0 = 1.06 (A1/3

i + 2081/3) fm, were i stands either for the 7Be
core or for the proton, and diffusivity a = 0.2 fm.

On the other hand, if the imaginary potentials are also
associated with direct reactions, such as excitations of 208Pb,
they must have a longer range, in order to produce absorption
in peripheral collisions. In this case we assume that they have
the same shape as the real potentials but have a slightly lower
intensity. We use the relations

Im{V7Be−T(rc)} = 0.78 Re{V7Be−T(rc)}, (9)

Im{Vp−T(rv)} = 0.78 Re{Vp−T(rv)}. (10)

This procedure has been successfully used in many situa-
tions [33] where the nuclear interactions are modeled by
the São Paulo potential [34,35], which is similar to the
Akyüz-Winther potential at near-barrier energies.

When one uses long-range imaginary potentials, the current
diverted into channels associated with target excitation is
completely excluded from the coupled equation. Thus, it
does not contribute to any channel included in the coupled
equations. This is consistent with measurements of elastic
scattering or elastic breakup, where events in which the target
is left in an excited state are discarded. Therefore, long-range
imaginary potentials is the appropriate choice for calculations
of elastic scattering and elastic breakup.

The situation is different in calculations of noncapture
breakup (NCBU) or total fusion (TF). In measurements of
these quantities the events are registered independently of the
intrinsic state of the target. Thus, the influence of channels
with target excitation cannot be mocked up by long-range
absorption. Clearly, the couplings of the continuum with the
elastic channel are not the same as those of the continuum
with channels where the target is excited. However, ignoring
this difference might be better than neglecting transitions
from inelastic channels to the continuum altogether. A similar
argument can be given in the case of total fusion.

In view of the above discussion, we will adopt the
following procedure: (i) calculations of elastic scattering and
polarization potentials will be performed with long-range
imaginary potentials and (ii) calculations of breakup will be
performed with both long-range and short-range imaginary
potentials.

B. Coulomb breakup, nuclear breakup, and
Coulomb-nuclear interference

Now we investigate the roles of the Coulomb and the
nuclear couplings in the breakup process. For this purpose
we perform independent calculations considering only the
Coulomb or the nuclear part of the coupling interaction. That
is, in each case we perform a CDCC calculation neglecting
all off-diagonal matrix elements of either the nuclear or the
Coulomb part of the potential. This procedure is described in
further detail below.

First, we write the full projectile-target interaction of Eq. (6)
as

V (R,r) = Vopt(R,r) + 
V (R,r), (11)

where Vopt(R,r) and 
V (R,r) are respectively the diagonal
and the off-diagonal parts of the interaction in channel space.
They are given by the spectral representations

Vopt =
∑

i

|φi) (φi |V |φi) (φi | (12)

and


V =
∑
i �=j

|φi) (φi |V |φj ) (φj |, (13)

where φi and φj represent both the bound eigenfunctions
of the projectile and its unbound eigenfunctions, within the
continuum discretized approximation. Note that Vopt plays the
role of an optical potential whereas 
V is the channel coupling
part of the interaction.
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Next, we split the coupling interaction into its Coulomb and
nuclear components,


V = 
V (C) + 
V (N). (14)

This can be done separating the Coulomb and the nuclear parts
of the V7Be-T and Vp-T potentials of Eq. (6), and then using
Eq. (13) for the Coulomb and for the nuclear components
individually.

To assess the importance of the Coulomb couplings, we
drop 
V (N) and solve the CDCC equations for the interaction
Vopt + 
V (C). We then get the scattering amplitudes f

(C)

α,0(θ ).
The breakup cross section is then evaluated by the expression

dσ (C)

bu (θ )

d�
=

∑
α �=0

kα

k0

∣∣f (C)

α,0(θ )
∣∣2

. (15)

Next, we solve the CDCC equations keeping the nuclear part of
the coupling but dropping 
V (C). That is, we solve the coupled
equations for the interaction Vopt + 
V (N). In this way, we
get the scattering amplitudes f

(N)

α,0(θ ) and the corresponding
breakup cross section dσ (N)

bu (θ )/d�.
The above procedure has the advantage of being very easy

to implement. However, it has a shortcoming. The amplitudes
f

(C)

α,0(θ ) and f
(N)

α,0(θ ) are not associated with the same scattering
wave function. They are solutions of scattering problems
with different interactions. Therefore, the Coulomb-nuclear
interference term cannot be evaluated directly.

III. RESULTS AND DISCUSSION

A. Elastic scattering

We begin with the elastic scattering of 8B projectiles on
208Pb, at the bombarding energy Elab = 170.3 MeV. The
results of our CDCC calculations are represented by a solid
line in Fig. 1, in comparison with the data of Ref. [24]. The

FIG. 1. Elastic scattering of 8B on 208Pb at 170.3 MeV. The
solid line and the dashed line correspond, respectively, to CDCC
calculations taking into account all couplings and to a one-channel
calculation with all couplings switched off. The data are from
Ref. [24].

dashed line corresponds to results of a one-channel calculation,
which neglects off-diagonal matrix elements of the interaction
(
V = 0). Clearly, the CDCC calculation reproduces the
data very well. An equally good agreement between theory
and experiment was reached in a similar calculation using a
different optical potential [24]. The predictions of the one-
channel calculations are poorer. The Fresnel peak is shifted to
a slightly lower angle, and the cross sections at higher angles
are underestimated.

After this preliminary application, we carry out a detailed
investigation of the influence of the breakup process on elastic
scattering. First, we study the importance of the multipole
components of the coupling, performing several calculations.

The results are shown in Fig. 2. The thin solid lines
correspond to one-channel calculations, where all couplings
are switched off. The remaining curves are results of CDCC
calculations, where the multipoles expansion of the coupling

FIG. 2. Elastic angular distributions for different cutoff values
in the multipole expansion of the interaction, λmax. The curves
correspond to results of the CDCC calculations for λmax = 1, 2, 3,
4, and 5. The one-channel calculations (thin solid lines) consider
only the expectation value of the interaction, calculated for the elastic
channel. To enhance the differences among the lines, we restrict the
y axis to values between 0.7 and 1.0. For the same reason, we use
different angular regions for Elab = 60 MeV (a) and Elab = 44 MeV
(b) in the x axis. Further details can be found in the text.
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interaction is truncated at the different λmax indicated in the
legend. We show results for two bombarding energies. In the
bottom panel the bombarding energy is 44 MeV (8 MeV below
the barrier) and in the top panel the energy is 60 MeV (8 MeV
above the barrier). We have performed calculations at other
near-barrier energies. They lead to similar results, which are
not worth reporting here.

Clearly, the calculations converge at λmax = 4. The curves
for λmax = 4 and λmax = 5 can hardly be distinguished, at
both bombarding energies. We then truncate the multipole
expansions at λmax = 4 in CDCC calculations of this work.
Comparing the converged CDCC cross sections with those
of one-channel calculations, one concludes that, at both
bombarding energies, the net effect of the breakup coupling is
to dampen the cross sections at forward angles and to enhance
them at larger angles. The ratio between the CDCC and the
Rutherford cross sections is less than 1, even at angles as small
as θ ∼ 40◦. This is due to the long range of the Coulomb dipole
coupling. Thus, it is a purely dynamic effect. We recall that all
static effects of the 8B halo are already included in the single
channel calculation. The reason is that the optical potential
acting on the elastic channel is the expectation value of the
interaction [Eq. (6) for α = α′ = 0] taken with respect to the
ground state of 8B, which takes the halo into account.

We have also checked the stability of the results with
respect to the details of the continuum discretization. We
got good convergence using bins of width 
ε = 2 MeV,
but the cutoff values of the energy and the orbital angular
momentum depended on the bombarding energy. At Elab = 44
MeV, εmax = 8 MeV and lmax = 4 were enough to guarantee
convergence, whereas at Elab = 60 MeV it was necessary to
increase the cutoff values to εmax = 12 MeV and lmax = 5.

Now we study the influence of the Coulomb and the nuclear
breakup couplings on elastic scattering. Investigations of this
kind have been carried out for the lighter 8B + 58Ni system
at near-barrier energies [20,23]. They lead to the conclusions
that the contributions from the two couplings are of the same
order, and that they interfere destructively. In the case of the
8B + 208Pb system, where the target has a larger charge, one
could expect that the importance of the Coulomb couplings is
increased. On the other hand, one cannot predict the behavior
of the Coulomb-nuclear interference.

Figure 3 shows elastic angular distributions of CDCC
calculations with full channel couplings (thick solid lines),
with pure Coulomb couplings (dotted lines), and pure nuclear
couplings (dashed lines). As we explained in the previous
section, the diagonal part of the full interaction, Vopt, is kept in
all calculations. For comparison, we show also the results of
one-channel calculations (thin solid lines). As in the previous
figure, the calculations were performed at Elab = 60 [panel
(a)] and 44 MeV [panel (b)].

Comparing the dashed and dotted lines with the thin solid
line, one sees that the nuclear and the Coulomb couplings
produce opposite effects. The nuclear couplings (dashed lines)
enhance the elastic cross sections whereas the Coulomb
couplings (dotted lines) suppress them. At 44 MeV, one
observes that the effects of the Coulomb couplings are
noticeable at angles as low 30o, while those of the nuclear
couplings start only at θ ∼ 60o. This is due to the long

FIG. 3. Influence of Coulomb and nuclear couplings on elastic
angular distributions. The figure shows results of one-channel
calculations (thin solid lines) and of CDCC calculations with different
couplings. The thick solid lines take into account all couplings, and the
dashed and the dotted lines are restricted to nuclear and to Coulomb
couplings, respectively.

range of the Coulomb dipole coupling, which reaches distant
collisions associated with small scattering angles. The angular
distributions at 60 MeV show a similar behavior but the effects
of the couplings can be observed at slightly smaller scattering
angles. Comparisons between the thick and the thin solid lines
indicate that the net effect of the Coulomb + nuclear couplings
is to reduce the one-channel cross sections at small angles and
to enhance them at large angles. The transition between the
two behaviors takes place at θ ∼ 90o, for Elab = 44 MeV, and
at θ ∼ 50o, for Elab = 60 MeV.

Comparing the three CDCC calculations one sees that the
curves associated with full couplings fall between the curves
associated with pure nuclear and pure Coulomb couplings.
This indicates that there is destructive Coulomb-nuclear
interference in the elastic angular distributions. A similar
situation was encountered for the 8B + 58Ni [20,23], 11Be +
64Zn [6], and 6He + 208Pb [6] systems, among others.

Finally, we study the influence of the breakup threshold on
the elastic angular distribution. For simplicity, we restrict the
discussion to the energy above the barrier, Elab = 60 MeV.
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FIG. 4. Influence of the breakup threshold (Q) of 8B on the elastic
angular distribution. See the text for details.

We perform a CDCC calculation with full couplings for
the artificially large value of the breakup threshold, Q =
1.137 MeV. That is, we increase the breakup threshold by
1 MeV. An increase in the separation energy of the proton
reduces absorption in two ways. First, it weakens the strength
of the breakup couplings, leading to less breakup absorption.
Second, it reduces the range of the ground state wave function
of the projectile, φ0. Consequently, the range of the optical
potential, which is given by the expectation value of the
interaction for φ0 [see Eq. (12)], is reduced. In this way, the
imaginary potential associated with inelastic channels is also
reduced.

Figure 4 shows the results of CDCC calculations (with
Coulomb + nuclear couplings) for Q = 1.137 MeV (thick
dashed line) and for the actual Q value, 0.137 MeV (thick
solid line). For comparison, the results of the corresponding
one-channels calculations are also shown (thin dotted and solid
lines, respectively). First, one observes that the increase of
the Q value reduces the influence of the breakup channel
in the CDCC calculations, making the angular distribution
closer to the Fresnel pattern, commonly observed in heavy-ion
scattering. The ratio to the Rutherford cross section remains
close to one up to ∼60◦, and the rainbow maximum is
enhanced. This behavior is still more noticeable in the one-
channel calculation with the large Q value, where the rainbow
maximum is more pronounced. This is not surprising, since
there is no Coulomb breakup in the one-channel calculation.
In this way, the maximum is not damped by the long-range
absorption associated with Coulomb breakup. We conclude
that the CDCC cross section has a significant dependence on
the breakup threshold. The increase of 1 MeV in this threshold
leads to appreciable changes in the cross section, mainly at
intermediate angles where the ratio to the Rutherford cross
section begins to fall.

B. The breakup cross section

In this section we study the contributions from the Coulomb
and nuclear couplings to the breakup cross section. Now we
should distinguish elastic breakup from NCBU. In the former,

FIG. 5. Contributions from the Coulomb and the nuclear cou-
plings to the breakup cross sections at energies around the Coulomb
barrier. For details see the text.

the target must remain in its ground state, whereas in the
latter the final state of the target is irrelevant. To be consistent
with the experimental situation, in the calculations of elastic
breakup the imaginary part of the fragment-target potentials
should have a long range. In this way, the absorption in grazing
collisions takes into account the loss of inelastic events that
are discarded in the measurements. Regarding NCBU, the
situation is not clear. The problem is that the channels where
the target is excited also contribute to the breakup process. In
this case, it is better to keep the contributions from peripheral
collisions and for this purpose the imaginary potentials should
be of short range.

In Fig. 5 we compare different CDCC calculations of elastic
breakup. The dotted lines, the dashed lines and the solid
lines correspond respectively to the breakup cross sections
resulting from Coulomb couplings, from nuclear couplings,
from the full coupling interaction. We show also the sum
of breakup cross sections obtained with pure Coulomb and
pure nuclear couplings (dot-dashed lines). The bombarding
energies are the same as in the previous figure: Elab = 44
and 60 MeV. Clearly, the breakup cross sections at forward
angles is completely dominated by the Coulomb couplings.
This is a trivial consequence of the long-range of the Coulomb
dipole term. Forward angles correspond to trajectories with
large impact parameters, which remain outside the reach of
the nuclear couplings. Then, at intermediate angles the two
couplings lead to contributions of the same order whereas
nuclear breakup is larger than Coulomb breakup at backward
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FIG. 6. Contributions from the Coulomb and the nuclear cou-
plings to the breakup cross sections at energies around the Coulomb
barrier. For details see the text.

angle. The cross sections for 8B breakup in collisions with
a 58Ni target were qualitatively similar [20]. The Coulomb-
nuclear interference in the breakup cross section is estimated
as the difference between the solid and the dot-dashed lines.
This indicates that the interference is constructive. A different
conclusion was reached in the case of elastic scattering, where
the interference is destructive (see Fig. 3).

We remark that the interference patterns in the breakup
and in the elastic cross sections are not directly related. The
breakup T matrix can be written as the sum of the matrix
elements associated with the couplings 
V (C) and 
V (N) [see
Eqs. (13) and (14)]. Thus, the interference pattern results from
the relative phase of these two matrix elements. On the other
hand, the elastic T matrix has contributions from the Coulomb
and the nuclear couplings, but it contains also a contribution
from potential scattering, represented by the matrix element of
the optical potential of Eq. (12). In this case the interference
pattern is more complicated, as it depends on relative phases
of three amplitudes. Therefore, the interference patterns of the
two cross sections do not have to be similar.

In Fig. 6 we show a similar plot but now the calculations
have been performed with short-range imaginary potentials.
In this case, the results correspond to NCBU. The notation of
the curves is the same as in the previous figure. One notices
that the cross sections for Coulomb breakup are very similar
to the ones of the previous figure. This is not surprising, as
the reduction of the imaginary potentials is not expected to
affect the distant collisions that give the main contribution

to Coulomb breakup. On the other hand, the shorter range of
the imaginary potentials slightly increases the nuclear breakup
cross section, specially at the sub-barrier energy of 44 MeV.
Comparing the solid and the dot-dashed lines, one concludes
that the Coulomb-nuclear interference is constructive, but it is
weaker than in the case of elastic breakup.

C. Polarization potentials

The concept of polarization potentials is widely used in
nuclear reaction theory. This potential, denoted by Vpol, is
used in the one-channel description of elastic scattering, and
it is defined by the condition that it leads to the same wave
function as that obtained from the coupled channel equations.
That is, adding Vpol to the elastic Hamiltonian, given by Eq. (5)
for α = 0, the elastic wave function must satisfy the equation

[H0 + Vpol(R) − E]f0,J (R) = 0. (16)

Since in our energy scale ε0 = 0, the relative energy in the
elastic channel is equal to the total energy. Comparing the
above equation with Eq. (4), one immediately gets the exact
expression for the polarization potential:

V (J)

pol(R) = 1

f0,J (R)

∑
α �=0

iLα−L0 V0α(R) fα,J (R), (17)

where J is the total angular momentum and L0 and Lα are
respectively the orbital angular momenta of the projectile-
target motion in the elastic channel and in channel α. Since
this potential clearly depends on angular momentum, we added
the value of J as a superscript.

However, the definition of Eq. (17) has some shortcomings.
First, it leads to poles at the zeros of the wave function
appearing in the denominator. Second, this potential has an
undesirable dependence on J . These difficulties are avoided in
the approximate polarization potential of Thompson et al. [36].
They proposed the expression

Vpol(R) =
∑

J ωJ(R) V (J)
pol (R)∑

J ωJ(R)
, (18)

where

ωJ(R) = (2J + 1)[1 − |S0,J|2]f0,J (R). (19)

Above, S0,J is the elastic S matrix at the angular momentum J .
The potential of Eq. (18) is an average of J -dependent

polarization potentials, with the weight function ωJ(R). The
method of Thompson et al. has been successfully used by
many authors to evaluate polarization potentials associated
couplings with the breakup channel [26,37–39].

We evaluated the polarization potentials associated with
breakup couplings in 8B -208Pb scattering, at Elab = 60 MeV.
The real and imaginary parts of the potentials are plotted in
panels (a) and (b) of Fig. 7, respectively. The figure shows the
polarization potential in the barrier region (RB ∼ 11 fm) and
outside the barrier. We used long-range absorption in the Vp-T

and V7Be-T interactions, which is appropriate for calculations
of elastic scattering.

Inspecting panel (a), one concludes that the real part of the
polarization potential is appreciable, being repulsive at long
distances and oscillating near the barrier radius.
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FIG. 7. Real (a) and imaginary (b) parts of the breakup polariza-
tion potentials for the 8B + 208Pb system. The polarization potential
was obtained with long-range absorption. See the text for details.

The imaginary part of the polarization potential is shown in
panel (b). It is strongly absorptive at long separations, reaching
−20 MeV at R ∼ 14 fm. This behavior is responsible for the
damping of the elastic cross section at forward angles observed
in panel (a) of Fig. 2. On the other hand, the imaginary potential
takes positive values in the neighborhood of the Coulomb
barrier. At first, it may look strange that the polarization
potential acts as a source of flux in this region. However,
this is not unusual in approximate polarization potentials.
This behavior is acceptable, provided that the net effect of
the potential is absorption of flux.

Since the polarization potential of Thompson et al. is
approximated by an average of exact polarization potentials for
different angular momenta, one should make sure that it gives
a reasonable description of the collision. We checked this point
by evaluating the elastic angular distribution at Elab = 60 MeV
given by the solution of the one-channel equation with the
potential V00 + Vpol (dashed line), and comparing it with
the CDCC angular distribution (solid line). The results are
shown in Fig. 8. We conclude that the one-channel calculation
including the polarization potential reproduces the CDCC
cross section very well. At forward angles, where the ratio to
the Rutherford cross section begins to deviate from 1 (indicated
by the dotted line), the solid and the dashed lines are nearly
identical. At larger angles, there is some difference but it is
very small.

FIG. 8. Comparison of the elastic cross section of the CDCC
calculation (solid line) and the cross section obtained with a one-
channel calculation including the polarization potential (dashed line).

To close this section, we discuss the use of the polarization
potentials considered above. One should have in mind that
the polarization potential of Thompson et al. [36] is not
meant as an alternative to the calculation of cross sections.
Its determination requires the knowledge of the wave func-
tions and if they are known, the cross sections are readily
available. However, they have other uses. First, they provide
a potential scattering description of otherwise complicated
channel coupling effects. Second, they are very useful to
simplify the description of collisions in which different kinds
of channel coupling effects are relevant. For example, when
one tries to describe collisions of a weakly bound projectile,
say 11Li, with a highly deformed target, say 154Sm, the
breakup channel as well as rotational channels of the target are
of utmost importance. However, performing the appropriate
CDCC calculation with the inclusion of target excitation would
be prohibitively complicated. In this case, one can perform a
coupled channel calculation involving the rotational channels
using a breakup polarization potential. Clearly, one should
use the polarization potential with short-range fragment-target
absorption. Otherwise, there would be double counting of the
effects of inelastic excitations of the target.

IV. PROTON HALO VERSUS NEUTRON HALO

Now we compare the effects of the breakup couplings in
the cases of one-proton-halo and one-neutron-halo projectiles.
For this purpose, we investigate the n + 7B core-nucleon
configuration of 8B. Since its separation energy is extremely
high, this configuration plays no relevant role in the collision
dynamics. However, for this comparison we set its separation
energy artificially low. We adopt the same value of the p + 7Be
configuration, namely 0.137 MeV.

In a different context, Kumar and Bonaccorso [40] used
an effective breakup threshold of 0.60 MeV to reduce the
difference between the p + 7Be and n + 7B configurations.
Their aim was to investigate effects of Coulomb and nu-
clear breakups in collisions at much higher energies. Their
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FIG. 9. Ground state wave function of the relative motion of the
halo nucleon with respect to the core. The solid and the dotted lines
correspond respectively to the p-7Be cluster structure with Qp =
0.137 MeV, and to the n-8B structure with Qn = 0.60 MeV.

calculations were performed at Elab = 576 MeV, for the same
208Pb target, where the use of the eikonal approximation is
justified. The value of Qn = 0.60 MeV was determined by
the condition that the ground state wave function for the n-7B
motion in n-halo configuration be the same as that for the
p-7Be motion in the p-halo configuration. Considering only
nuclear breakup, they found that a proton halo behaves exactly
as a neutron of higher separation energy.

Even having in mind that we are considereng a very
different situation, we performed calculations for the same
intermediate value of Qn = 0.60 MeV, to investigate whether
the conclusions of Kumar and Bonaccorso are still valid at
near-barrier energies, where the eikonal approximation would
not be appropriate.

Figure 9 shows the ground srate wave functions for a proton
with separation energy Qp = 0.137 MeV (solid line), moving
around the 7Be core, and for a neutron with separation energy
Qn = 0.60 MeV (dotted line), moving around the 7B core. As
in Ref. [40], one finds very similar wave functions.

We then compare CDCC cross sections for elastic scattering
and elastic breakup, adopting the proton-halo (p + 7Be) and
the neutron-halo (n + 7B) configurations for 8B. The elastic
scattering cross sections are shown in Fig. 10. The thick
solid line is the elastic scattering angular distribution for
the p-halo configuration, with the experimental separation
energy. The curve is the same as in Fig. 4, except for the
use of different scales in the x and y axes. The remaining
curves are the elastic scattering angular distributions for the
n + 7B cluster structure, with the artificial separation energies
Qn = 0.137 MeV (dotted line) and 0.60 MeV (dashed line).
Comparing the cross sections for the p-halo and n-halo
structures with the same separation energy (0.137 MeV), we
conclude that the effects of the breakup channel are much
stronger for the neutron-halo structure. In this case, the ratio to
the Rutherford cross section starts deviating from 1 at θ ∼ 10o

and falls continuously as the scattering angle increases. One
notices also that the cross section for the n-halo structure with
Qn = 0.60 MeV is also quite different from that for the p-halo

FIG. 10. Comparison of elastic scattering cross sections obtained
with CDCC calculations adopting the proton-halo configuration for
8B and adopting the neutron-halo configuration with artificially low
separation energies. See the text for details.

structure with the experimental separation energy. Only for
the very large separation energy of 2.2 MeV does one get
an elastic cross section for the n-halo structure similar to the
one for the p-halo structure with Qp = 0.137 MeV, as can be
observed by the dotted-dashed curve in Fig. 10. In fact, this
is not surprising. Despite the similarity of the particle-core
ground state wave functions for the two configurations, the
matrix elements in the CDCC calculations [Eq. (8)] are not
the same. First, the potentials V (R,r) = Vp-T(rv) + V7Be-T(rc)
are different for the n + 7B and the p + 7Be halo structures.
Second, the bin wave functions, φα �=0(r) are also different,
since for the n-halo structure there are no Coulomb phase
shifts. These results agree with the conclusions of Ref. [41],
were it was shown that different potentials lead to differences
in the phase shifts that can significantly affect the breakup
cross sections.

Similar calculations were performed for the elastic breakup
cross section. The results are shown in Fig. 11. In this case, the

FIG. 11. Similar to Fig. 10 but here the curves represent elastic
breakup cross sections.
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cross sections for the n-halo structure were so much larger that
we had to use a logarithmic scale. The notation for the curves
are the same as in the previous figure. One notices that the
cross sections in the cases of n halo are systematically larger,
except in the case of the very high separation energy, Qn =
2.20 MeV. Comparing the results for the two configurations
using the same separation energy (0.137 MeV), one finds that
the cross section for the n halo is much larger. At forward
angles, the difference reaches about two orders of magnitude.
This is due to two reasons. First, the Coulomb dipole operator
is proportional to the factor |Z1A2 − Z2A1|, where {Z1,A1}
and {Z2,A2} are respectively the atomic and mass numbers of
the core and the nucleon in the configuration. This factor is
equal to 3 in the p-halo configuration while it is equal to 5
in the n-halo configuration. The second factor, which is more
important, is that the integrals giving the matrix-element of the
bound to continuum couplings are limited by the extension of
the halo, which is much larger for an uncharged particle [40].

Comparing the dot-dashed and the solid lines in Fig. 11,
one concludes that the elastic breakup cross section for the
neutron-halo configuration with Qn = 2.20 MeV is quite
different from that for the proton-halo configuration with
the experimental separation energy. The former is more than
one order of magnitude smaller. This result contrasts with
our conclusions about elastic scattering, where the two cross
sections were very similar. This is not surprising since the
elastic and the breakup amplitudes are very different quantities.
The breakup amplitude is given by the matrix element of
the coupling interaction, whereas in the elastic amplitude this
matrix element is added to that of the optical potential.

We checked also the validity of Kummar and Bonaccorso’s
conclusions at near-barrier energies in the case of pure nuclear
breakup. For this purpose, we performed new calculations
neglecting the Coulomb couplings. The results are shown in
Fig. 12. Here the solid curve (p halo with Qp = 0.137 MeV)
and the dashed curve (n halo with Qn = 0.60 MeV) are quite
close. Therefore, we reach the same conclusion as Kumar and
Bonaccorso [40] when pure nuclear breakup is considered.

FIG. 12. Same as the previous figure but here the calculations
took into account only nuclear couplings, as in the work of Kumar
and Bonnacorso [40].

FIG. 13. Similar to Fig. 13 but here the calculations took into
account only nuclear couplings.

Figure 13 shows the results of a similar calculation for
the elastic breakup cross section. That is, we consider only
nuclear couplings. The notation for the three lines is the same
as in the previous figure. One can see that the cross section
for the neutron-halo configuration with Qn = 0.60 MeV and
that for the proton-halo configuration with the experimental
separation energy are reasonably close. The agreement of the
two calculations is particularly good at large angles.

V. CONCLUSIONS

We have investigated the effects of the breakup channel in
the scattering of 8B from 208Pb at near-barrier energies. These
effects are expected to be strong, owing to the low separation
energy of the valence proton in 8B, which gives rise to a
proton halo. The elastic scattering of neutron-halo nuclei has
been widely investigated. On the other hand, studies about the
scattering of proton-halo nuclei are scarce. There are important
differences between the collision dynamics of neutron-halo
and proton-halo nuclei. In the former the Coulomb field of the
target acts only on the charged core, whereas in the latter the
Coulomb field acts also on the valence nucleon.

We have performed several three-body CDCC calculations
for elastic scattering and breakup cross sections in the
8B -208Pb scattering. In our calculations the projectile-target
interaction is given by the sum of the potentials between the
target and each fragment of the projectile, that is, the core and
the valence particle. For the real part of these potentials, we
adopted the Akyüz-Winther interaction. For their imaginary
parts we used both short-range functions, acting only inside
the Coulomb barrier, and functions with a longer range, acting
also in the barrier region. We adopted the former in calculations
of NCBU and the latter in calculations of elastic scattering
and elastic breakup cross sections. In order to achieve good
convergence in our calculations, it was necessary to consider
multipolarities up to λ = 4 in the expansion of the interactions.

We described a method to investigate the relative impor-
tance of the Coulomb and the nuclear couplings in the collision
process, as well as their interference, and this method was
applied to the elastic and the breakup cross sections. The results
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of the present work for elastic scattering show very clearly that
the couplings with the breakup channel suppress the cross sec-
tions at forward angles and enhance them at large angles. The
Fresnel peak observed at the higher energy Elab = 170.3 MeV
[24] is no longer present at near-barrier energies. The nuclear
couplings enhance the elastic cross sections, whereas the
Coulomb couplings suppress them. The suppression found at
forward angles can be traced back to the action of the Coulomb
forces. Owing to the long range of the dipole coupling, breakup
absorption takes place even at distant collisions, which are
deflected to small angles. On the other hand, the enhancement
at large angles can be attributed to the nuclear couplings, which
play an important role in close collisions.

Comparing the cross sections obtained with the full
couplings with the ones calculated with pure Coulomb and
pure nuclear couplings, we concluded that there is destructive
interference in elastic scattering. The same conclusion was
reached in the recent work of Diaz-Torres and Moro [6]
on elastic scattering of neutron-halo nuclei at near-barrier
energies, and also in collisions of 8B with 58Ni at near-barrier
energies [20,23]. A different situation is found in collisions
of halo nuclei at energies well above the barrier. In this case,
the couplings with the breakup channel are negligible, and the
Fresnel peak can be observed in the elastic scattering data.

We have also investigated the influence of the binding
energy of the valence proton on the elastic cross section.
For this purpose, we evaluated the cross section using
an artificially high value of the separation energy. The
resulting cross section did not exhibit the suppression at small
angles, showing the usual pattern of heavy ion scattering at
near-barrier energies. This is not surprising since the increase
of the binding energy eliminates the halo and reduces the
intensity of the breakup coupling.

We performed CDCC calculations of breakup cross sec-
tions, both elastic and NCBU. We found that the cross sections
for the two processes are rather similar. As expected, the
Coulomb couplings completely dominate at forward angles
and the nuclear couplings are relatively more important at
backward angles. We concluded that there is constructive
Coulomb-nuclear interference, and that this trend is more
pronounced in the case of elastic breakup. The constructive

interference in the case of breakup contrasts with the situation
encountered in elastic scattering, where the interference is
destructive. We remark that there is no inconsistency between
these results. The difference stems from the fact that the
breakup amplitude is the sum of matrix elements of the
Coulomb and of the nuclear couplings, whereas in elastic
scattering these matrix elements are summed with the one
associated with potential scattering.

We used the method of Thompson et al. [36] to evaluate
breakup polarization potentials. The most important feature of
this potential is its large imaginary part at long distances. This
potential was added to the optical potential in a single channel
calculation of elastic scattering. The cross section obtained in
this way was shown to reproduce accurately the one obtained
in the CDCC calculation, which guarantees the validity of this
approximate polarization potential.

Finally, we made a comparative study of the effects of
the breakup process in collisions of the proton-halo and
neutron-halo projectiles. For this purpose, we considered the
roles of the 7Be-p and 7B-n configurations in the scattering
of 8B projectiles on 208Pb, adopting artificially low values of
the breakup threshold for the 7B-n configuration. As could be
expected, the effects of the breakup channel for neutron-halo
are much stronger than in the case of proton-halo projectiles.
When the experimental breakup threshold of proton-halo
configuration is used for the neutron-halo configuration, the
elastic scattering angular distribution is strongly suppressed
and the elastic breakup cross section at forward angles
increases by two orders of magnitude. However, when only the
nuclear breakup is considered, this approach can reasonably
describe the elastic scattering and the breakup cross sections,
similarly to what was found by Kumar and Bonaccorso [40]
at a higher energy.
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