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With the semiclassical Landau-Vlasov transport model we studied the stopping observable RE , the energy-
based isotropy ratio, for the 129Xe +120Sn reaction at beam energies spanning 12A to 100A MeV. We investigated
the impacts of the nonlocality of the nuclear mean field, of the in-medium modified nucleon-nucleon (NN ) cross
section, and of the reaction centrality. A fixed set of model parameters yields RE values that favorably compare
with the experimental ones, but only for energies below the Fermi energy EF . Above EF agreement is readily
possible, but by a smooth evolution with energy of the parameter that controls the in-medium modification of
NN cross section. By comparing the simulation correction factor F applied to the free NN cross section with the
one deduced from experimental data [Phys. Rev. C 90, 064602 (2014)], we infer that the zero-range mean field
almost entirely reproduces it. Also, in accordance with what has been deduced from experimental data, around
EF a strong reduction of the free NN cross section is found. In order to test the impact of sampling central
collisions by multiplicity, an event generator (HIPSE) was used. We obtain that high multiplicity events are spread
over a broad impact parameter range, but it turns out that this has a small effect on the observable RE and, thus,
on F as well.
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I. INTRODUCTION

The ratio between transverse and longitudinal components
of kinematical observables is a measure of the conversion of
the initial entrance channel motion into intrinsic degrees of
freedom in heavy-ion collisions (HICs). Such an observable
gives an insight on the rate of a system’s equilibration, of
the dissipation of the available energy, as well as of HIC
stopping power [1,2]. Thanks to such an observable, the FOPI
Collaboration has evidenced partial nuclear transparency in
HIC in the beam-energy range Einc ≈ 0.1A–1A GeV [3]. More
recently, by examining the ratio of transverse to longitudinal
energy RE and linear momentum Rp for the most violent
HICs, the INDRA Collaboration has revealed a substantial
reduction of the nuclear stopping power at Einc ≈ 10A–100A
MeV [4]. This stopping observable reaches a minimum around
the Fermi energy EF and stagnates or very weakly increases
with the further increase of Einc at least up to 100A MeV, the
upper limit of the energy range available in this study. The
above observation is valid for all (mass symmetric) systems
studied, with system masses Asys = 72–394 a.m.u. It is worth
emphasizing that the fusion cross section normalized by the
total reaction cross section exhibits an analogously rapid
fall-off up to about EF [5,6], a behavior especially evident
for mass-symmetric systems (cf. Fig. 6 of Ref. [6]).

In a recent publication [7] the above observable RE was
analyzed for the Z = 1 subset of the same INDRA data. The
Z = 1 RE displays a slightly stronger increase with Einc > EF

for the heavier systems [7] relative to the RE values obtained in
the previous study [4], which included light charged particles

*basrak@irb.hr
†eudes@subatech.in2p3.fr

and fragments, but also was somewhat more stringent on the
selection of the most central events. The authors of Ref. [7]
report a minimum of RE around EF , which is particularly
enhanced when RE is normalized to the Fermi-gas-model
prediction of the incoming RE value at a given Einc [8].

In Ref. [7] it was assumed that protons are predominantly
dynamically emitted during the early reaction phase, in accor-
dance with Refs. [9,10]. Such a hypothesis offers a possibility
of extracting information on the in-medium correction for
the free nucleon-nucleon (NN ) cross section σ free

NN . Following
such an argument, starting from the experimental RE values in
Ref. [7], with some basic assumptions about the effects owing
to the Pauli-exclusion principle, the nucleon mean free path
was extracted and an effective value of the in-medium NN
cross section σm

NN was deduced. In the process, a correction
factor F was obtained by which σ free

NN has to be multiplied at
each Einc to get a proper σm

NN value. The authors found that (i)
a significant reduction of σ free

NN is present in HICs below 100A
MeV and (ii) this change of σ free

NN is strongly dependent upon
Einc. At the lowest energies the measured RE is compatible
with the full stopping value (RE ≈ 1) and the effective σm

NN

amounts to about 0.4σ free
NN . One should keep in mind that the

authors claimed a large uncertainty on the factor F below
Einc ∼ 30A MeV, a subject for which they have announced a
devoted publication [7]. At incident energies around EF where
RE attains its minimum, σm

NN is reduced to less than one fifth
the free σ free

NN value (F = 0.17) and then the effective σm
NN

steadily and regularly increases up to half of the free value
(F ≈ 0.5) at Einc = 100A MeV [7] (see also Fig. 3 in the
present work).

The stopping observables RE and/or Rp have also been
investigated in isospin-dependent quantum molecular dy-
namics (IQMD) [8,11–14] and antisymmetrized molecular
dynamics (AMD) [15] model studies of HICs. All these works
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were carried out before publication of Ref. [7]. Neither of
simulation approaches predicts the remarkable in-medium
reduction of σ free

NN found in Ref. [7]. In the AMD study,
specific attention has been paid to performing the analysis by
meticulously following the experimental procedure for data
handling [15]. The simulation with in-medium σNN due to Li
and Machleidt [16] (the free σNN ) undershoots (overshoots)
the data of [4]. An agreement with the data could only be
reached at Einc � 80A MeV by doubling the theoretically
established σm

NN of [16]. A systematic investigation of the
impact of σNN on RE , however, has not been performed yet.
The intention of the present study is twofold:

(1) by varying the nuclear equation of state (EOS) and
the parametrization of σNN , to investigate how the
semiclassical Landau-Vlasov (LV) transport model of
HIC [17,18] complies with the experimentally deduced
dependence of the stopping observable RE on Einc and

(2) by varying a simple multiplicative factor F of the free
NN cross section, to compare thus obtained values for
F with those reported in Ref. [7].

II. MODEL INGREDIENTS

Within the semiquantal extension of the Boltzmann trans-
port theory, the highly nonlinear LV equation governs the
spatio-temporal evolution of the one-body density distribution
function f (r,p; t):

∂f (r,p; t)

∂t
+ {f (r,p; t),H } = Icoll(f (r,p; t)), (1)

which gives the probability of finding at the instant t a particle
in the phase-space point (r,p). { , } stands for the Poisson
bracket, whereas H is the one-body Hamiltonian describing
the Coulomb potential and the nuclear mean field. We present
the results obtained with a soft nonlocal mean field labeled
D1-G1 (K∞ = 228 MeV, m∗/m = 0.67) due to Gogny [19]
and those obtained with the standard simplification of the
soft zero-range Skyrme interaction due to Zamick (K∞ =
200 MeV, m∗/m = 1.0) [20]. The D1-G1 force is reputed
to reproduce fundamental properties of nuclear matter as well
as those of finite nuclei [19] while the Zamick parametrization
of the EOS is, owing to its simplicity, of rather widespread
use in a number of microscopic approaches. Details on both
the nonlocal and the local parametrizations of the used EOS
may be found in Tables I and III of Ref. [21], respectively.
We have demonstrated that the LV model is able to correctly
describe experimental observations in the intermediate energy
regime [9,10,18,21,22]. The use of only a density dependent
EOS is legitimated by the finding [11,14] that the isospin
dependence of the mean field has a weak, if any, influence
on isotropy ratios. Experimental RE’s for a number of HICs
between various xenon and tin isotopes corroborate this result;
cf. Table I of Ref. [4].

The function f is expanded onto a moving basis of coherent
states taken as normalized Gaussians Gχ (Gφ) with frozen
width χ (φ) in r (p) space:

f (r,p; t) = A

N

∑
i

Gχ (r − ri)Gφ(p − pi). (2)

A is the system mass number and N is the number of coherent
states (N/A equals 60 in the present study). The widths χ and
φ are chosen such as to best reproduce the nuclear ground state
characteristics of the two colliding nuclei. The local density
reads

ρ(r) =
∫

d3pf (r,p). (3)

Gaussians move in the self-consistent mean field and suffer
hard scattering between them, controlled by the Uehling-
Uhlenbeck collision integral accounting for the fermionic
character of interacting particles [23]:

Icoll = 4g

m2

∫
d3p2d

3p3d
3p4

dσm
NN

d�

× δ(p + p2 − p3 − p4)δ(ε + ε2 − ε3 − ε4)

× [(1−f̄ )(1−f̄2)f3f4−(1−f̄3)(1−f̄4)f2f ], (4)

which takes into account energy and momentum conservation
as well as the Pauli exclusion principle. Here, m denotes
the nucleonic mass, f̄ = (2π�)3f (r,p; t)/g is the occupation
number with g the spin-isospin degeneracy [18], p and p2 (p3
and p4) are initial (final) momenta of the scattering particle
pair, ε = ε(p) is the single-particle energy, while σm

NN is the
in-medium nucleonic cross section. σm

NN is scaled so that a
Gaussian-averaged mean-free path is the same as for a nucleon.
The cross section dependence on isospin has been reported
as crucial for the study of stopping [11]. This kind of σNN

parametrization was proposed by Chen et al. [24], which
hereafter we label σ Chen

NN . This phenomenological σ free
NN is based

on the empirical isospin and energy dependence of the free NN
scattering and has been used in both [7] and [11]. σNN due to Li
and Machleidt [16], which accounts for the in-medium effects
and is also isospin dependent, is tested too.

III. RESULTS AND DISCUSSION

Our stopping observable, the energy-based isotropy ratio, is
defined as the ratio between transverse Etran and longitudinal
Elong energy components of reaction ejectiles [4,7]:

RE =
∑

Ei
tran

2
∑

Ei
long

, (5)

where summation runs over particles of those reaction events
that satisfy certain selection criteria. For the LV simulation
results, the summation index i of Eq. (5) runs over the free
Gaussians, i.e., those which are not bound in large (residue-
like) fragment(s). Among the experimentally studied systems,
the 129Xe +120Sn reaction has been measured at by far the most
abundant number of Einc values [4,7]. Consequently, in the
present work only the simulation of this system is performed.
To acquire stable Rsim

E values, the simulation is carried out
up to 600 fm/c at the lowest Einc = 12A–32A MeV and up
to 240 fm/c at the highest Einc = 80A–100A MeV. Beyond
that time the calculation was continued until 8000 fm/c,
considering only the Coulomb repulsion due to reaction
residues. Special care was taken in order to perform our
analysis of simulation data as close as possible to experimental
conditions.
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A. A density-dependent N N cross section

In the experimental analysis [7], event selection is based
on the charged particle’s multiplicity. The authors selected the
most central events that are estimated, in cross-section units, to
be equivalent to 50 to 150 mb [7]. We adopt the median value
of 100 mb for our analysis. This amount corresponds to about
2% of the total reaction cross section σR and, in a geometrical
sharp-cut approximation, to b � 2.0 fm. Consequently, in this
subsection our simulation is limited to b � 2.0 fm.

Figure 1 displays Rsim
E obtained with the momentum-

dependent D1-G1 EOS (upper panel) and with the zero-range
Zamick EOS (lower panel) for several parametrizations of the
in-medium corrected σNN . For comparison, the experimental
R

exp
E ’s are shown by filled circles with the corresponding

errors [7]. As a reference, the Rsim
E results obtained with

the in-medium uncorrected empirical free scattering σ free
NN =

σ Chen
NN [24] are displayed by the heavy dotted curves. This

empirical σNN is used as an input for the in-medium modified
σm

NN suggested by Cugnon et al. [25]. In their Brueckner
G-matrix in-medium renormalization of the NN interaction,
they obtained a set of parameters explicitly describing the
dependence of σ

Cugnon
NN on the local density [25]. These

simulation results are displayed by the red curves and reddish
zone in Fig. 1: the zone shows the range of the Rsim

E values
limited by the impact parameters b = 1 fm (dashed bordering
curve) and b = 2 fm (full bordering curve). (b = 0 fm has no
weight and Rsim

E at most of energies is roughly the same for
b = 0 and 1 fm.) The heavy curve in each zone represents
the b-weighted Rsim

E value in the range b = 0–2 fm and
corresponds to 2% of σR . For both EOS, the Rsim

E values
with σ

Cugnon
NN are very similar to those obtained with σ Chen

NN

(dotted curves). Clearly, in the full energy range investigated
here the in-medium effects of σ

Cugnon
NN have rather weak

impact on the RE observable. Consequently, as for σ Chen
NN ,

the compatibility of Rsim
E and R

exp
E for both EOS may be

observed at the lowest Einc only when the experimental errors
are accounted for. In addition, for the Zamick EOS, Fig. 1(b),
the simulation strongly overshoots the data at the highest
Einc’s.

A full ab initio microscopic study of σm
NN based upon the

Dirac-Brueckner approach to nuclear matter was performed by
Li and Machleidt [16]. Besides dependence on energy, isospin,
and density of σ

Cugnon
NN for this σ Li-Machleidt

NN , we have added an
explicit dependence on angle. In contrast to the scattering of
neutrons, which is taken as isotropic, those between neutron
and proton σnp and between protons σpp are anisotropic in
accordance with the fit of Ref. [26], which is given in detail in
the Appendix. Similarly to above, the corresponding values of
Rsim

E are displayed by the blue curves and bluish zone in Fig. 1.
Again, the compatibility of Rsim

E with R
exp
E is unsatisfactory.

Nevertheless, for the D1-G1 EOS and Einc � EF , Fig. 1(a),
the slope of the isotropy ratio excitation function is correct
but the simulation somewhat undershoots the experimental
points: Rsim

E may be taken as compatible with the lower edges
of experimental errors on R

exp
E . For the Zamick EOS, Fig. 1(b),

the compatibility with R
exp
E exists at low Einc and around

Einc ∼ 60A MeV, but the general features of the data are poorly
reproduced. Manifestly, none of the above parametrizations of
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FIG. 1. Landau-Vlasov simulation results on the dependence of
the transverse-to-longitudinal energy ratio Rsim

E of Eq. (5) as a function
of incident energy for the central 129Xe +120Sn reaction and several
parametrizations of σm

NN . Panel (a) displays the results with the
momentum dependent D1-G1 EOS and panel (b) those with the
zero-range Zamick EOS. Heavy dotted curves represent the Rsim

E

excitation function obtained with the σ free
NN due to Chen et al. [24].

The gray zones show the range of the Rsim
E values limited by the

impact parameter b = 1 fm (dashed bordering curves) and b = 2 fm
(full bordering curves), while the heavy curve in each zone represents
the b-weighted Rsim

E values in the range b = 0–2 fm for σm
NN due to

Cugnon et al. [25] (red curves and zones) and Li and Machleidt [16]
(blue curves and zones). Thin dashed curves are obtained with the
parametrization of σm

NN due to Klakow et al. [27] where the results for
the different values of the parameter α of Eq. (6) are distinguished by
the varied dash size and color. The filled circles and associated errors
stand for the Z = 1 experimental R

exp
E values [7]. The thin dotted

horizontal line denotes the full stopping value. The entrance channel
values of RE are shown by (i) the thin dashed curve resulting from
the two Fermi spheres (EF = 38 MeV) displaced for the entrance
channel relative momentum and (ii) by the thin dash-dotted curves
for the LV model values at the contact of colliding nuclei for each of
the two EOS used.

σm
NN and EOS can account for the observed behavior of the

RE stopping observable in the full energy range.
The parameters in the above σm

NN are of a fixed value. By an
expansion around the saturation value ρ0, Klakow et al. have
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suggested a simple parametrization for the dependence of σm
NN

on the evolving nuclear density [27],

σm
NN = σ free

NN

(
1 + α

ρ

ρ0

)
, (6)

where ρ is evaluated locally according to Eq. (3), and α is
a free parameter assumed to reduce the cross section, thus
it is strictly negative. As before, for σ free

NN the value taken is
the empirical σ Chen

NN . The authors have recommended for α
the domain [−0.3, − 0.1] [27]. In our simulation α is varied
between −0.1 and −0.6. These Rsim

E are presented in Fig. 1
by the thinner dashed curves with variable dash size. They
display a more or less regular dependence on both Einc and α.
For the nonlocal EOS and −0.6 � α � −0.5 the R

exp
E values

at Einc � EF are well reproduced in both slope and absolute
value; cf. Fig. 1(a). At energies higher than EF , however,
for each Einc another and regularly increasing value of the
parameter α is required such that, at the highest Einc here
considered, it should become positive, implying an in-medium
enhancement rather than a reduction of σ free

NN at Einc � 80A

MeV. Let us mention that Rsim
E with σ

Cugnon
NN corresponds to that

of σ Klakow
NN with α = −0.1 in the full range of Einc considered

and for both EOS. Simulation results with σ Li-Machleidt
NN and

D1-G1 EOS are compatible to σ Klakow
NN with α = −0.6 and

Einc � 50A MeV. For the Zamick EOS of Fig. 1(b) one does
not find a range of Einc of stable value of the parameter α that
gives Rsim

E ’s compatible with either R
exp
E or those Rsim

E due to
σ Li-Machleidt

NN .
In conclusion, neither choice of σm

NN allows for a unique
description of experimental observation. One faces the fact
that every model study, ours and previous [8,11–15], fails
to reproduce with a single set of parameters the INDRA
experimental results in the full energy range studied [4,7].
In particular, all models but [15] predict steadily decreasing
values of Rsim

E when Einc increases, while experimental R
exp
E

results display a break in the slope around the Fermi energy EF .

B. Global modification of the free N N cross section

Being clearly unable to reproduce the experimental data
with different parametrizations of the residual NN cross
section, with or without momentum dependence of the force,
let us concentrate on our second task that is, by following
Ref. [7], to infer the multiplicative factor F between the
in-medium NN cross section σm

NN and the free σ free
NN one:

σm
NN = Fσ free

NN . (7)

As previously done and as in [7], we take σ free
NN = σ Chen

NN [24].
Of course, this simple cross-section normalization factor F
cannot completely describe the rather complex modification
of the free NN interaction occurring in the nuclear medium.
In particular, such a σm

NN is frozen during a reaction course and
depends only indirectly on Einc. Nevertheless, the prescription
of Eq. (7) allows one to get an insight into the global in-medium
effects on nuclear medium stopping properties and enables a
comparison of the factor Fsim obtained in our simulation with
Fexp of Ref. [7].

Figure 2 displays Rsim
E as a function of Einc and the NN

cross-section factor F for the two effective interactions. In the
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FIG. 2. Rsim
E as a function of incident energy for the central

Xe + Sn reaction and several values of the σ free
NN scaling factor F of

Eq. (7). Upper (lower) panel shows results obtained with the D1-G1
(Zamick) EOS. The colored zones and curves have the same meaning
as in Fig. 1, but here for the scaled σNN of Chen et al. [24]. For more
details see the caption of Fig. 1 and the text.

D1-G1 EOS case, Fig. 2(a), the parameter F takes values 0.2,
0.5, 0.8, 1.0, 1.2, and 1.5. For the Zamick EOS, Fig. 2(b), it
is varied between 0.1 and 0.8 in steps of 0.1.1 As in Fig. 1,
Rsim

E are for central HIC with b � 2.0 fm, where b = 1 fm
(2 fm) results are represented by the thin dashed (full) curves
that border the (colored) zone of each of the F values. As
before, the heavy curve in each zone shows the b-weighted
Rsim

E that corresponds to 2% of σR . Rsim
E displays a regular

dependence on Einc and F . In accordance with expectation
and corroborating the results of Fig. 1, higher σm

NN (larger F)
implies higher stopping power of HICs. Unlike experimental
R

exp
E and like our results of Fig. 1, as well as of a number of

previous theoretical works [8,11–15], the LV-simulation Rsim
E

steadily decreases with Einc for all F without a minimum
around EF . At the lowest Einc’s the mean field completely
dominates the course of the collision, and for each F value and

1A simulation was also performed for the pure mean field, i.e.,
the Vlasov equation with zeroed right-hand-side of Eq. (1), which is
equivalent to taking the parameter F = 0.
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FIG. 3. Cross section correction factor F of Eq. (7) as a function
of Einc. Open circles and squares interpolated by the dashed curve
display Fsim values obtained for Rsim

E evaluated in the b = 0–2 fm
range using the D1-G1 EOS and Zamick EOS, respectively. Open
triangles, upright and reversed, interpolated by the dash-dotted curve
denote the Gaussian weighted Rsim

E evaluated in the interval b =
0–5 fm for the D1-G1 EOS and Zamick EOS, respectively. The
symbols (but not the curves) are slightly shifted in Einc to avoid
overlapping error bars. Full dots, full curve, and gray zone represent
Fexp values and their uncertainty deduced from the experimental
R

exp
E [7]. All curves are merely intended to guide the eye. The inset

explains the procedure used to extract the values of Fsim. For more
details see text.

both EOS Rsim
E is compatible with R

exp
E . For Einc � 45A MeV,

R
exp
E is well reproduced by the F = 0.5 curve [Fig. 2(a)] and

by the F = 0.1 one [Fig. 2(b)], respectively. Again, a single
value of F cannot reproduce experimental results. However,
similarly to the case of the parameter α of Eq. (6), by allowing
F to change with Einc one may find a set of F values to
achieve an agreement between Rsim

E and R
exp
E . The behavior of

both the parameter α and the factor F with Einc corroborates
the experimental finding [7] that the effective in-medium cross
section σm

NN drastically changes with Einc and that around EF

there is a break in this dependence.
We take the b-weighted Rsim

E as the starting point to infer
information about the correction factor F by which one would
have to multiply σ Chen

NN to comply with R
exp
E . The procedure

is evidenced in the inset of Fig. 3 in which the D1-G1 EOS
at 50A MeV is shown as an example. The horizontal red line
and reddish background zone display the R

exp
E value and its

uncertainty, respectively, at 50A MeV. Blue circles joined by
a broken line are the LV simulation Rsim

E as a function of
F at the same energy. The crossing of this broken line with
the red line and the edges of the reddish zone give the most
appropriate value for the factorF of Eq. (7) and its uncertainty,
respectively.

In the main panel of Fig. 3 we show, by the open circles
and squares joined by dashed curves, the thus obtained F
values plotted against Einc for the D1-G1 and Zamick EOS,
respectively. Within experimental errors, the Rsim

E values for
Einc � 20A MeV are roughly compatible with any F exp

value and are not reported. The LV model with the highly
recommended nuclear interaction D1-G1 for the range of
energies of the present study and with the empirical NN cross
section σ Chen

NN predicts, for all energies studied, about twice
higher F values compared to those suggested by Fig. 10 of
Ref. [7]; these are presented in Fig. 3 as black filled circles,
with the gray area showing their uncertainties. In contrast
to this, when experimental and simulation uncertainties are
accounted for, the zero-range (local) Skyrme interaction in the
Zamick implementation Fsim is compatible with Fexp above
Einc ≈ 35A MeV. Let us underline that Fsim for both EOS
display a minimum around EF . The minimum is relatively
more pronounced than the one suggested by Fexp and it is
somewhat shifted in energy. The Zamick EOS gives a Fsim

that reduces the free σNN at all Einc while the D1-G1 EOS
gives Fsim > 1 at Einc � 80A MeV.

C. Centrality versus multiplicity

The most evident difference between a simulation and an
experimental data analysis is in the reliability of the assess-
ments of reaction impact parameter b. Experimental selection
of the most central collisions is made by assuming that there
is a biunivocal correspondence between the reaction violence,
i.e., the multiplicity of particles in a reaction event, and the
reaction centrality. In a simulation the centrality is an input
variable, thus it is under full control. In comparing simulation
results and the earlier INDRA study of RE and Rp [4] it has
been underlined that selecting events via multiplicity strongly
mixes events of different impact parameters over a rather broad
span in b [12,28]. Thus, let us examine the b vs multiplicity
relationship and its influence on the isotropy ratio. For that
purpose we use the semidynamical general-purpose event-
generating code HIPSE (Heavy-Ion Phase-Space Exploration)
intended to describe HICs at intermediate energies [29].
At each energy 100 000 events are generated in the range
b = 0–7 fm. Let us note that, according to the expression
of σR in Ref. [30], the above range in b is equivalent to
0.27σR – 0.30σR , depending on Einc. At Einc = 50A MeV the
simulation was performed in the full impact parameter range
of the 129Xe +120Sn reaction, i.e., b = 0–13 fm, in order to
verify that in the noncovered range (b = 7–13 fm) the high
multiplicity events, in which we are interested, are not present.
By passing the generated events through a sophisticated
INDRA-device geometry and detection-acceptance filter [31]
we found that it has no appreciable effect on the Z = 1 RE

values. Mostly, the change in RE due to this filter is below
0.5%.

Selecting the range b = 0–2 fm, in a geometrical sharp-cut
approximation, corresponds to 1.82% to 1.92% of σR in the
studied Einc range, i.e., between 104 and 116 mb. These
values fall in the middle of the cross section values of
the selected subset of the most violent INDRA data events
analyzed in Ref. [7]. Ideally, the reactions with b � 2 fm
should correspond to 8163 out of the total 100 000 generated
events. In reality, there were on the average 8109 such events
with a fluctuation up to 3% from energy to energy. We denote
this precise number of events N0–2 to search for, in the full
ensemble of 100 000 events, the subset of events with the
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FIG. 4. Simulation of the 129Xe +120Sn reaction with the HIPSE

code [29]. Shown are the b distributions of the full data set (black
line) and of the high multiplicity subset (filled and hollow red-line
histograms), which is by number of events equivalent to the one of
b = 0–2 fm (hatched part of the black histograms) for four Einc. The
curves are the best fits by a Gaussian function. For more details see
text.

highest multiplicity that is by number of events closest to
N0–2. By M0–2 we label both the lowest multiplicity of the thus
selected subset as well as the subset of events itself at each
Einc.

Let us check the behavior of the most violent M0–2HIPSE

events. As a kind of “background,” in Fig. 4 we show by the thin
black line the b-distribution histogram of the full 100 000 event
data set for each second studied Einc. The b distribution of the
M0–2 events is shown by the red-line yellow-filled histogram.
These high-multiplicity events are generated in a large domain
of b values which extends up to 5 fm. To make the M0–2 b
distribution better visible, it is enlarged to the full frame size
by the hollow red-line histogram. A Gaussian fit to it clearly
demonstrates that the normal-law of data statistics correctly
reproduces the distribution of M0–2 subset over b’s. These
events are in minor part (3% to 29%) belonging to the b � 2 fm
subset of the full data set (hatched part of black histogram).
From the Gaussian fit one infers that the maximum of these
high-multiplicity events is about b ≈ 3 fm and that it slightly
decreases with the increasing Einc.

Finally, let us apply the HIPSE M0–2 b distribution to the LV
simulation results. Taking the Gaussian fit values of Fig. 4
as the weights for the integer values of b, the b-averaged
Rsim

E are obtained for each studied value of the factor F of
Eq. (7). By this method, for the F = 1 case these Rsim

E are,
in millibarn units, also equivalent to 0.02σR . F sim extracted
from thus averaged Rsim

E is in Fig. 3 shown by dot-dashed
curves and open triangles, upright and reversed, for the D1-G1
EOS and Zamick EOS, respectively. For the nonlocal D1-G1
EOS the two b-averaging intervals give strictly the same Rsim

E

for Einc � 50A MeV. At Einc = 80A and 100A MeV the
respective Rsim

E values differ by about 20% but are mutually
compatible when errors are accounted for. For the zero-range

Zamick EOS in the full Einc interval, two b-averaging intervals
give compatible predictions for the Fsim values although
for Einc � EF the more stringent centrality results are in
somewhat better agreement with the Fexp values.

IV. SUMMARY AND CONCLUSIONS

The semiclassical Landau-Vlasov (LV) transport model was
used to study the energy-based isotropy ratio RE of Eq. (5) for
the 129Xe +120Sn reaction in the wide incident energy range
12A � Einc � 100A MeV. The focus of the present work is
twofold:

(1) the search for the set of model ingredients which most
favorably describes the experimental values R

exp
E for

the Z = 1 species of Ref. [7] and
(2) the comparison of the simulation multiplicative factor

F representing the global in-medium change of the
free NN cross section σ Chen

NN of Ref. [24] with the one
deduced from the experimental R

exp
E [7].

In approaching the above point 1 we investigated (i) the role of
the dependence of the nuclear mean field on momentum, i.e.,
of the nonlocality of the interaction, and (ii) the impact of the
residual NN interaction through varied parametrizations of
σNN . The success in reproducing the experimental isotropy
ratios R

exp
E of Ref. [7] is mixed: Below the Fermi energy

EF , the LV model with the strongly in-medium reduced NN
cross section σm

NN of Refs. [16,27] and with the momentum-
dependent D1-G1 EOS leads to a correct description of R

exp
E ;

cf. Fig. 1(a). A similar result may be obtained with both
the D1-G1 EOS and the zero-range Zamick EOS when the
free NN cross section is strongly scaled down by a constant
multiplicative factorF of Eq. (7): for the D1-G1 EOSF ∼ 0.5,
Fig. 2(a), and for the Zamick EOS F ∼ 0.1, Fig. 2(b). Above
EF there is no unique set of model parameters which would
lead to a favorable description of the experimental R

exp
E .

Earlier studies of the observable RE [8,11–15] have also
failed to reproduce the experimental results of Ref. [4]. We
emphasize, however, that a smooth variation of the parameter
that controls the in-medium value of σNN would lead to a
complete description of the experimental R

exp
E for both EOS.

Should one draw a conclusion that none of the existing studies
on the in-medium modifications of σNN around the Fermi
energy appropriately accounts for the physical reality? The
local or the nonlocal character of the interaction does not
elucidate this question.

Regarding the above point 2, we may summarize the
outcome of our study as follows: the LV simulation with the
local Zamick EOS predicts the NN cross-section correction
factorFsim, which clearly supports the experimentally deduced
Fexp [7]. The model predicts

(1) an appreciable reduction of NN cross section all along
the energy range of interest, as well as

(2) the appearance of a break in the slope of the multiplica-
tive factor F after a minimum located near EF .

However, the agreement or disagreement between the absolute
values of Fsim and Fexp should be considered with some
caution due to two possible causes. On one hand, the
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TABLE I. Coefficients of neutron-proton scattering angular distribution function fnp of Eq. (A2) as parametrized by Eqs. (A3).

E (MeV) ei (MeV) Ref. ai,1 ai,2 ai,3 bi,1 bi,2 bi,3 ci

E < 26 0 0 0 1 0 0 0 1
26 � E < 35 26 [34] 0 0 1 0.966 −0.426 1.372 9
35 � E < 45 35 [35] 0.97 −0.426 2.372 0.32 0.35 −0.40 10
45 � E < 53 45 [35] 1.29 −0.073 1.97 0.32 −0.127 −0.18 8
53 � E < 63 53 [35] 1.61 −0.2 1.79 −0.04 0.51 0.16 10
63 � E < 73 63 [35–37] 1.57 0.31 1.95 0.33 −0.59 −0.30 10
73 � E < 90 73 [35] 1.9 −0.28 1.65 0.9 0.205 −0.16 17
90 � E < 130 90 [36,38] 2.8 −0.075 1.49 1.2 −0.465 −0.094 40
130 � E < 319 129 [39] 4.0 −0.54 1.396 −1.3 0.665 −0.81 189
E � 319 319 [40] 2.69 0.125 0.588 0 0 0 1

value of factor F may be altered by reaction centrality.
Accordingly, an investigation of RE with a quasidynamical
event generator HIPSE [29] was carried out. It reveals that
the event selection based on multiplicity and the geometrical
sharp-cut approximation is not a correct centrality selector.
Indeed, corroborating earlier findings [12,28], we show that
this selection approach strongly mixes events of different
impact parameters over a rather broad span of b values; cf.
Fig. 4. When a properly weighted contribution of b’s involved
in the high-multiplicity events is accounted for, the isotropy
ratios calculated for the thus relaxed centrality requirement and
those strictly central do not differ much. The thus extracted
Fsim does not change much as well. On the other hand,
the derived Fexp values are based on a number of strong
assumptions that allowed the link between the stopping ratio
RE and the in-medium NN cross section [7]. Hence, besides
further experimental and theoretical considerations of the
stopping observable RE intended to disentangle the remaining
ambiguities, a study of other related observables may shed
some fresh light on the subject. In addition, the experimentally
observed strong and rapid change of the effective in-medium
residual NN cross section beyond the Fermi energy urges for
an ab initio theoretical analysis of this problem, the solution of
which might lie in the way the exclusion principle is accounted
for [8] and/or by incorporating the recent observation of
short-range correlations in nuclei [32,33]. Their consequences
for transport descriptions of heavy-ion reactions are of high
interest and need to be investigated.
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APPENDIX

The angular dependence of the nucleon-nucleon (NN )
cross section σNN is expressed as

σ (θ )c.m.(mb/sr) = f (E,θ ) × σtot(mb)

4π
, (A1)

where σtot = σ Li-Machleidt
NN is the total elastic cross section due

to Li and Machleidt [16]. The dimensionless weighting factor
f (E,θ ) is equal to unity for the scattering between neutrons
(fnn ≡ 1) and is increasingly anisotropic as energy increases
for neutron-proton scattering (the fnp case), and especially
becomes strongly forward-backward peaked for the scattering

25

50

75

100
0 50 100 150

1

1.5

2

CENTER-OF-MASS  ANGLE  (deg)

ENERGY  (M
eV)

A
N

G
U

L
A

R
  D

IS
T

R
IB

U
T

IO
N

  W
E

IG
H

T

(a)

( n, p )

25

50

75

100
50 100 150

10

10 2

CENTER-OF-MASS  ANGLE  (deg)

ENERGY  (M
eV)

A
N

G
U

L
A

R
  D

IS
T

R
IB

U
T

IO
N

  W
E

IG
H

T

(b)

( p, p )

FIG. 5. Dimensionless weighting factor f (E,θ ) which modulates
total elastic cross section as a function of polar angle θc.m. and nucleon
incident energy E for the scattering of neutron and proton (upper
panel) and between protons (lower panel), where the applicate axis is
in logaritmic scale.
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TABLE II. Coefficients of proton-proton scattering angular dis-
tribution function fpp of Eq. (A4) as parametrized by Eqs. (A5).

E (MeV) εi (MeV) Ref. αi,1 αi,2 αi,3

E < 5 0 5176.1 −8.91 100.0
5 � E < 9.9 5 [41] 5176.1 −8.91 100.0
9.9 � E < 19.7 9.9 [42] 1795.6 −9.29 52.62
19.7 � E < 39.4 19.7 [43] 1071.0 −12.0 24.95
39.4 � E < 68 39.4 [44] 1382.2 −19.26 11.16
68 � E < 144 68 [45] 1880.5 −26.77 6.16
E � 144 144 [46] 4008.8 −45.92 3.99

between protons (fpp). The parametrization of the angular
dependence of σnp is defined as [26]

f (E,θ )np = A1 cos4 θ − A2 cos3 θ + A3

A1/5 + A3
, (A2)

where, for the purpose of the fitting, the coefficients Ak at each
energy are expressed by the following functional dependence:

Ak(E) = ai,k + bi,k(E − ei)

ci

, k = 1,2,3. (A3)

Parameters ai,k , bi,k , and ci are fixed by fitting the experimental
σnp data at nine beam energies ei between 26 and 319 MeV,
index i running over energies. E and ei are expressed in MeV

units. Between these ei values the parameters are assumed to
change linearly with E. The values of these parameters are
given in Table I and f (E,θ )np is shown in Fig. 5(a).

Adopting a very crude estimate, the polar angle dependence
of σpp is defined as [26]

f (E,θ )pp =
⎧⎨
⎩

B1 exp(B2θ ), θ < θ0,
B3, θ0 < θ < π − θ0,
B1 exp[B2(π − θ )], θ > π − θ0,

(A4)
where coefficients Bk are expressed by the following func-
tional dependence:

Bk(E) = αi,k + (αi+1,k − αi,k)(E − εi)

εi+1 − εi

, k = 1,2,3. (A5)

Due to indistinguishability of particles, coefficients B1 and
B3 are divided by 2. At each energy E the limiting angle
reads θ0 = ln(B3/B1)/B2. The overall angular distribution
normalization is given by the value of σ Li-Machleidt

pp , and Eq. (A4)
is used to define, on Monte Carlo grounds, the angle into
which a couple of charged Gaussians is scattered in a p-p
collision. The parameters αi,k are fixed by fitting experimental
differential cross sections σpp at six energies εi ranging from
5 to 144 MeV denoted by the index i. As above, E and εi are
expressed in MeV units. Between these energies, parameters
are assumed to change linearly with E. The values of these
parameters are given in Table II and f (E,θ )pp is shown in
Fig. 5(b).
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