Energies and widths in ¹³Be

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 12 March 2016; published 31 May 2016)

I have calculated spectroscopic factors connecting three *d* resonances in ¹³Be to the three lowest states of ¹²Be. Combined with single-particle widths computed in a potential model, I have estimated the widths expected for the various decays. Comparing measured and calculated widths suggests that the resonance near 1 MeV is not $5/2^+$ and that the one just above 2 MeV is the lowest $5/2^+$ resonance.

DOI: 10.1103/PhysRevC.93.054327

I. INTRODUCTION

Previously [1], I summarized the experimental and theoretical history concerning low-lying resonances in ¹³Be, which has no bound states. My principal aim was to use a simple model to calculate the absolute energy of the lowest $5/2^+(sd)^3$ state. For ¹⁹O and ¹⁷C, calculations within this same model missed the absolute energy of the lowest $5/2^+$ state by only 103 keV in ¹⁹O and by 56 keV in ¹⁷C, thus giving some confidence to the prediction for ¹³Be. The result was $E_n = 1.79$ MeV [1]. As the first $5/2^+$ resonance was thought to be about 2.0 MeV, that result suggested that the lowest $5/2^+$ state was primarily of $(sd)^3$ structure. Three experiments since that time have served to both clarify and confuse the issue [2–4].

In later calculations by Randisi *et al.* [3], the energies of the lowest $(sd)^3$ states were considerably different from mine. They had a cluster of states at the low end of their spectrum; my energies were more spread out. My predicted energies were absolute, while theirs were adjusted to make the $1/2^+$ energy appear at 0.4 MeV. So, the fact that their energies are lower than mine has little significance. By comparison with those calculations, they associated a resonance at $E_n = 0.85$ MeV with their lowest $5/2^+$ state. None of the two most recent experiments [3,4] had the ability to determine the ℓ value of the decay. The only reason for the $5/2^+$ state. Here, I investigate the situation for the first two $5/2^+$ states, by considering both energies and widths expected for them.

As part of their experiment [5] on proton removal from ¹³B in order to look for neutron decays from unbound states in ¹²Be, a Michigan State University group also collected data for 12 Be+*n* coincidences, which they interpreted [4] as decays of ¹³Be resonances, presumably populated in a charge-exchange reaction of proton removal followed (or preceded) by neutron addition. It is difficult to ascertain whether they learned anything new about the states of ¹³Be, or if their data are consistent with earlier work [2-4,6], even though they state "The observed spectral shape is consistent with previous one-proton removal reaction measurements from ¹⁴B." However, they also state, correctly, that their reaction could have populated states that earlier reactions would not have populated. They performed both two-resonance and three-resonance fits. The numerical results for the two-resonance fit are given in their abstract, while those from the three-resonance fit are listed in their table. Both sets are discussed in the text. However,

in the three-resonance fit, the energy and width of the lower resonance were held fixed at the values from Randisi *et al.* [3] and the energy and width of the highest resonance were held fixed at the values determined in the two-resonance fit.

I note that in the three-resonance fit [4] the middle resonance at 1.05 MeV is primarily a one-channel phenomenon, whereas, at somewhat higher energy, counts in four consecutive channels are above the fitted curve. So, there could be another resonance around 1.5 MeV. I also note that at the highest energies about 20 of 25 channels have counts that exceed the fitted curve, perhaps indicating the presence of another resonance there.

For clarity, I reproduce in Tables I and II the results of [3,4] for both two- and three-resonance fits. It can be seen that the relative strength for the third resonance in [4] is almost 6 σ larger than that in [3]. It is therefore extremely unlikely that the 2.56-MeV bump in [4] contains only one resonance. If more than one state is present, there is no way to know what the energy would be for possible decays to excited states. Reference [2] had reported evidence for a resonance near 5 MeV decaying to the 2⁺ state.

When discussing the $(sd)^3$ calculations of Randisi *et al.*, Marks *et al.* stated "It should be mentioned that the low-lying $3/2^+$ and $5/2^+$ states predicted by the $(0-3)\hbar\omega$ shell-model calculations using the WBP interaction [6] are not present in the simplified scheme by Fortune [29]," where [6,29] refer to [3,1], respectively, in this paper. In fact, as stated above, those states were the primary focus of my calculations. I demonstrated that it was the first $5/2^+$ state of ¹³Be that was primarily of $(sd)^3$ character. Later calculations agreed.

II. CALCULATIONS AND RESULTS

I have computed spectroscopic factors connecting both $5/2^+$ states and a $3/2^+$ state to the ground state (g.s.), first 2^+

TABLE I. Results of two recent experiments on ¹³Be resonances, from two-resonance fits (energies and widths in MeV).

	Randisi et a	<i>l</i> . [3] (-1 <i>p</i>)	Marks <i>et al.</i> [4] $(-1p + 1n)$		
\mathbf{J}^{π}	E _r	Γ_r	E _r	Γ_r	
1/2+ 5/2+	0.70(11) 2.40(14)	1.70(22) 0.70(32)	0.73(9) 2.56(13)	1.98(34) 2.29(73)	

Randisi <i>et al.</i> $[3](-1p)$			Marks <i>et al.</i> [4] $(-1p + 1n)$			
\mathbf{J}_n^{π}	E _r	Γ_r	Rel. Str.	E_r	Γ_r	Rel. Str.
1/2+	0.40(3)	$0.80^{+0.18}_{12}$	1.00	0.40 ^a	0.80 ^a	1.00
$5/2^{+}_{1}$	$0.85\substack{+0.15\\-0.11}$	$0.30^{+0.34}_{-0.15}$	0.40(7)	1.05(10)	0.50(20)	0.63(15)
$5/2^{+}{}_{2}$	2.35(14)	1.50(40)	0.80(9)	2.56(13) ^b	2.29(73) ^b	3.88(50)

TABLE II. Results of two recent experiments on ¹³Be resonances, from three-resonance fits (energies and widths in MeV).

^aFixed at values from Ref. [3].

^bFrom two-resonance fit.

and excited 0^+ state of ¹²Be, as did Randisi *et al.* [3]. Results are compared in Table III. Perhaps surprisingly, there are no major differences in the two sets of spectroscopic factors. We suggested previously [7] that the second $5/2^+$ state should preferentially decay to the excited 0^+ state, rather than to the g.s. We see from the spectroscopic factors that this expectation holds in both calculations. The second $5/2^+$ and first $3/2^+$ resonances have very small S's to the g.s. in both calculations.

I have also used a potential model to compute single-particle widths for the decays, and then the expected widths for various decay channels, using the expression $\Gamma_{calc} = S\Gamma_{sp}$. For both sets of spectroscopic factors, the reported experimental widths are significantly larger than the calculated ones. Details follow.

A. If the first $5/2^+$ state is at 0.85 or 1.05 MeV

If the first $5/2^+$ state is this low, its only allowed decay is to the g.s. Single-particle widths for $E_n = 0.85$ and 1.05 MeV are, respectively, 68 and 100 keV. With these *sp* widths and the *S*'s from Table III, the expected widths are 41 or 57 keV if the resonance energy is 0.85 MeV, and 67 or 94 keV if the energy is 1.05 MeV. (Throughout, I give results for both sets of spectroscopic factors.) In Table IV, these expected widths are compared with the experimental widths of 300 [3] or 500 keV [4] (with large uncertainties). If an apparent enhancement factor of 1.6 [8] is removed, the experimental widths are both still more than three times the expected ones, though the differences are then less than 2 σ .

B. If the second $5/2^+$ state is at 2.35 or 2.56 MeV

With the given S's for the second $5/2^+$ resonance, the expected widths depend on the resonance energy as depicted in Table V. Recall that this state was associated with the resonance at 2.35 MeV [3] or 2.56 MeV [4]. For either energy,

TABLE III. Spectroscopic factors for ${}^{13}\text{Be} \rightarrow {}^{12}\text{Be} + n$ for lowest *d*-wave resonances.

Final state	$5/2^{+}_{1}$		5/2+2		$3/2^{+}$	
	Randisi	Present	Randisi	Present	Randisi	Presen
g.s.	0.67	0.94	0.01	0.0004	0.04	0
$2^{+}s$	0.08	0.29	0.23	0.15		0.19
2^+d	0.05	0.02	0.01	0.005	1.13	1.32
Exc. 0 ⁺	< 0.01	~ 0	0.65	0.85	0.01	0

the reported widths are larger than those expected by more than a factor of 10, as demonstrated in Table V. The differences between experimental and calculated values are about 3σ .

Given the large discrepancy between observed and expected widths for both $5/2^+$ states, it thus appears very likely that the suggested assignment [3,4] of $5/2^+_1$ and $5/2^+_2$ to these two resonances is incorrect. I explore another possibility in the next subsection.

C. If the first $5/2^+$ state is at 2.35 or 2.56 MeV

If the resonance above 2 MeV is the first $5/2^+$ state in ¹³Be, the situation is much more favorable. In that case, with the spectroscopic factors from Table III, only two decays are significant—to the g.s. and by *s* decay to the 2^+ state. Decays by *d*-wave emission to the 2^+ and excited 0^+ states are calculated to be completely negligible. Computed and measured widths are listed in Table VI. Now, the measured and expected widths are of a similar magnitude. In fact, if the suggested enhancement factor of 1.6 in experimental widths is removed (last row of Table VI), the differences are only about 1 σ .

From this analysis, it seems likely that the first $5/2^+$ state in ¹³Be is above 2 MeV (with some uncertainty). The second one would then be somewhat higher—perhaps close to 3 MeV.

It could then be that the resonance at 0.85 or 1.05 MeV, if it exists, is due to decay of the second $5/2^+$ state to the excited 0^+ , or to *s*-wave decay of the second $5/2^+$ state (or first $3/2^+$) to the 2^+ . An experiment designed to explicitly look for these decays would be very valuable.

III. SUMMARY

I have calculated spectroscopic factors connecting three d resonances in ¹³Be to the g.s. and two excited states of ¹²Be. Perhaps surprisingly, the results are in good agreement with those from a more sophisticated approach [3]. Combining these *S*'s with single-particle widths computed in a potential model, I calculated widths expected for all of the allowed

TABLE IV. Calculated and experimental widths (keV) for decay of first $5/2^+$ (at the energies indicated) to g.s. of ¹²Be.

	$E_r = 0.85 \text{ MeV}$	$E_r = 1.05 \text{ MeV}$
Calculated	41, 57	67, 94
Experimental	300^{+340}_{-150}	500(200)
Exp./1.6	188^{+212}_{-94}	312(125)

TABLE V. Calculated and experimental widths (keV) for decay of proposed [3,4] second $5/2^+$ to states in ¹²Be.

Final State	$E_r = 2.35 \text{ MeV}$		$E_r = 2.56 \text{ MeV}$		
	Γ_{sp}	$\Gamma_{\rm calc}$	$\Gamma_{\rm sp}$	$\Gamma_{\rm calc}$	
g.s.	638	0.26, 6	769	0.32, 8	
$2^{+}s$	500	74, 115	671	99, 154	
2^+d	3.2	0.016, 0.032	13.5	0.07, 0.14	
Exc. 0 ⁺	0.34	0.22, 0.29	5.1	3.3, 4.3	
Sum		75, 121		102, 166	
		Γ_{exp}		Γ_{exp}	
Exp.		1500(400)		2290(730)	
Exp./1.6		940(250)		1430(460)	

decays. The conclusion is that the differences in measured and expected widths are in serious conflict with the hypothesis of a $5/2^+$ resonance near (or just below) 1 MeV and a second one above 2 MeV. However, identifying the resonance just above 2 MeV with the *first* $5/2^+$ resonance gives good agreement between experimental and calculated widths. I also suggest that the resonance near 1 MeV, if it exists, might correspond to decay of a second $5/2^+$ resonance to the excited 0^+ state of ¹²Be (and/or first $3/2^+$ or second $5/2^+$ decaying by *s* wave to the 2^+). I strongly urge an experiment designed to look specifically for such decays.

TABLE VI. Calculated and experimental widths (MeV) for decay of first $5/2^+$ (at the energies indicated) to states in 12 Be.

Final State		Γ_{calc}	calc		
	$E_r = 2.35 \text{ MeV}$		$E_r = 2.56 \text{ MeV}$		
g.s.	0.427, 0.599		0.515, 0.722		
$2^{+}s$	0.04, 0.14		0.05, 0.19		
Sum	0.47, 0.74		0.56, 0.91		
		Γ_{exp}			
Exp.	1.5(4)		2.29(73)		
Exp./1.6	0.94(25)		1.43(46)		

Note added. I have just learned of unpublished data [9,10] for the reaction ${}^{14}\text{B}(p,2p)$ (in reverse kinematics) in which ${}^{13}\text{Be} \rightarrow {}^{12}\text{Be} + n$ decays were detected in coincidence with prompt 2.1-MeV gamma rays. Those data provide convincing evidence that a peak near 0.95 MeV corresponds to decay of a ${}^{13}\text{Be}$ resonance to the first 2^+ state of ${}^{12}\text{Be}$.

ACKNOWLEDGMENT

I am grateful to Professor Olof Tengblad for informative correspondence.

- [1] H. T. Fortune, Phys. Rev. C 87, 014305 (2013).
- [2] Y. Aksyutina et al., Phys. Rev. C 87, 064316 (2013).
- [3] G. Randisi et al., Phys. Rev. C 89, 034320 (2014).
- [4] B. R. Marks et al., Phys. Rev. C 92, 054320 (2015).
- [5] J. K. Smith *et al.*, Phys. Rev. C **90**, 024309 (2014).
- [6] Yu. Aksyutina et al., Phys. Lett. B 718, 1309 (2013).
- [7] H. T. Fortune and R. Sherr, Phys. Rev. C 82, 064302 (2010).
- [8] H. T. Fortune, Nucl. Instrum. Methods Phys. Res. A 681, 7 (2012).
- [9] G. Ribero, Ph.D. thesis, CSIC, Madrid, 2015.
- [10] O. Tengblad (private communication).