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Microscopic description of superallowed α-decay transitions
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It was recently found that the formation probabilities of α particles in Te isotopes are larger than the
corresponding probabilities in Po isotopes. We have done a full microscopic calculation within the framework
of the multistep shell model to analyze in detail the formation probabilities and subsequent decays of α particles
from 212Po and 104Te. We have also calculated the spectra of these two decaying nuclei and found that the
tentatively assigned spin (18+) at 2.922 MeV in 212Po (National Nuclear Data Center, www.nndc.bnl.gov) is
predicted to be a state 16+. We also present for the first time the full energy spectrum of 104Te. The evaluated
formation amplitudes in both nuclei show that in 104Te there is indeed a superallowed α-decay transition.
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I. INTRODUCTION

In recent years, great efforts have been made to study the
neutron-deficient Te isotopes near the N = Z = 50 closed
shells. One of the probes used in this search was the very
elusive radioactive decay by emission of α particles [1].
Soon afterwards the striking feature that the α-decay process
measured in light Te isotopes carries a preformation factor
that is larger than the one in the classic decays of Po isotopes
was found. The α-decay transitions from light Te isotopes
were therefore called “superallowed” [2]. This was perhaps
expected because around the 100Sn core the valence nucleons,
both neutrons and protons, move in the same single-particle
(sp) shells, thus enhancing the neutron-proton interaction [3].
However only recently it has been experimentally possible to
explore the α-decay channels in this very unstable region of
the nuclear chart. Even other properties beyond α decay itself
were possible to be investigated through α-decay probes. In
particular, through the 109Xe → 105Te → 101Sn α-decay
chain the low-lying sp states in 101Sn were observed [4].

The superallowed character of the α-decay transitions from
light Te isotopes was established by examining reduced decay
widths [2]. To analyze these transitions one has to formulate a
theory that will describe in a reliable fashion the emission
of the α particle. The decay itself proceeds in two steps.
In the first step the four nucleons in the parent nucleus that
eventually constitute the α particle get clustered together. In
the second step the α particle thus formed on the surface of
the daughter nucleus penetrates the Coulomb and centrifugal
barriers. While the evaluation of the penetration probability
is a relatively easy task, the assessment of the formation
probability is a very difficult undertaking. Gamow explained
the decay including only the penetration of an already formed
α particle. To obtain the proper units, Gamow also introduced
the concept of “assault frequency,” which is an effective
quantity without any quantum mechanics validity. This theory
has been extremely successful in explaining relative decay
widths, but cannot describe absolute decays. Yet because the
calculation of the penetrability is very easy, the theory has
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been applied in many situations, trying to get the absolute
decay widths by adjusting effective parameters, such as the
assault frequency, to fit the corresponding decay width. These
effective theories are very useful because they are easy to
apply and therefore they help experimentalists to estimate the
probability that the nucleus would decay through the channel
under consideration. However this procedure does not evaluate
the formation amplitude but rather takes it as a free parameter,
albeit with other names. It is therefore not suitable for our
purposes.

Another method which is rather successful is the cluster
model. In this model the α particle is assumed to be already
formed. By using a proper mean field acting between the
α particle and the daughter nucleus and by a reasonable
determination of the number of nodes of the corresponding
wave function, one can describe well spectra of spherical
nuclei [5,6] as well as deformed nuclei [7]. However in this
model the interactions among the nucleons forming the α
particle, in particular, the neutron-proton interaction, do not
enter and therefore this model is not suitable for our purpose.

Finally, there is the microscopic calculation of the formation
amplitude, which in principle does not include any free
parameter, as described, e.g., in Ref. [8].

We briefly present this microscopic theory in Sec. II. In
Sec. III we present the results of our calculations and in Sec. IV
we present a summary and our conclusions.

II. FORMALISM

The proper expression for the decay width, taking into
account all elements entering in the decay process, was first
given by Thomas [9] as

�L(R) = 2γ 2
L(R)PL(R), (1)

where R is the distance from the center of the daughter nucleus
to the α particle and L is the angular momentum carried by
the outgoing α particle. The reduced-width amplitude γL(R)
is given by

γL(R) =
(

�
2R

2μ

)1/2

FL(R), (2)
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where FL(R) is the α-particle formation amplitude at the
point R and μ is the α-particle reduced mass. The formation
amplitude is given by

FL(R)

=
∫

dξαdξDdR̂[φα(ξα)ψD(ξD)YL(R̂)]∗α4,ν4
ψP (ξαξD; R),

(3)

where φ and ψ are internal wave functions and ξ ’s are internal
coordinates. For details see Refs. [8,9]. The penetrability is
written as

PL(R) = kR

G2
L(R) + F 2

L(R)
, (4)

where F and G are the regular and irregular Coulomb
functions, respectively, and k = μv/�, v being the velocity
of the outgoing α particle.

A. The multistep shell model

In the multistep shell model (MSM) one solves the shell-
model equations in several steps [10]. One first chooses a
single-particle representation. In the second step one adopts a
two-particle interaction to evaluate the two-particle states. The
three-particle system is solved in terms of two-particle states
times one-particle states. The four-particle states can be solved
in terms of (a) two-particle states times themselves (as is done
here) or (b) one-particle states times the three-particle states
previously evaluated, or in terms of a linear combination of (a)
and (b). For more particles one proceeds in a similar fashion,
building the MSM representation in terms of correlated states.
One drawback of the MSM basis is that it may violate the Pauli
principle as well as counting states more than once. To correct
these deficiencies one must evaluate the overlap matrix among
the basis states to build a complete basis. However, in the cases
to be studied in this article, which are two-proton (2p) times
two-neutron (2n) systems, the 2p2n MSM basis is complete,
because the Pauli principle does not act between protons and
neutrons.

We thus study systems with two protons and two neutrons
outside a double-magic core. The corresponding MSM wave
function for state α4 is

| α4〉 =
∑
α2,β2

X(α2β2; α4)[P +(α2)P +(β2)]α4 | 0〉, (5)

where α2 (β2) labels two-proton (two-neutron) states, i.e.,

| α2〉 = P †(α2) | 0〉, with P †(α2) =
∑
i<j

X(ij ; α2)c†i c
†
j ,

| β2〉 = P †(β2) | 0〉, with P †(β2) =
∑
p<q

X(pq; β2)a†
pa†

q .

(6)

The index i (p) labels proton (neutron) sp states, c
†
i (a†

p)
are sp creation operators and X(ij ; α2) [X(pq; β2)] are the
corresponding wave function amplitudes. The proton-proton
(neutron-neutron) interaction provides the two-particle ener-
gies and wave functions, that is, the creation operators P †(α2)

and P †(β2). In this 2p2n case the MSM dynamical equation is∑
α′

2β
′
2

[(
Wα2 + Wβ2

)
δα2,α

′
2
δβ2,β

′
2

+〈α2β2; α4 | Vpn|α′
2β

′
2; α4〉

]
X(α′

2β
′
2; α4)

= Wα4X(α2β2; α4), (7)

where Wα2 (Wβ2 ) is the two-proton (two-neutron) correlated
energy and Vpn is the proton-neutron (pn) interaction. The
eigenvalue Wα4 is the 2p2n energy and the eigenvectors
X(α2β2; α4) are the amplitudes which provide the wave
function (5). One can see from Eq. (7) that if one neglects
the pn interaction (as has been done in, e.g., Refs. [11,12])
only one configuration contributes to Eq. (5). In other words,
the values of the amplitudes X(α2β2; α4) are determined by
the pn interaction. The pn interaction matrix element has the
form

〈α2β2; α4 | Vpn | α′
2β

′
2; α4〉 = (−1)β2+β ′

2+α4

×[α2]1/2[α′
2]1/2[β2]1/2[β ′

2]1/2
∑
ijk

∑
pqr

∑
λ

(−1)λ+q+i−j+k[λ]

×
∑

l

[l]

{
α2 α′

2 l
k i j

}{
p i λ
k r l

}

×
{
β2 β ′

2 l
r p q

}{
β2 β ′

2 l
α′

2 α2 α4

}

×Y (ij ; α2)Y (pq; β2)Y (kj ; α′
2)Y (rq; β ′

2)〈ip; λ |Vpn |kr; λ〉,
(8)

where Y (ij ; α2) = √
1 + δijX(ij ; α2). Notice that Latin and

Greek letters label the states as well as the corresponding
angular momenta, as seen in the 6-j symbols above. The rest
of the notation is standard. Thus [α2] = 2α2 + 1.

In r representation the 2p2n wave function (5) can be
written as

ψP (ξαξD; �R)

= ψP (�r1,�r2,�r3,�r4; ξD)

=
∑
α2,β2

X(α2β2; α4)
[
ψα2 (�r1,�r2)ψβ2 (�r3,�r4)

]
α4,ν4

ψD(ξD),

(9)

where the label P (D) indicates the parent (daughter) nucleus.
The internal coordinates ξα and ξD correspond to the α particle
and the daughter nucleus, respectively, and ri is the coordinate
of the nucleon i.

There are two regions in the decay process. In the internal
region, that is, in the parent nucleus, the two protons and
two neutrons that eventually constitute the α particle move in
the field generated by the other nucleons. In our two cases
this field is generated by the double-magic cores 100Sn(gs)
and 208Pb(gs). One can therefore describe the motion of the
nucleons in terms of the shell model by using an harmonic
oscillator representation. In the external region we describe
the motion of the already formed α particle around the core
as a two-body system interacting through the Coulomb and
centrifugal potentials. We use in this region outgoing boundary
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conditions, which are described in Sec. III. The important
feature to be stressed here is that the decaying α particle
is formed on the surface of the daughter nucleus. When
investigating the correlations that induce the creation of the
α particle, we analyze the formation amplitude Fα4 (R) in the
region R around the nuclear surface.

To evaluate the formation amplitude we replace the wave
function (9) in Eq. (3) and make a transformation to relative
coordinates (for details see, e.g., Ref. [13]). One gets

Fα4 (R) =
∑
α2β2

X(α2β2; α4)
∑
Nπ

T (α2Nπ )
∑
Nν

T (β2Nν)

×
∑
Nα

〈Nπα2Nνβ2; α4 | 00Nαα4; α4〉

RNαα4 (R) =
∑
Nα

FNαα4RNαα4 (R), (10)

where FNαα4 is a straightforward coefficient, 〈Nπα2Nνβ2; α4 |
00Nαα4; α4〉 is a Moshinsky bracket, andRNαα4 (R) is the radial
wave function corresponding to the outgoing α particle. As
mentioned above, we adopt for this an outgoing (Gamow)
function.

In the derivation of Eq. (10) one considers that the intrinsic
α-particle wave function is the product of the lowest-harmonic
oscillator wave functions. That means that the quantum
numbers of the α particle, i.e., the principal quantum number
n and the orbital angular momentum l, are np = lp = nn =
ln = 0. Moreover, all are singlet states, i.e., Sp = Sn = 0.

The functions T are given by

T (α2Nπ ) =
∑

i

Y (ii,α2)(−1)li+1/2+ji+α2
(2ji + 1)√

2

×
{
ji li 1/2
li ji α2

}
〈00Nπα2; α2 | nilini liα2〉

+1

2

∑
i<j

Y (ij ; α2)
√

(2ji + 1)(2jj + 1)

×
{
ji li 1/2
lj jj α2

}[
(−1)li+1/2+jj +α2

×〈00Nπα2; α2 | nilinj ljα2〉
+(−1)lj +1/2+ji+α2〈00Nπα2; α2 | nj ljni liα2〉

]
(11)

and a similar expression for T (β2Nν).
With the formation amplitude thus evaluated the reduced

width (2) and the width (1) can be calculated.

III. APPLICATIONS

We analyze the α-particle emission from 212Po and 104Te
using the formalism presented above.

A. 212Po

The first two steps in our MSM treatment is to choose the
single- and two-particle states. An excellent choice for these
quantities has been provided long ago by Kuo and Harling

(KH) in Ref. [14] (the so-called Approximation 2, which
includes particle-hole excitations in the two-particle matrix
elements).

In the KH calculation the proton sp states correspond to the
N = 5 major shell, i.e., 0h9/2, 1f7/2, 0i13/2, 1f5/2, 2p3/2, and
2p1/2, while the neutron sp states correspond to the N = 6
shell, i.e., 1g9/2, 0i11/2, 0j15/2, 2d5/2, 3s1/2, 1g7/2, and 2d3/2.
All the two-particle states provided by this set of sp states are
included in our MSM calculation. The pn matrix elements
between sp states appearing in Eq. (8) were extracted from the
210Bi KH energies and wave functions.

To assess the quality of the procedure used here we show
in Fig. 1 the calculated 212Po spectrum. The calculated 212Po
ground-state (gs) energy is −19.09 MeV, to be compared with
the experimental value, which is −19.34 MeV. The calculated
yrast-state energies agree with the corresponding experimental
values within an energy range of 80 keV. An exception is the
(tentative) experimental state (18+

1 ), with an energy that differs
from the corresponding theoretical value by 295 keV. However
the calculated energy of state 16+

1 is 2.988 MeV, which is very
close to the experimental state (18+

1 ) with an energy measured
at 2.922 MeV. We therefore conclude that the measured state
(18+

1 ) is in reality 16+
1 .

The good agreement between theory and experiment seen
above indicates that the calculations presented here are
reliable.

FIG. 1. Experimental spectrum [15] of 212Po and the correspond-
ing theoretical one.
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TABLE I. Amplitudes X(α2β2; α4) = X[210Po(α2) ⊗210 Pb(β2);
α4] for α2 and β2 yrast states, corresponding to 212Po(gs).

210Po(α2) 210Pb(β2) X(α2β2; α4)

0+
1 0+

1 0.913
2+

1 2+
1 −0.253

4+
1 4+

1 0.122
6+

1 6+
1 0.064

8+
1 8+

1 0.030

A measure of the importance of the pn interaction in this
nuclear region can be gathered by the mixing of configurations
in the wave function of the state 212Po(gs). One expects that
this state is mainly defined by the monopole isovector pairing
force; i.e., that it can be written as |212Po(gs)〉 = |210Pb(gs) ⊗
210Po(gs)〉. This would be the case if the pn interaction
were negligible [11,12]. A measure of the plausibility of this
assumption is to compare the energy E0 of that state, i.e.,
E0 = E(210Pb(gs)) + E(210Po(gs)) = −17.91 MeV, with the
experimental energy of the state 212Po(gs) = −19.34 MeV.
That is, the pn correlation energy is −1.43 MeV. This may
seem a large correlation. However, one sees in Table I that
the configuration above is indeed dominant, indicating that
the pn interaction does not play a big role in this case. This
feature is expected because neutrons and protons move in
different parity shells and their overlaps, i.e., the corresponding
pn matrix elements, are small. This conclusion is strengthen
by comparing the pn correlated energy above with the much
larger one in the Sn region, where neutrons and protons occupy
the same shells.

With the wave function amplitudes thus evaluated, we
calculate the formation amplitudes corresponding to the
ground state of 212Po using Eq. (10). As explained above,
for the α-particle wave function RNαα4 (R) in Eq. (10), we use
outgoing boundary conditions. We evaluate it by using the
computer code GAMOW [16]. As the central field we adopt
a Woods-Saxon (WS) potential with parameters (r0 = 1.315
fm, a = 0.65 fm) of Ref. [17]. The depth of the potential is
adjusted to match the Qα value of the outgoing α particle.

It is important to point out that in Eq. (10) the coefficient
FNαα4 is strongly dependent upon the number of nodes Nα .
In our case of the α formation from the ground state it
is α4 = 0 and FNα=11 = 1.7 × 10−2, FNα=12 = −8.0 × 10−4,
and FNα=13 = 1.4 × 10−5. Therefore in practice only the
largest value of FNαα4 has to be taken into account. This
corresponds to the minimum principal quantum number, i.e.,
Nα = Nmin

α = 11. We found the remarkable property that in
the outgoing wave function RNαα4 (R), obtained as explained
above, the number of nodes coincides with Nmin

α , as is indeed
necessary.

With the formation amplitude thus obtained we evaluated
the decay width (1). In Fig. 2, we present the corresponding
calculated half-life as a function of the distance R between the
daughter nucleus and the α particle. One sees that the half-life
is independent of R at distances outside the daughter nucleus,
as it should be. This is a result of the short range of the nuclear
interaction, which makes it so that the wave function of the α

FIG. 2. Calculated half-life of 212Po as a function of the distance
between the α particle and the daughter nucleus. The solid line
indicates the corresponding experimental value [15].

particle at distances outside the range of the nuclear interaction
is exactly the same as the Coulomb function that generates
the penetrability. The penetrability increases exponentially
and the formation probability decreases exponentially at large
distances. The product of these two functions is constant
outside the daughter nucleus. But at very large distances all
functions are strongly exponential and the precision errors
may induce variations that are not physically meaningful. The
constancy of the calculated half-life seen in Fig. 2 enforces the
argument that the calculation is reliable.

The calculated half-life of 212Po shows a small variation in
the significant range of radial distances in Fig. 2. We therefore
assign the average value of 15 μs for this half-life.

Yet, the half-life thus calculated is 2 orders of magnitude
larger than the corresponding experimental value. In effective
theories, where the preformation probability is a parameter
extracted from fittings to previous experimental values, theory
and experiment agree reasonably well, as seen in Refs. [18,19].
However, in microscopic theories the large divergence between
calculated and experimental half-lives is not an unexpected
feature. It has been pointed out in Refs. [11,12] that one should
include high-lying configurations to get better agreement with
experiment. It has been found in Ref. [20] that these high-lying
configurations are necessary to explain the clustering among
the two neutrons and the two protons that form the α particle,
but it has to be pointed out that already within the sp states
included here there is a sizable clustering.

Recently it was found that in processes where the α particle
plays a role, like in α decay, one needs a cluster component
in the shell-model wave function [21]. This was already found
in Ref. [22]. Within our shell-model space, we evaluated the
α-formation amplitude (10) shown in Fig. 3. One sees that
this formation amplitude coincides with the equivalent one in
Ref. [22]. However the formation amplitude including cluster
components is nearly exactly 1 order of magnitude larger
than the pure shell-model one [cf. Figs. 4(a) and 4(c) in that
reference]. With the formation amplitude thus increased by
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FIG. 3. The α formation amplitude (in fm−1/2) for 212Po as a
function of the radial distance.

the factor of 10 found in Ref. [22] our calculated half-life
coincides with the experimental one.

B. 104Te

There has been a strong interest in nuclei around 100Sn,
which is the heaviest self-conjugate nucleus that has been
detected so far. This interest is partly due to the expected
increased proton-neutron correlations in these nuclei. This may
induce a variety of enhanced phenomena, like manifestations
of isoscalar pairing modes and increased α-decay transitions.

To calculate the spectrum of the nucleus 104Te, with two
protons and two neutrons outside the 100Sn core, we proceed
as we did above with the equivalent nucleus 212Po. We adopt
a set of single-particle states corresponding to the shell N = 4
that describes well light Sn isotopes [23]. These sp states are
the same for neutrons and protons. The energies, in MeV, are
ε1d5/2 = −10.9, ε0g7/2 = −10.7, ε2s1/2 = −9.5, ε1d3/2 = −8.9,
and ε0h11/2 = −8.5. The binding energy of state 1d5/2 at
−10.95 MeV was taken from the measured value in 101Sn
[15]. We chose a realistic and reliable interaction that, as in
the case of KH, includes virtual particle-hole excitations in the
matrix elements, thus describing well nuclei in this region [24].
As an example, we show in Fig. 4 the calculated spectra of the
two-proton (102Te) and two-neutron (102Sn) nuclei. The scarce
experimental data that are available are very well explained
by the calculation. With the two-particle states thus obtained,
the calculation of the spectrum of 104Te was performed in the
same way as in the previous section. The pn interaction matrix
elements among sp states was also obtained from Ref. [24].
Including all possible two-particle states we calculated the
energy spectrum shown in Fig. 5. It is worthwhile to point
out that this spectrum is presented here for the first time. This
could be helpful to experimentalists planning measurements
in this region of the nuclear chart, which are expected to be
performed in the near future.

Note that the pn interaction lowers the energy of the ground
state of 104Te by 5.7 MeV with respect to the energy of the

FIG. 4. Calculated spectra of 102Te and 102Sn and the corre-
sponding available experimental data in 102Sn [15]. For clarity, only
positive-parity states are shown, though in the calculations both
positive- and negative-parity states are taken into account.

FIG. 5. Calculated energy level scheme for 104Te.
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TABLE II. Amplitudes X(α2β2; α4) = X[102Te(α2) ⊗102 Sn(β2);
α4] for α2 and β2 yrast states, corresponding to 104Te(gs).

102Te(α2) 102Sn(β2) X(α2β2; α4)

0+
1 0+

1 0.544
2+

1 2+
1 0.483

4+
1 4+

1 0.318
6+

1 6+
1 0.228

uncorrelated state |104Te(gs)〉 = |102Te(gs) ⊗102 Sn(gs)〉. This
can be compared with the value of 1.43 MeV in 212Po discussed
in the previous section, but the importance of the pn interaction
in this nuclear region can also be seen by analyzing the wave
function of the state |104Te(gs)〉. This we show in Table II,
where the amplitudes corresponding to the configurations
|102Te(α2) ⊗102 Sn(β2)〉 are given. One sees that the pairing
monopole mode is not as dominant as it was in the Pb region.

We evaluated the α-formation amplitude in the state
104Te(gs) shown in Fig. 6, using the same Woods-Saxon
potential and the same procedure as for 212Po. In particular,
here, as was the case for 212Po, only the minimum number of
nodes Nα in Eq. (10) is relevant. One sees from Fig. 6 that the
α-particle formation correlations present in Te but not in Po
isotopes (c.f. Fig. 3), explains the superallowed character of
the α transitions in Te.

To evaluate the half-life one has to know the experimental
Qα value in 104Te, which is not available. To obtain this
we have done a linear fitting to the binding energies of
neighboring nuclei as shown in Fig. 7. We thus get the
total binding energy for 104Te as 848.534 MeV. Note that
the total binding energy estimated in this simple way is in
close agreement with the semiempirical value given by Myers
and Swiatecki [25]. Moreover, the corresponding Qα value is
obtained as 5.059 MeV, which is also in good agreement with
the extrapolated α-decay energy of 5.053 MeV in Ref. [26].
The calculated half-life as a function of the distance R is

FIG. 6. The α formation amplitude (in fm−1/2) for 104Te as a
function of the radial distance.

FIG. 7. Total binding energy as a function of A.

presented in Fig. 8. Again in this case it is seen that the half-life
is independent of R at large distances, giving reliability to the
calculation. We assign the theoretical half-life of 104Te as 1.5
μs. However, one expects that the corresponding experimental
value should be 2 orders of magnitude smaller than the
theoretical one, as discussed above for the case of 212Po(gs).

IV. SUMMARY AND CONCLUSIONS

We have studied the structure and the α-formation prob-
ability corresponding to the nuclei 212Po and 104Te using a
full microscopic formalism, namely, the multistep shell-model
method. We found that the tentatively assigned (18+) at 2.922
MeV in 212Po [15] is instead a 16+state. We have also presented
the level scheme of the nucleus 104Te, which could be of im-
portance for future experimental searches in light Te isotopes.

We evaluated the formation probabilities and the α-decay
widths in 104Te(gs) and 212Po(gs). We found that the proton-
neutron correlations are much more important in Te than in
Po. This is expected, because the active neutrons and protons

FIG. 8. Calculated half-life of 104Te. Notice that no experimental
data are available in this case.
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move in the same orbits in Te, but in different ones in Po. As a
result 212Po(gs) becomes a near pure monopole isovector state,
while 104Te(gs) presents strong mixing with other (multipole)
states. Another consequence of the proton-neutron correlations
is that the α-particle formation probability in 104Te is 4.85
times larger than that in 212Po, thus attesting that in the Te
region there is a superallowed α-decay transition.
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