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Photodisintegration cross section of 9Be up to 16 MeV in the α + α + n three-body model
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The photodisintegration of 9Be in the energy region lower than Eγ = 16 MeV is investigated by using the
α + α + n three-body model and the complex scaling method. The cross section exhibits two aspects in two
different energy regions. In the low-energy region up to Eγ = 6 MeV, the cross section is explained by the
transition strengths into the excited resonant states of 9Be, while the dipole transition into the nonresonant
continuum states of 8Be(2+) + n dominates the cross section in the energy region of 6 � Eγ � 16 MeV.
Furthermore, it is shown that the dipole strength at Eγ ∼ 8 MeV is understood to be caused by the single-neutron
excitation from the 8Be(2+) ⊗ νp3/2 configuration in the ground state.
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I. INTRODUCTION

The photodisintegration cross section of 9Be shows various
features in different energy regions. The cross section in a low-
energy region has been measured to deduce a production rate
of 9Be from the astrophysical point of view [1–7]. In the low-
energy region up to Eγ = 6 MeV, the cross section has been
observed to come from the electromagnetic transitions into
the excited states of 9Be, and theoretically, has been studied
within the α + α + n three-body model [8–11]. In particular,
the first excited 1/2+ state, observed as a sharp peak just above
the 8Be(0+) + n threshold, has attracted much attention, and
its structure has been discussed in terms of the three-body
resonance of α + α + n [8,9,12] or the two-body virtual state
of 8Be + n [11,13,14].

In the energy region higher than Eγ = 6 MeV, the recent
measurement [7] reports the photodisintegration cross section
of 9Be up to Eγ = 16 MeV, and the cross section shows
a significant electric dipole strength below the giant dipole
resonance (GDR). An enhancement of a low-lying dipole
strength below the GDR has been observed in a wide range of
the mass number in neutron-rich nuclei and is often denoted
by the pygmy dipole resonance (PDR). The PDR has been
discussed in neutron-rich nuclei in relation with the neutron
skin thickness. On the other hand, 9Be is a light and stable
nucleus which has been found to have a cluster structure, and
hence, it is interesting to investigate the mechanism of the
dipole strength in 9Be below the GDR energy region. In a
recent measurement [7], Utsunomiya et al. showed that the
enhanced dipole strength in 9Be at the excitation energy of
∼8 MeV exhausts 10% of Thomas-Reiche-Kuhn sum rule
and almost all the cluster dipole sum rule [7]. We desire
to understand the low-lying dipole strength below the GDR
comprehensively from a viewpoint of the cluster structure of
α + α + n in 9Be.
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In our previous work, we have investigated the structure
of the 1/2+ state of 9Be located just above the α + α + n
threshold energy using the α + α + n three-body model and
the complex scaling method (CSM) [11]. We calculated the
photodisintegration cross section from the ground state into
the 1/2+ state and reproduce the observed peak in the cross
section just above the 8Be(0+) + n threshold. On the other
hand, we could not find a sharp resonance corresponding to
the 1/2+ peak in the cross section using the CSM calculation.
To understand the origin of the 1/2+ peak in the cross
section, we performed the calculation of the pole trajectory
by changing the attraction of the intercluster force as an
analytical continuation. From these analyses, we concluded
that the excited 1/2+ state has a virtual-state character of the
s-wave neutron in the 8Be + n system.

In Ref. [11], we focused our discussion on the structure of
the 1/2+ state and its contribution to the photodisintegration
cross section in the low-energy region. Spin-parity states other
than the 1/2+ state were not included in the calculation, and
the photodisintegration cross section in higher energy regions
was not discussed. In order to understand the feature of 9Be, it
is necessary to examine the photodisintegration cross section
by including all the available spin-parity states connected with
the ground 3/2− state via electromagnetic transitions and by
taking into account transitions in higher energy regions.

The purposes of this work are the following two: One is to
investigate the excited states of 9Be in the low-energy region
connected with the ground state through the electromagnetic
transitions. The other is to elucidate the mechanism of the
enhanced dipole transition in 9Be below the GDR observed
by the recent experiment [7]. In the present calculation, we
employ the α + α + n three-body model with complex-range
Gaussian basis functions to describe the scattering states of
the α + α + n system retaining the numerical accuracy. We
calculate the photodisintegration cross section by applying the
CSM with Green’s function to the α + α + n three-body
model, and discuss the mechanism of the photodisintegration
cross section.
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This article is organized as follows: In Sec. II, we explain
the α + α + n three-body model and describe the formalism
of the photodisintegration cross section using the CSM. In
Sec. III, we show the results of the photodisinegration cross
section, and discuss the structure of the excited states and
the mechanism of the low-lying dipole strength in 9Be up to
Eγ = 16 MeV. Finally, in Sec. IV, all results and discussions
are summarized.

II. THEORETICAL FRAMEWORK

A. α + α + n three-body model for 9Be

We briefly explain the α + α + n three-body model
employed in the present work, whose details are given
in Ref. [11]. We here solve the Schrödinger equation for
the α + α + n system using the orthogonality condition
model [15]. The Schrödinger equation is given as

Ĥ�ν
Jπ = Eν�

ν
Jπ , (1)

where Jπ is the total spin and parity of the α + α + n system
and ν is the state index. The energy eigenvalue Eν is measured
from the α + α + n threshold.

The Hamiltonian for the relative motion of the α + α + n
three-body system for 9Be is given as

Ĥ =
3∑

i=1

ti − Tc.m. +
2∑

i=1

Vαn(ξ i) + Vαα + VPF + V3, (2)

where ti and Tc.m. are kinetic operators for each particle and
the center-of-mass of the system, respectively. The interaction
between the neutron and the ith α particle is given as
Vαn(ξ i), where ξ i is the relative coordinate between them.
We here employ the KKNN potential [16] for Vαn. For the
α-α interaction Vαα we employ the same potential as used
in Ref. [11], which is a folding potential of the effective
NN interaction [17] and the Coulomb interaction. The
pseudopotential VPF = λ|�PF〉〈�PF| is the projection operator
to remove the Pauli forbidden states from the relative motions
of α-α and α-n [18]. The Pauli forbidden state �PF is defined as
the harmonic oscillator wave functions by assuming the (0s)4

configuration whose oscillator length is fixed to reproduce
the observed charge radius of the α particle. In the present
calculation, λ is taken as 106 MeV.

In the present calculation, we introduces the α + α + n
three-body potential V3. The explicit form of V3 is given as

V3 = v3 exp (−μρ2), (3)

where ρ is the hyper-radius of the α + α + n system. The
hyper-radius is defined as

ρ2 = 2r2 + 8

9
R2, (4)

where r is the distance between two α’s and R is that between
the neutron and the center-of-mass of the α + α subsystem.
The strength and width of the three-body potential, v3 and μ,
are determined for each spin and parity. For 3/2− states, we
determine the parameters to reproduce the observed binding
energy and charge radii of the ground state because it is
essential to reproduce the Q value and the sum rule value of the

electric dipole transition in discussing the photodisintegration
of 9Be. To reproduce the ground-state properties, we take
v3 and μ as 1.10 MeV and 0.02 fm−2, respectively. For
other spin-parity states, we employ the same value of μ
as used in 3/2− states, and different strengths are used to
reproduce the energy positions of the observed peaks in the
photodisintegration cross section.

We solve the Schrödinger equation with the coupled-
rearrangement-channel Gaussian expansion method [19]. In
the present calculation, the 9Be wave function �ν

Jπ is described
in the Jacobi coordinate system as

�ν
Jπ =

∑
ijc

Cν
ijc(Jπ )

{[
φi

l (rc),φj
λ(Rc)

]
L
,χ 1

2

}
Jπ , (5)

where Cν
ijc(Jπ ) is a expansion coefficient and χ 1

2
is the spin

wave function. The relative coordinates rc and Rc are those in
three kinds of the Jacobi coordinate systems indexed by c (=
1,2,3), and the indices for the basis functions are represented
as i and j . The spatial part of the wave function is expanded
with the complex-range Gaussian basis functions [19]. The
explicit forms of the complex-range Gaussian basis functions
are given as

φi
l (r) =

{
NS

l (ai) exp(−air
2) sin (aiωr2),

NC
l (ai) exp(−air

2) cos (aiωr2),
(6)

where NS
l and NC

l are the normalization factors and ai is a
width of the Gaussian basis function. The basis functions in
Eq. (6) enable us to treat the oscillating behavior in the relative
motion and is useful to describe the photodisintegration cross
section accurately.

B. Photodisintegration cross section in the complex
scaling method

To calculate the photodisintegration cross section, we use
the complex scaling method (CSM) [11,20–25]. In the CSM,
the relative coordinates ξ (rc and Rc) are transformed as

U (θ )ξU−1(θ ) = ξeiθ , (7)

where U (θ ) is a complex scaling operator and θ is a scaling
angle being a real number. Applying this transformation to
Eq. (1), we obtain the complex-scaled Schrödinger equation
as

Ĥ θ�ν
Jπ (θ ) = Eθ

ν �ν
Jπ (θ ). (8)

The complex-scaled Hamiltonian Ĥ θ and the complex-scaled
wave function �ν

Jπ (θ ) are defined as in Ref. [25]. By solving
the complex-scaled Schrödinger equation with the L2 basis
function given in Eq. (6), we obtain the energy eigenvalues
and eigenstates (their biorthogonal states) as {Eθ

ν } and {�ν
J (θ )}

({�̃ν
J (θ )}), respectively.

When we apply the CSM to the complex-range Gaussian
basis functions, we need to choose the value of the scaling
angle θ carefully in relation with the parameter ω in Eq. (6).
Applying the CSM to the complex-range Gaussian basis
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function, we obtain

exp (−ar2e2iθ ) cos (aωr2e2iθ ) = 1

2
[exp{−ar2e2iθ (1 + iω)} + exp{−ar2e2iθ (1 − iω)}]

= 1

2
[exp{−a(cos 2θ − ω sin 2θ + iω cos 2θ + i sin 2θ )r2}

+ exp{−a(cos 2θ + ω sin 2θ − iω cos 2θ + i sin 2θ )r2}] → ∞if cos 2θ − ω sin 2θ < 0 (9)

for ω � 0 and 0 � θ < π/2. To avoid this singularity, the
complex-range Gaussian basis functions with a finite value of
ω require a smaller scaling angle compared to the real-range
Gaussian basis functions, in which the range of the scaling
angle is 0 � θ < π/2. The divergent behavior in the basis
function might be serious when we calculate the long-range
operator, such as that of the E1 transition. In the present work,
we take θ = 12 deg and ω = 1 to avoid the divergence of
the basis functions and to keep the numerical accuracy in the
calculation.

The energy eigenvalues {Eθ
ν } are obtained on the complex

energy plane, governed by the ABC theorem [20,21]. A
schematic picture of the energy eigenvalue distribution is
shown in Fig. 1. In the CSM, the energies of bound states
are given by real numbers and are invariant under the complex
scaling. On the other hand, resonances and continuum states
are obtained as eigenstates with complex energy eigenvalues.
The resonances are obtained as isolated eigenstates on the
complex energy plane, whose energies are given as Eθ

ν =
Er

ν − i�ν/2. The resonance energies Er
ν and the decay widths

�ν are independent of the scaling angle θ . The continuum
states are obtained on branch cuts rotated down by 2θ as shown
in Fig. 1. The branch cuts start from the different thresholds
for two- and three-body continuum states in the case of the
α + α + n system as shown in Fig. 1. This classification of
the continuum states is useful in discussing the decay modes
of the 9Be photodisintegration.

Using the energy eigenvalues and eigenstates of the
complex-scaled Hamiltonian Ĥ θ , we define the complex-
scaled Green’s function with outgoing boundary conditions,

Re(E)
Im(E)

bound state

Resonances

α+α+n continuum Be(2  )+n continuum

Be(0  )+n continuum

He(3/2  )+α continuum

8

8

+

+

−5

2θ

FIG. 1. Schematic picture of energy eigenvalue distribution on
the complex energy plane for the α + α + n system.

Gθ (E; ξ ,ξ ′), as

Gθ (E; ξ ,ξ ′) =
〈
ξ

∣∣∣∣ 1

E − Hθ

∣∣∣∣ξ ′
〉

=
∑

ν

∫
�ν(θ )�̃ν(θ )

E − Eθ
ν

. (10)

In the derivation of the right-hand side of Eq. (10), we use the
extended completeness relation, whose detailed explanation is
given in Ref. [26].

Using the complex-scaled Green’s function, we calculate
the cross section of the photodisintegration of 9Be(3/2−) +
γ → α + α + n in terms of the multipole response. In the
present calculation, we focus on the low-lying region of the
photodisintegration cross section and take into account only
the electromagnetic dipole responses. The photodisintegration
cross section σγ is given by the sum of those by the E1 and
M1 transitions as

σγ (Eγ ) = σE1(Eγ ) + σM1(Eγ ), (11)

where Eγ is the incident photon energy. The energy E in
Eq. (10) is related to Eγ as E = Eγ − Egs, where Egs is the
binding energy of the 9Be ground state measured from the
α +α +n threshold. The cross sections for the electromagnetic
dipole transitions σEM1 is expressed as the following form:

σEM1(Eγ ) = 16π3

9

(
Eγ

�c

)
dB(EM1,Eγ )

dEγ

. (12)

Using the CSM and the complex-scaled Green’s function in
Eq. (10), the electromagnetic dipole transition strength is given
as

dB(EM1,Eγ )

dEγ

= − 1

π

1

2Jgs + 1

×Im

[ ∑
ν

∫
〈�̃gs||(Ôθ )†(EM1)||�ν(θ )〉

× 1

E − Eθ
ν

〈�̃ν(θ )||Ôθ (EM1)||�gs〉
]
, (13)

where Jgs and �gs represent the total spin and the wave
function of the ground state, respectively, and Ôθ (EM1) is an
electromagnetic dipole transition operator. The E1 transition
operator is given by

Ô(E1) =
3∑

i=1

ZieY1(xi), (14)

where Zi is atomic number of the ith particle and xi is the
relative coordinate between the ith particle and the center
of mass of the total system. The M1 transition operator is
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given by

Ô(M1) = e�

2mc

3∑
i=1

[
g

(i)
l l i + g(i)

s si

]
, (15)

where m is the atomic mass unit and g
(i)
l and g(i)

s are the orbital
and spin g factors, respectively. For the α particle, gl is taken
as its charge and gs is taken as 0. For the neutron, we use the
free value of gs = −3.82 and do not use any effective charge,
namely gl = 0.

We mention the properties of the strength function in
Eq. (13), which is given by the sum of the contribution of
each final state ν classified in the complex energy plane with
the CSM as shown in Fig. 1. The total strength in Eq. (13)
corresponds to the observables with positive definite for every
energy. We can decompose the strength to clarify the contribu-
tion of the νth state. It is noted that the decomposed strength
for the state with complex energy is not necessarily positive
definite at all energies, because the state with complex energy
cannot be directly observed. In particular, the resonances
generally give complex matrix elements, and their physical
meanings have been discussed by Berggren [27]. Because
their matrix elements are not necessarily positive definite, the
matrix elements of the individual states with complex energies
cannot be regarded as the physical quantities. But the quantities
obtained by taking summation over all the states are physically
observable because of the extended completeness relation [26].
It is also noted that the decomposed strength is useful to clarify
a physical importance of each decay channel in the reaction
as discussed in Ref. [28], while the decomposed strength does
not correspond to the observables directly.

TABLE I. Ground-state properties in comparison with experi-
ments. The calculated binding energies (Egs, unit in MeV), charge
radii (Rch, unit in fm), and matter ones (Rm, unit in fm). The
probabilities of the 8Be(J π ) ⊗ νlj components in the ground state of
9Be are also shown.

Present Exp.

Egs 1.57 1.5736a

Rch 2.53 2.519 ± 0.012b

Rm 2.42 2.38 ± 0.01c

8Be(0+) ⊗ νp3/2 47.06%
8Be(2+) ⊗ νp3/2 46.77%
8Be(2+) ⊗ νp1/2 2.31%
8Be(2+) ⊗ νf7/2 1.21%
8Be(2+) ⊗ νf5/2 1.20%
8Be(4+) ⊗ νf7/2 1.07%
8Be(4+) ⊗ νf5/2 0.25%
8Be(4+) ⊗ νh11/2 0.04%
8Be(4+) ⊗ νh9/2 0.04%

aReference [29].
bReference [30].
cReference [31].

TABLE II. Strength of the three-body potential v3 for each spin-
parity state.

1/2+ 3/2+ 5/2+ 1/2− 3/2− 5/2−

v3 (MeV) −0.90 −0.30 −0.30 0.30 1.10 0.35

III. RESULTS

A. Ground-state properties

The calculated ground-state properties of 9Be are listed
in Table I, in which v3 and μ are taken as 1.10 MeV and
0.02 fm−2, respectively, as mentioned in Sec. II. The binding
energy and the charge radius are well reproduced by employing
the three-body potential, while the calculated matter radius is
slightly larger than the experimental value.

To see the ground-state structure of 9Be more in detail, we
calculate the probability of each component of the 8Be(Jπ ) ⊗
νlj configurations. The calculated probabilities are also listed
in Table I. The present calculation shows that the valence
neutron around 8Be occupies the p3/2 orbit by 93.8%, while
the excited 2+ component of 8Be has a comparable amount
to the 0+ one. This large mixture of the 2+ component
is understood using the (λ,μ) = (3,1) component in the
SU(3) representation, which corresponds to the π orbital of
the valence neutron. In the SU(3) representation, the (3,1)
component gives 53% and 47% for the 8Be(0+) ⊗ νp and
8Be(2+) ⊗ νp components, respectively.

B. Photodisintegration cross section and resonances in the
low-energy region

We calculate the photodisintegration cross section of 9Be
using Eq. (12). Before calculating the cross section, we
determine the values of v3 for each spin-parity state as shown
in Table II. It is noted that the strength for the 1/2+ state
is slightly weakened from that in our previous work [11].
This comes from the inclusion of other spin-parity states and
the improvement of the numerical accuracy in the low-energy
region by using the complex-range Gaussian basis functions.

Using the CSM, we obtain the resonances corresponding
to the isolated poles of the S matrix as complex energy

TABLE III. Resonance energies Er and decay widths � for
low-lying excited states (units in MeV). The resonance energies are
measured from the α + α + n threshold. The observed data are taken
from Ref. [29].

J π Present (Er , �) Expt. (Er , �)

1/2+
1 (0.158 ± 0.002, 0.213 ± 0.006)a

5/2−
1 (0.854, ∼3 × 10−4) (0.8558, 7.8 × 10−4)

1/2−
1 (1.11, 0.495) (1.21, 1.01)

5/2+
1 (1.47, 0.323) (1.475, 0.282)

3/2+
1 (3.12, 1.44) (3.13, 0.743)

3/2−
2 (3.08, 1.18) (4.02, 1.33)

aThis value is taken from Ref. [6].
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FIG. 2. Energy level diagram in the present calculation in
comparison with the experimental data. The levels obtained with
v3 = 1.10 MeV for all the spin-parity states are also presented. The
experimental data are taken from Ref. [29].

eigenvalues. Our results of the resonance energies and decay
widths for the excited states up to Eγ = 6 MeV are listed
in Table III in comparison with the experimental data. The
energy level diagram is also shown in Fig. 2. In Fig. 2, we
show the levels which are obtained using v3 = 1.10 MeV
commonly for all the spin-parity states for reference. The
calculated resonance energies and decay widths show good
correspondences to the observed data, while the resonance
energies of the excited states are shifted up by applying more
repulsive three-body potential than those in Table II. In the
present calculation, we cannot find any isolated resonance of
the 1/2+ state similar to the result in Ref. [11].

In Fig. 3, the calculated photodisintegration cross section
is shown in comparison with experimental data. Our result
well reproduces the observed cross section, not only the peak
positions but also the magnitudes and widths of the peaks. This
agreement implies that our three-body model well describes
the scattering states of 9Be in the low-energy region. We
also show the photodisintegration cross section into each
spin-parity final state in Fig. 4. From the results in Fig. 4, we
see that the lowest peak just above the 8Be(0+) + n threshold
energy (Eγ = 1.6654 MeV) comes from the E1 transition into
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FIG. 3. Calculated photodisintegration cross sections in compar-
ison with the experimental data. The solid squares and open circles
represent the experimental data taken from Refs. [6,7].
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FIG. 4. Contributions of each spin-parity state in the photodisin-
tegration cross section.

the 1/2+ state, and the calculated cross section shows that the
strength below the 8Be(0+) + n threshold is negligibly small.
As mentioned above, we do not find any isolated resonance
of the 1/2+ state, while the cross section into the 1/2+ states
has a significant peak above the 8Be(0+) + n threshold. These
facts are consistent with our previous result [11]. It is noted
that we confirm the 1/2+ state has the virtual-state character of
the 8Be + n system from a similar analysis to that in Ref. [11].
The second and third peaks at Eγ = 2.5 and 3.0 MeV in the
cross section come from the transitions into the resonances of
5/2− and 5/2+ states, respectively. The M1 transition into the
1/2− resonance has a sizable contribution to the cross section
at around Eγ = 2.7 MeV. The transitions into the 3/2± states
play minor roles in the photodisintegration cross section below
Eγ = 6 MeV.

C. Low-lying dipole strength at Eγ ∼ 8 MeV

We investigate the photodisintegration cross section above
Eγ = 6 MeV and discuss the dipole strength of 9Be below the
GDR. In Fig. 5, we show the calculated photodisintegration
cross section up to Eγ = 16 MeV in comparison with the
experimental data. From the result in Fig. 5, we see that
calculated cross section has a broad peak at Eγ ∼ 8 MeV,

 0

 0.5

 1

 1.5

 2

 2  4  6  8  10  12  14  16
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FIG. 5. Calculated photodisintegration cross section up to Eγ =
16 MeV. The solid squares and open circles represent experimental
data taken from Refs. [6,7], respectively.
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FIG. 6. Contributions of each spin-parity state in the photodisin-
tegration cross section up to Eγ = 16 MeV.

similar to the experimental data. To investigate the origin of the
peak at Eγ ∼ 8 MeV, we also calculate the contribution of each
spin-parity final state as shown in Fig. 6. The results in Fig. 6
show that the peak is dominated by the E1 transitions into
3/2+ and 5/2+. In the present CSM calculation, we do not find
any isolated resonances corresponding to the peak. Therefore,
the peak at Eγ ∼ 8 MeV is understood to be described by
the E1 transition from the ground state into the nonresonant
continuum states of 3/2+ and 5/2+. It is also seen that our
calculation slightly underestimates the observed peak in the
cross section. This underestimation suggests a contribution
from degrees of freedom beyond the relative motion of the
α + α + n system in the present model. For example, the
GDR is known to be described by coherent 1p-1h excitations,
but the 1p-1h excitations from the α particle are not taken into
account in our α + α + n three-body model.

In the recent measurement, it is reported that the energy-
integrated cross section for the enhanced dipole strength
measured for 4 � Eγ � 16 MeV is estimated to be 11.3
mb MeV as a lower limit [7]. Moreover, it is suggested
that this energy-integrated cross section exhausts 10% of the
Thomas-Reiche-Kuhn (TRK) sum rule and almost all of the
energy-weighted cluster dipole sum rule. In Ref. [7], the cluster
dipole sum rule is defined by subtracting the contribution of
an internal excitation of the α particles from the TRK sum
rule, and the energy-integrated cross section is estimated by
subtracting the contribution of the GDR from the total cross
section. We here estimate only the energy-integrated cross
section corresponding to the cluster dipole sum rule because
the α particles are assumed to be inert in the present model.

We calculated the energy-integrated cross section by inte-
grating σE1 over the energy interval of 4 � Eγ � 16 MeV.
We obtain the energy-integrated cross section as 12.1 mb
MeV for this energy interval, and the result is consistent
with the experimental value (11.3 mb MeV). On the other
hand, we also obtain the energy-integrated cross sections
for Eγ < 4 MeV and Eγ > 16 MeV as 0.954 and 8.40 mb
MeV, respectively. It is seen that the energy-integrated cross
section for 4 � Eγ � 16 MeV is 56.5% of the total amount in
the present calculation. Our result suggests that the cluster
dipole sum rule does not concentrate on the strength for
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FIG. 7. Decomposed photodisintegration cross section for the
3/2+ states.

4 � Eγ � 16 MeV and the strength for higher energy region
would have a sizable contribution to the energy-weighted
cluster dipole sum rule.

In the CSM, the energy eigenvalues of unbound states are
classified into those of the resonance and several families of the
two- and three-body nonresonant continuum states as shown
in Fig. 1. Combing the energy eigenvalues in the CSM with
Eq. (13), we decompose the photodisintegration cross section
into different families of the nonresonant continuum states. In
Figs. 7 and 8, we show the decomposed photodisintegration
cross sections for the 3/2+ and 5/2+ states, respectively. We
do not show the cross sections into the 5He(3/2−) + n and
5He(1/2−) + n continuum states in Figs. 7 and 8, since
their contributions are much smaller than others. In both
results, we confirmed that the cross sections at Eγ ∼ 8 MeV
are dominated by the contributions from the 8Be(2+) + n
nonresonant continuum states, while that from the 8Be(0+) + n
ones is negligible in the cross section. Furthermore, we see that
the three-body continuum states of α + α + n have sizable
contributions to the low-lying dipole strengths.

The decomposed photodisintegration cross sections show
that the enhanced dipole strength at Eγ ∼ 8 MeV is described
by the single-neutron excitation from the 8Be(2+) ⊗ νp3/2

configuration in the ground state because the E1 transition
operator cannot directly excite the relative motion between two
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FIG. 8. Same as Fig. 7 but for the 5/2+ states.
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α’s from the 0+ to 2+ states. The ground-state wave function
has the large (3,1) component in the SU(3) representation,
and the (3,1) component gives a mixture of the 8Be(0+) ⊗
νp and 8Be(2+) ⊗ νp configurations. Our result shows that
the ground-state structure of 9Be is essential to reproduce the
observed dipole strength at Eγ ∼ 8 MeV.

On the other hand, the contribution from the nonreso-
nant continuum states of 8Be(0+) + n is negligibly small
in the photodisintegration cross section. It seems to be
that the 8Be(0+) ⊗ νp3/2 configuration is mainly excited into
the resonances. To confirm this, it would be important to
investigate the structures of the excited resonances of 9Be and
the further analysis will be performed in a forthcoming paper.

IV. SUMMARY

In this work, we investigate the photodisintegration of 9Be
in the energy region lower than Eγ = 16 MeV by using
the α + α + n three-body model and the complex scaling
method (CSM). We here employ the complex-range Gaussian
basis functions, which enables us to describe the oscillating
behaviors of the scattering states of the α + α + n system and
to calculate the transition strength accurately. We calculate
the photodisintegration cross section up to Eγ = 16 MeV
and show good agreement with the observed data. From the
calculated cross section, we discuss the following two points:
One is the structures of the excited states of 9Be observed
in the photodisintegration in the low-energy region up to
Eγ = 6 MeV. The other is the origin of the enhanced dipole
strength at Eγ ∼ 8 MeV below the GDR.

In addition to the photodisintegration cross section, we also
show the resonance energies and decay widths of the excited
states obtained in the present calculation below Eγ = 6 MeV.
It is shown that the calculated resonance energies and decay
widths are consistent with the observed energy levels while the
1/2+ state is the exceptional case. We confirm that the 1/2+

state has the virtual-state character of the 8Be + n system
from the similar analysis to that in our previous work. The
photodisintegration cross section up to Eγ = 6 MeV can be
understood by the summation of transition strengths into each
excited state of 9Be.

For the energy region of 6 � Eγ � 16 MeV, our calcu-
lation shows a significant dipole strength at Eγ ∼ 8 MeV
and a good agreement with the recent observed data of
the photodisintegration. We find that this dipole strength is
dominated by the transitions into the nonresonant continuum
states of 3/2+ and 5/2+. To understand the origin of the dipole
strength, we decompose the photodisintegration cross section
into each nonresonant continuum state by the use of the energy
eigenvalue distribution in the CSM. From the decomposed
cross section, it is shown that the strength mainly comes from
the transitions into the 8Be(2+) + n nonresonant continuum
states. This fact can be understood by a dipole excitation of
the single neutron from the 8Be(2+) ⊗ νp3/2 configuration in
the 9Be ground state.

In the present calculation, we do not investigate the
structures of the excited resonances in detail. It would be
important to see the structures of the resonances to gain a
comprehensive understanding of the photodisintegration of
9Be, and the detailed analysis of the resonances will be
performed in a forthcoming paper.
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KIKUCHI, ODSUREN, MYO, AND KATŌ PHYSICAL REVIEW C 93, 054605 (2016)

[21] E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280
(1971).

[22] Y. K. Ho, Phys. Rep. 99, 1 (1983).
[23] N. Moiseyev, Phys. Rep. 302, 212 (1998).
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