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Occupation numbers of spherical orbits in self-consistent beyond-mean-field methods
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We present a method to compute the number of particles occupying spherical single-particle (SSP) levels within
the energy density functional (EDF) framework. These SSP levels are defined for each nucleus by performing
self-consistent mean-field calculations. The nuclear many-body states, in which the occupation numbers are
evaluated, are obtained with a symmetry conserving configuration mixing (SCCM) method based on the Gogny
EDF. The method allows a closer comparison between EDF and shell model with configuration mixing in large
valence spaces (SM-CI) results, and can serve as a guidance to define physically sound valence spaces for SM-CI
calculations. As a first application of the method, we analyze the onset of deformation in neutron-rich N = 40
isotones and the role of the SSP levels around this harmonic oscillator magic number, with particular emphasis
in the structure of 64Cr.
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I. INTRODUCTION

The nuclear shell model (SM) is likely the most widely
used framework to describe microscopically the structure of
the atomic nucleus. In its simplest and naivest version, the
nuclear many-body states are described in terms of products of
one-body states; i.e., protons and neutrons occupy individual
orbits defined by certain quantum numbers associated with
the solution of the one-body problem in spherical coordinates:
principal (n), orbital angular momentum (l), and total angular
momentum (j ) and its third component (mj ). The idea behind
this approach is the existence of an underlying spherical
mean field, made of a sum of one-body central and spin-orbit
interactions that provide such orbits, and a residual interaction
containing everything else. In the current versions of the
shell model, the product-like mean-field states are used as
the many-body basis where a diagonalization of the nuclear
Hamiltonian is performed.

In general, two different types of SM calculations can be
distinguished depending on whether a core is considered in the
definition of the system of interacting particles or not. In the
more widely used large scale shell model (LSSM) with a core,
shell model with configuration mixing in large valence spaces
(SM-CI) [1,2], a valence space consisting of one or two major
harmonic oscillator shells, sometimes different for protons and
neutrons and sometimes with some added or removed orbits,
is defined. In this case, single-particle levels below (above) the
valence space are considered to be full (empty) and the nuclear
interaction is renormalized to incorporate the relevant physics
in such a reduced valence space with effective two-body
interactions. On the other hand, all particles are active in the
no-core shell model (NCSM) approach [3] and the valence
space must include many major harmonic oscillator shells
in order to achieve convergence. However, since the number
of states in the many-body basis increases combinatorially
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with the size of the valence space, the computational cost of
either SM applications can become extremely large. Hence,
the applicability of LSSM and NCSM is restricted to nuclei
whose physical valence spaces produce m-scheme dimensions
below 1011 [4] and to relatively light nuclei [5,6], respectively.

Nuclear energy density functionals (EDFs) based on
Skyrme, Gogny, or relativistic interactions can be applied in
a more general manner along the whole nuclear chart [7].
Initially designed to find the optimal self-consistent mean
field through Hartree-Fock (HF) or Hartree-Fock-Bogoliubov
(HFB) calculations, these methods have been extended thor-
oughly in the last fifteen years to include beyond-mean-field
(BMF) correlations needed to describe, for example, spectra of
atomic nuclei. In particular, a more general form for the many-
body states that considers linear combinations of different
symmetry restored mean-field states has been implemented.

Because SM and EDF are the two main workhorses that
provide a microscopic description of the structure of the
nucleus, links between these frameworks are very useful.
However, EDF methods tend to break most of the symmetries
of the interaction at the mean-field level; i.e., they are defined in
an intrinsic frame. Additionally, these are no-core calculations
and the number of major harmonic oscillator shells included
is generally much larger than in the LSSM and NCSM
approaches. These aspects make SM and EDF states difficult
to connect, although several attempts have been made already.
Notice, however that, as discussed at length in Ref. [1], the
SM-CI approach is implicitly based in the spherical mean field
produced by an underlying, virtual, Hartree-Fock calculation.

For example, comparisons between SM calculations and
EDF based on Gogny interactions [8] were performed to
describe the deformed nucleus 48Cr [9], the triaxiality near
78Ni [10] or several aspects of neutrinoless double-beta decay
nuclear matrix elements in the pf shell [11]. Recently, the
inclusion of cranked intrinsic states has proven to yield an
outstanding agreement between EDF and SM results for the
excitation energies of magnesium isotopes and the nucleus
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RODRÍGUEZ, POVES, AND NOWACKI PHYSICAL REVIEW C 93, 054316 (2016)

44S [12,13]. Furthermore, SM valence spaces and interactions
have been used to perform constrained HF calculations in
exotic Ni isotopes and the SM states analyzed in terms of
intrinsic quadrupole deformations [14]. Additionally, angular
momentum projection before the variation method with a
SM interaction has been also used to extract the intrinsic
deformations of the nucleus 44S [15] and the structure of
sd-shell nuclei [16].

On the other hand, EDF underlying interactions can be
used to perform SM diagonalizations [17,18] and multipole
decompositions [1]. Furthermore, self-consistent mean-field
analyses of single-particle energies in the deformed basis
with Nilsson-like plots are routinely done to understand
qualitatively the orbits that play a role for a given nucleus.
In some cases, relevant deformed mean-field states have
been studied in terms of the particle-hole structure in a
spherical basis (see, for instance, Refs. [9,19]). However, a
more quantitative analysis of the occupancies of spherical
shells from EDF states including beyond-mean-field effects
like symmetry restorations and configuration mixing is still
missing.

In this paper a way to extract such occupancies is presented.
The interest in these not directly observable quantities is
twofold. On the one hand, they allow a better comparison
of the internal structure of the EDF states with SM states. On
the other hand, the importance of each spherical orbit can be
forecast and the method can serve as a guidance to define SM
valence spaces, in particular, in mid-shell nuclei.

The paper is organized as follows. First, the EDF approach
used here, the so-called symmetry conserving configuration
mixing (SCCM) method, is reviewed (Sec. II). Then, in
Sec. III the spherical reference state and the formalism to
compute spherical occupation numbers within the present EDF
framework are discussed. A first application to analyze the role
of the neutron gds shell in N = 40 neutron-rich isotones is
presented in Sec. IV. Finally, the main conclusions are drawn
in Sec. V.

II. SYMMETRY CONSERVING CONFIGURATION
MIXING METHOD

In this section the EDF method used in this work is
summarized. A more detailed description with Skyrme, Gogny,
and relativistic interactions can be found in Refs. [7,20–24].
The starting point of the present SCCM method is the definition
of the many-body states (|�JM;NZ;σ 〉) as a linear combination
of different symmetry restored HFB-like states within the
generator coordinate method (GCM) framework [25]:

|�JM;NZ;σ 〉 =
∑

�q

J∑
K=−J

f Jσ
�q,KP̂ N P̂ ZP̂ J

MK |φ�q〉 (1)

where J , M , N , and Z are the total and third component of the
angular momentum and the number of neutrons and protons,
respectively. Furthermore, σ = 1,2,3,... labels the different
states for a given value of the angular momentum sorted from
the lowest to the largest energies.

In the present application, particle number and angular
momentum projections are performed using their respective

projection operators P̂ N , P̂ Z , and P̂ J
MK [25]. Additionally,

collective coordinates are also restricted to quadrupole de-
formations, �q ≡ (β2,γ ), although other degrees of freedom
such as octupole deformation and parity projection [26,27],
pairing fluctuations [28], cranking frequencies [12,13], and
some others [29] have been successfully implemented, but
require a much larger computational burden.

Intrinsic HFB-like states, |φβ2,γ 〉 ≡ |〉, are found by mini-
mizing the particle number projected HFB energy within the
so-called variation after particle number projection (PN-VAP)
method [30], i.e.,1

E′
β2,γ

= 〈Ĥ P̂ N P̂ Z〉
〈P̂ N P̂ Z〉 − λq20〈Q̂20〉 − λq22〈Q̂22〉, (2)

where the Lagrange multipliers, λq20 and λq22 , guarantee
the condition for the quadrupole moments, 〈Q̂20〉 = q20

and 〈Q̂22〉 = q22, with q20 = β2 cos γ

C
, q22 = β2 sin γ√

2C
, and C =√

5
4π

4π

3r2
0 A5/3 ; A is the mass number and r0 = 1.2 fm.

These intrinsic many-body states, |φβ2,γ 〉, are subsequently
projected to good number of protons and neutrons, and good
angular momentum:

|JMK; NZ; β2,γ 〉 = P̂ J
MKP̂ N P̂ Z|φβ2,γ 〉, (3)

where P̂ J
MK is the angular momentum projector operator

written in terms of an integral over the Euler angles [25].
Finally, the coefficients of the linear combination of Eq. (1),

f J ;NZ;σ
{ξ} and the spectrum, EJ ;NZ;σ , are obtained by solving

the Hill-Wheeler-Griffin (HWG) equations [25] that mix both
quadrupole shapes and K , i.e., {ξ} ≡ {β2,γ,K}:

∑
{ξ ′}

(HJ ;NZ
{ξ};{ξ ′} − EJ ;NZ;σN J ;NZ

{ξ};{ξ ′}
)
f J ;NZ;σ

{ξ} = 0, (4)

whereH andN are the energy and norm overlaps respectively:

N J ;NZ
{ξ},{ξ ′} = 〈JMK; NZ; β2,γ |JMK ′; NZ; β ′

2,γ
′〉, (5)

HJ ;NZ
{ξ},{ξ ′} = 〈JMK; NZ; β2,γ |Ĥ |JMK ′; NZ; β ′

2,γ
′〉. (6)

The generalized eigenvalue problem defined by Eq. (4) for each
value of the angular momentum is solved by transforming it
into a regular eigenvalue equation in the following manner.
First, the norm overlap matrix is diagonalized:

∑
{ξ ′}

N J ;NZ
{ξ},{ξ ′}u

J ;NZ
{ξ ′};
 = nJ ;NZ


 uJ ;NZ
{ξ};
 . (7)

Then, an orthonormal set of states (the natural basis) is
obtained through the eigenvalues different from zero and their
corresponding eigenvectors of the norm overlap matrix:

|
J ;NZ〉 =
∑
{ξ}

uJ ;NZ
{ξ};
√
nJ ;NZ




|JMK; NZ; β2,γ 〉; nJ ;NZ

 > 0. (8)

1Any energy kernel is written throughout the text as an expectation
value of a Hamiltonian operator. However, Gogny interactions contain
a density-dependent term that prevents such a notation rigorously
[31]. Nevertheless, this term can be chosen properly [20,23], and the
notation used throughout the text is still valid.
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Finally, the original GCM state Eq. (1) can be written as

|�J ;NZ;σ 〉 =
∑



GJ ;NZ;σ

 |
J ;NZ〉 (9)

and the HWG equations are transformed for each value of J
into a normal eigenvalue problem:

∑

′

〈
J ;NZ|Ĥ |
′J ;NZ〉GJ ;NZ;σ

′ = EJ ;NZGJ ;NZ;σ


 . (10)

Expectation values and transition probabilities can be eval-
uated from the coefficients GJ ;NZ and the definition of
the natural basis [7,20,22–24]. For example, the expectation
value of a generic scalar operator under rotations, OJ ;NZ;σ ≡
〈�J ;NZ;σ |Ô|�J ;NZ;σ 〉, is computed within the GCM frame-
work as

OJ ;NZ;σ =
∑


′

∑
{ξ},{ξ ′}

⎛
⎝GJ ;NZ




uJ ;NZ
{ξ};
√
nJ ;NZ




⎞
⎠

∗

× 〈JMK; NZ; β2,γ |Ô|JMK ′; NZ; β ′
2,γ

′〉

×
⎛
⎝GJ ;NZ


′
uJ ;NZ

{ξ ′};
′√
nJ ;NZ


′

⎞
⎠. (11)

III. OCCUPATION NUMBERS OF SPHERICAL ORBITS

After discussing the general formalism to obtain expecta-
tion values within the SCCM framework, its application to
compute occupation numbers of spherical orbits is sketched in
this section. In this work the spherical orbits are defined for
each nucleus in a self-consistent manner from its spherically-
symmetric HFB solution. Hence, the operator associated to
the number of particles occupying a given spherical orbit, α,
defined by the quantum numbers (nαlαjα) is

n̂α =
∑
mjα

a
†
nαlαjαmjα

anαlαjαmjα
. (12)

These creation and annihilation single-particle operators
(a†

α,aα) are obtained from the diagonalization of the density-
matrix, ρ

sph
ab , that corresponds to the solution of a HFB

calculation performed imposing spherical symmetry for the
nucleus of interest. The HFB density matrix is defined as [25]

ρ
sph
ab = 〈φsph|c†bca|φsph〉, (13)

where |φsph〉 is the spherical quasiparticle vacuum and (c†a,ca)
are creation and annihilation single-particle operators that
correspond to the arbitrary working basis used to define the
HFB transformation [25]. This arbitrary basis is usually chosen
to be a spherical harmonic oscillator basis made of a large
number of major harmonic oscillator shells. By construction,
the density-matrix expressed in terms of the single-particle
operators (a†

α,aα)—usually known as canonical basis—is
diagonal:

∑
ab

AαaA
∗
βbρ

sph
ab = ρ̃αβ = 〈φsph|a†

βaα|φsph〉 = ρ̃αβδαβ. (14)

Obviously, working and canonical bases are related by the
diagonalization matrix A, i.e., a†

α = ∑
a Aαac

†
a . Therefore, the

one-body operator associated with the number of particles
lying in a given spherical orbit can be expressed in a second
quantization representation as

n̂α =
∑
ab

AαaA
∗
αbc

†
acb (15)

Hence, the above expression can be used in Eq. (11),
substituting Ô = n̂α to evaluate the occupation numbers of
the spherical orbits in the GCM (correlated) nuclear states.
Additionally, the evolution of the occupation numbers with the
intrinsic quadrupole deformation, β2 and γ , is obtained from
the diagonal part of the kernel given in Eq. (11), summing up
the K components:

nJ ;NZ
α (β2,γ ) =

∑
K

〈JMK; NZ; β2γ |n̂α|JMK; NZ; β2,γ 〉
〈JMK; NZ; β2,γ |JMK; NZ; β2,γ 〉

(16)

Finally, self-consistent single-particle energies (SPEs)
within the EDF framework have been usually defined in
several ways, all of them related to the self-consistent one-body
Hamiltonian matrix [25]:

hpq = tpq + �pq, (17)

where tpq are the matrix elements of the one-body kinetic
energy operator and �pq = ∑

rs v̄prqsρsr is the Hartree-Fock
field. Additionally, v̄prqs are the antisymmetrized two-body
matrix elements of the effective nuclear interaction and ρsr

the density matrix. The ambiguities in the definition of SPE
come from the choice of the density matrix and the one-body
basis in which such energies are evaluated. On the one hand,
different density matrices can be obtained whether a HF, HFB,
or an even more correlated calculation is chosen. On the other
hand, SPE can be defined either as the eigenvalues of h or the
diagonal part of such a matrix expressed in a given basis, e.g.,
the canonical basis. Moreover, since HF or HFB calculations
can be performed with constraints along different degrees
of freedom, different density matrices can be obtained as a
function of the deformation or any other intrinsic variable and
Nilsson-like plots can be computed using this scheme.

In the present work, HFB calculations are used to define
the HF field in Eq. (17). Furthermore, SPEs are obtained as
the diagonal part of h written in the canonical basis and the
spherical SPEs (SSPEs) are those found with ρ̃

sph
αα . The reader is

referred to Refs. [32,33] (and references therein) for a detailed
discussion on SPEs and their relation to observables such as
excitation energies of neighboring magic nuclei.

IV. ANALYSIS OF N = 40 NEUTRON-RICH ISOTONES

As a first application of the calculation of occupation
numbers in spherical shells within a correlated EDF method,
the role of the spherical orbits on the structure of N = 40
neutron-rich nuclei is discussed in this section. Recently, this
region has been widely studied both experimental [34–50] and
theoretically [51–63] because of its interest as a new island
of inversion analogous to the one found at N = 20. Here, a
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detailed analysis performed in the 64Cr nucleus is presented
first, and then such a study is extended to the neutron-rich
N = 40 even-even isotones, namely, 60Ca, 62Ti, 64Cr, 66Fe,
and 68Ni. Calculations are performed with the Gogny D1S
parametrization [8] using a working basis made of eleven
major spherical harmonic oscillator shells. In addition, the
calculations are simplified and only axial-symmetric intrinsic
HFB states [spherical (β2 = 0), prolate (γ = 0◦, β2 > 0), and
oblate (γ = 180◦, β2 < 0)] have been considered in this work.
Therefore, the expressions given above are also reduced to
K = 0 components and the quadrupole deformation β2 is the
only remaining generating coordinate.

A. Occupation numbers for 64Cr

From a self-consistent mean-field point of view the usual
starting point to describe the structure of a given nucleus
is the calculation of the mean-field energy as a function of
the most relevant collective coordinates like the quadrupole
deformation. In Fig. 1 a constrained HFB calculation of the
nucleus 64Cr is shown as an example. In fact, HFB equations
are a simplified version of Eq. (2), where the particle number
projectors are set to the identity. Hence, the HFB energy as a
function of the axial quadrupole deformation, i.e., the potential
energy surface (PES), is shown in Fig. 1(a). Two almost
degenerated minima are obtained: the absolute minimum in
the spherical point and another one at a prolate deformation
β2 = 0.35. Furthermore, SPEs close to the Fermi energies
(plotted as thick dot-dashed lines) are shown in Figs. 1(b)
and 1(c) for protons and neutron respectively. Spherical orbits
with well-defined (n,l,j ) quantum numbers and (2j + 1)
degeneracies, i.e., SSPEs, are obtained at β2 = 0. Such a
degeneracy is broken when the deformation is increased and
Nilsson-like orbits are obtained. Normally, the minima found
in the PES can be related to the appearance of sizable gaps in
the SPE crossed by the Fermi level. In the present example,
the neutron Fermi energy crosses the gap between the 1f5/2

and 1g9/2 orbits, producing the spherical minimum. Moreover,
the prolate minimum can be related to the gap produced by the
lowering of some levels coming from the neutron 1g9/2 and
the rising of levels coming from the neutron 1f5/2 orbits, in
combination with the gap found in the proton SPE due to the
breaking of the spherical degeneracy of the 1f7/2 orbit.

At this level of approximation, the relevance of certain
spherical single particle levels in the structure of the nucleus is
only qualitatively established by their relative position to the
Fermi energy. Hence, it is clear from Fig. 1 that if the nucleus
64Cr is prolate deformed the neutron 1g9/2 (1f5/2) orbit will be
partially occupied (empty) contrary to what it is expected if the
nucleus is spherical. However, a more quantitative description
and results within more correlated states are required to
compare with SM results. In Fig. 2(a) the result of including
first particle number restoration (PN-VAP) and particle number
and angular momentum projection (PNAMP, J = 0) are
shown together with the HFB PES already mentioned. Here,
the PN-VAP energy curve is similar to the HFB one but shifted
to lower values. Additional correlation energy is obtained by
performing the angular momentum projection. However, the
absolute minimum in this case is the prolate one (β2 = 0.4),
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FIG. 1. (a) HFB-Potential energy surface and HFB single-particle
energies for (b) protons and (c) neutrons as a function of the axial
quadrupole deformation calculated for 64Cr with the Gogny D1S
interaction.

and a secondary minimum at an oblate shape (β2 = −0.15) is
also found, the spherical point being a maximum due to the
impossibility of gaining rotational correlation energy with this
specific shape. In fact, the prolate minimum is now around
3 MeV lower than the spherical configuration, showing the
relevance of performing the angular momentum projection in
nuclei where spherical and deformed shapes are competing at
the mean-field level. Similar results are also found in 32Mg
[20] and 80Zr [64].

Using these PNAMP states with J = 0, |J ; N,Z; β2〉, and
the spherical HFB state computed for 64Cr as the reference
state to define the spherical orbits, the occupancies of these
orbits as a function of the axial quadrupole deformation
[Eq. (16)] are plotted in Figs. 2(b) and 2(c) for protons and
neutrons respectively. These figures are better understood in
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thick-dashed line, the ground state collective wave-function is shown.
(b) and (c) Occupation numbers of spherical orbits as a function of the
axial quadrupole deformation for protons and neutrons respectively.

combination with Figs. 1(b) and 1(c). Focusing on the spherical
point, β2 = 0, practically normal filling of protons shells is
observed; i.e., protons (Z = 24) occupy the first three major
shells and the remaining four protons are in the 1f7/2 orbit. For
neutrons (N = 40), the lowest three major shells, 1f7/2, 2p3/2,
and 2p1/2, are also filled in, and, due to some remaining pairing
correlations provided by the PN-VAP approach, the 1f5/2 orbit
is not totally full but some occupancy is transferred to the 1g9/2

orbit. Differences between the normal filling (spherical HF)
and the occupancies of the spherical levels in the HFB state
with β2 = 0 will be further discussed below.

When the prolate deformation increases, the occupancy
of the proton 1f7/2 slowly decreases in the interval β2 ∈
[0.15,0.5] and, at the same time, some occupancies appear
in the 2p3/2, 1f5/2, and above the pf shell (mainly from the
proton 1g9/2) and some vacancies from the sd-shell (mainly

from the 1d3/2). The relevance of protons (holes) above (below)
the pf shell becomes important at large prolate deformations
and also from β2 = −0.3 and larger oblate deformations. In
the oblate part, similar behavior as in the prolate part of the
proton 2p3/2, 1f5/2 orbits is obtained, but the occupancy of
the proton 1f7/2 shows a maximum at β2 = −0.4 due to the
promotion of particles from the 2s1/2 orbit to this level.

Concerning neutron occupation numbers, particles above
(holes below) the 1g9/2 (1f7/2) are rather small. Furthermore,
the 1f7/2 and 2p3/2 orbits remain almost full in a wide range
of deformation β2 ∈ [−0.3,0.5]. However, the number of
neutrons in the 1g9/2 orbit increases as soon as the nucleus
starts to be deformed due to the decrease in the occupancy
of the 1f5/2 level. In fact, for |β2| > 0.4 the 1g9/2 level
reaches an occupancy of around three neutrons. Furthermore,
the 2p1/2 orbit empties and the 2d5/2 orbit fills in as soon as
the deformation increases from the spherical point.

Having discussed the occupancies of the spherical shells as
a function of the quadrupole deformation, the final step consists
in computing the occupation numbers taking into account the
mixing of different shapes. First, the relevant deformations
in the final states are given by the so-called collective wave
function [7,25], |F (β2)|2, that represents the weights of the
different intrinsic deformations (or collective coordinates) in a
given nuclear state. These states are obtained after performing
particle number and angular momentum projections and shape
mixing within the SCCM framework described in Sec. II.
In Fig. 2(a) the ground-state collective wave function of the
nucleus 64Cr is plotted with a thick dashed line. Here, the
largest contributions correspond to prolate deformations with
an absolute maximum at β2 = 0.35. A secondary peak is found
at oblate deformations (β2 = −0.2) although the contribution
of such configurations is much smaller. These two peaks
appear consistently at the position of the minima found in
the PNAMP PES. Therefore, although this nucleus is found to
be spherical at the mean-field (HFB) level due to the N = 40
harmonic oscillator shell closure, BMF correlations favor a
prolate deformed ground state.

For the sake of completeness, the excitation energies
obtained for the ground state (g.s.) band of 64Cr as well as
the collective wave functions are plotted in Figs. 3(a) and
3(b). Here we observe that the SCCM calculation predicts a
rotational g.s. band with the sequence 0+

1 ,2+
1 ,4+

1 , . . . . The inset
shows a very similar structure of the collective wave functions
with a large peak at prolate configurations. In addition, the
theoretical energies are stretched compared to the experimental
ones. This is a general effect of this kind of axially and
time-reversal symmetric calculations [66,67]. In Fig. 3(c) we
represent the comparison between the experimental 2+

1 and
4+

1 excitation energies and the present SCCM predictions
for the chromium isotopic chain. Despite the stretching, the
theoretical data show a nice qualitative agreement with the
experiments. It has been reported recently that including
both triaxiality and cranking terms in the set of intrinsic
wave functions produces a compression of the spectrum,
and the quantitative agreement with the experimental exci-
tation energies is much better [12,13]. Finally, a value of
B(E2,2+

1 → 0+
1 ) = 360 e2 fm4 is obtained, to be compared

to the experimental value 312(79) e2 fm4 of Ref. [42].
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FIG. 3. (a) Excitation energies and (b) collective wave functions
for states belonging to the ground state band for 64Cr. (c) 2+
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with the present SCCM method. Experimental values are taken from
Ref. [65] (and references therein) and empty symbols represent spin
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The basic results of our work for 64Cr are gathered in Fig. 4,
where we plot first the difference between the occupation
numbers of the most relevant spherical shells computed for
the SCCM ground state of 64Cr (J = 0; σ = 1), and those
calculated for its spherical HFB wave function. Such a
difference is defined for any SCCM state as [see Eqs. (15),
(1), and (11)]

�nJ ;σ
α = 〈�J ;σ |n̂α|�J ;σ 〉 − 〈φsph|n̂α|φsph〉. (18)

Positive (negative) values of �nJ ;σ
α mean particles (holes)

in a given SSP level α with respect to the filling in the
spherical HFB configuration (filled bars). In addition, we plot
the differences between the final SCCM occupancies and the
normal filling given by the spherical HF solution (empty bars).
The figure contains a lot of physical information which we
shall analyze in what follows.

For neutrons (N = 40), Fig. 4(a), the pf and sdg shells are
explicitly plotted while for protons (Z = 24), Fig. 4(b), only
the pf shell and the 1g9/2 orbit are singled out. Looking at the

differences with the spherical HFB configuration, the orbits
below 1f7/2 are almost fully occupied although ∼0.12 (∼0.22)
neutron holes (proton holes) are obtained. Furthermore, above
the neutron sdg shell (proton 1g9/2 orbit) around ∼0.42
(∼0.40) particle excess is found. The main differences with
respect to the spherical HFB solution are found in the
depopulation of the neutron pf shell and the occupation of the
neutron 1g9/2 (∼2.15 particles) and 2d5/2 (∼0.72 particles)
orbits, mainly. Most of the depopulation of the neutron pf
shell comes from the 1f5/2 (∼1.91 holes) and 2p1/2 (∼0.91
holes) levels and, to a lesser extent, the 2p3/2 (∼0.36 holes) and
1f7/2 (∼0.24 holes) orbits. It is also interesting to see that 3s1/2,
2d3/2, and 2g7/2 are not very much populated in the ground
state. This shows that the neutron valence space used in recent
SM-CI calculations [56] to describe the onset of deformation
in this region is supported by these results. Furthermore, they
emphasize the importance of including in the valence space not
only the 1g9/2 orbit but also its quasi-SU(3) partner 2d5/2.
In fact, the pseudo+quasi SU(3) model of Ref. [68] predicts
for 64Cr a dominant 4p-4h neutron configuration, with 2.3,
1.5, and 0.2 neutrons in the 1g9/2, 2d5/2, and 3s1/2 orbits
respectively. Deformation also influences the proton occupan-
cies as shown in Fig. 4(b). Here, the 1f7/2 orbit no longer
contains the four valence protons as in the spherical case but
it accommodates roughly one proton less, while the 2p3/2 and
2f5/2 starts to be slightly occupied. The occupancies of the
SM-CI calculation in the LNPS valence space and the values
obtained in the quasi+pseudo SU(3) model are compared with
the SCCM, spherical HFB and spherical HF (uniform filling)
values in Table I.

Before making the detailed comparison of the SCCM and
SM-CI results, let us highlight some of the findings of Fig. 4.
The first one concerns the role of pairing and stems from
the comparison of the HF and HFB occupancies (difference
between empty and filled bars; see also Table I). It is seen
that the effect of the pairing interaction is limited to a few
orbits above and below the Fermi level (neutron 1g9/2 and
1f5/2 orbits mainly), what we can dub, the “natural” shell
model valence space. And even so, the number of scattered
pairs is quite small, due to the presence of large gaps in
neutrons and protons associated with the N = 40 and Z = 28
magic numbers. It is only when the quadrupole correlations are
duly taken into account that deformation sets in, blowing out
these shell closures. Another interesting feature relates to the
2�ω excitations which drive the coupling to the GDR. Notice
that the vacancies of neutrons below N = 28 and protons
below Z = 20, the real core of the SM-CI calculation, amount
only to 0.5 each. However, any calculation excluding them
would need to use effective charges (or masses) to reproduce
the experimental data for E2 transitions and spectroscopic
quadrupole moments. The analysis of Ref. [69] explains
how these perturbative effects produce the standard isoscalar
effective charge δqπ + δqν = 0.77.

Back to Table I, we can make these statements more
quantitative. In the neutron side, the occupancies predicted by
the SCCM and SM-CI calculations are astonishingly similar.
Notice as well that both calculations resemble qualitatively
to the values obtained in the quasi+pseudo SU(3) limit. The
agreement is even better in the proton sector. All in all we
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can conclude that, once the deformed regime is established,
the dominance of the quadrupole-quadrupole interaction is
well described by either SCCM or SM-CI, whereas the most
relevant physics features can be already captured by an
algebraic model based in variants of Elliott’s SU(3).

B. Occupation numbers and deformation for the N = 40
neutron rich isotones.

The analysis that we have carried out for 64Cr can be
extended to the N = 40 even-even nuclei, from 60Ca to
68Ni. The appearance of deformation is usually discussed
within the SM-CI framework in terms of the competition
between the spherical mean-field gaps and the quadrupole
correlations. Hence, if the effective single-particle energies
(ESPEs) of the intruder levels get closer to those of the lowest
level occupied in a normal filling approach, the quadrupole
interactions can favor energetically deformed n-particle n-
hole configurations across the gap (intruder states). The
same qualitative study can be performed by representing the
spherical single-particle energies (SSPEs) obtained with HFB

TABLE I. Occupation numbers of the spherical orbits in the
ground state of 64Cr, for the different approaches discussed in the
text. (b) and (a) refer to particles below and above the orbits explicitly
shown.

(b) 1f ν
7/2 2pν

3/2 2pν
1/2 1f ν

5/2 1gν
9/2 2dν

5/2 3sν
1/2 (a)

HFsph 20.0 8.0 4.0 2.0 6.0 0.0 0.0 0.0 0.0
HFBsph 20.0 8.0 4.0 1.9 5.7 0.3 0.0 0.0 0.1
SCCM 19.8 7.7 3.4 1.0 3.7 2.6 0.9 0.1 0.8
SM-CI 20.0 8.0 3.9 1.0 3.2 3.2 0.7 0.0 0.0
SU(3) 20.0 8.0 2.8 1.4 3.8 2.3 1.5 0.2 0.0

(b) 1f π
7/2 2pπ

3/2 2pπ
1/2 1f π

5/2 1gπ
9/2 (a)

HFsph 20.0 4.0 0.0 0.0 0.0 0.0 0.0
HFBsph 19.9 4.0 0.0 0.0 0.1 0.0 0.0
SCCM 19.5 3.2 0.6 0.1 0.2 0.1 0.3
SM-CI 20.0 3.1 0.4 0.2 0.3 0.0 0.0
SU(3) 20.0 2.7 1.3 0.0 0.0 0.0 0.0

spherical states that have been computed with the Gogny D1S
interaction (see Sec. II).

In Fig. 5 the most relevant SSPEs are plotted both for
protons and neutrons in the range 20 � Z � 28 and N = 40
(see also Ref. [53]). In the proton sector, three large gaps are
observed, namely (a) the Z = 28 gap (∼6 MeV) between the
1f7/2 orbit and the 2p3/2, 1f5/2, and 2p1/2 pseudospin triplet;
(b) the Z = 40 gap (∼4 MeV) between the 2p1/2 and 1g9/2

orbits; and (c) the Z = 50 gap (∼6 MeV) between the 1g9/2

and the 2d5/2 orbits. These gaps are rather constant along
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FIG. 5. HFB-spherical single-particle energies for (a) proton and
(b) neutron levels calculated for neutron rich N = 40 isotones with
the Gogny D1S interaction.
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the isotonic chain, and no erosion of the spherical harmonic
oscillator plus spin-orbit shell closures is found as the neutron
excess increases.

Concerning the neutron SSPEs [Fig. 5(b)], the spherical
harmonic oscillator plus spin orbit gaps are also clearly
observed. However, although the N = 28, 40, and 50 gaps
are rather robust along the isotonic chain, these are not as
constant as the proton ones. On the one hand, the gap between
the 1f7/2 and 2p3/2 orbits tends to get reduced in neutron
rich nuclei (from ∼6 to ∼4.5 MeV). Similarly, the N = 50
gap is significantly reduced in 60Ca with respect to the one
obtained for 68Ni (from ∼5 to ∼2 MeV). Furthermore, a
small gap (∼2 MeV) between the 2p3/2 and the 2p1/2–1f5/2

levels (N = 32) is obtained. The gap between the latter and
the 1g9/2 orbit remains almost constant (∼3.5 MeV). Finally,
the 2d5/2 and 3s1/2 orbits are almost degenerate in 60Ca but
they split apart slightly when more protons are added into the
system.

This picture differs somehow from the ESPE obtained with
LSSM calculations [56]. Whereas the proton gaps for all
Z values and the neutron gaps in 68Ni are quite similar in
both approaches, the evolution of the neutron gaps towards
60Ca is very different. The LNPS interaction predicts that
the orbits 1f5/2, 1g9/2, and 2d5/2 become degenerate in the
neutron rich part (60Ca), while with the Gogny SSPEs the
N = 40 gap remains constant. This makes the two approaches
diverge in their predictions of the structure of 62Ti and 60Ca, as
we shall discuss below. The degeneracy of the ESPEs favors
the persistence of quadrupole correlations, responsible for the
onset of deformation. These differences will manifest clearly
in the occupation numbers and in the quadrupole deformation
parameters produced by both descriptions. Let us add that there
have been recent coupled cluster calculations around 60Ca,
using chiral EFT and including in an effective way three-body
forces and the effect of the continuum (see Ref. [70]). Their
conclusions are midway between the two approaches discussed
here. They find that the ordering of levels in 61Ca is inverted
with respect to the standard shell model filling with a sequence
1/2+, 5/2+, 9/2+, closer to the SM-CI ESPEs. However,
they propose a configuration (3s1/2)2ν for the ground state
of 62Ca, which implies a certain resilience of the N = 40
gap, as suggested also by the SCCM description. Indeed, only
spectroscopic data on 62Ti settle these discrepancies.

The occupation numbers of the 1g9/2 and 2d5/2 spherical
neutron orbits are plotted in Fig. 6(a). Indeed, the differences
in the ESPEs reflect directly in the values shown in the figure.
The agreement that we have found in the case of 64Cr extends
to 66Fe and to a lesser extent to 68Ni. Notice that the 2d5/2

orbit has a non-negligible occupancy only when the nucleus
is deformed, hence the large differences between SCCM and
SM-CI for 62Ti and 60Ca. In the SCCM approach, the 2d5/2 and
3s1/2 (not shown) orbits present a similar behavior, i.e., their
occupation is maximum in the middle of the chain (Z = 24)
and negligible at the shell closures. Nevertheless, the 3s1/2

orbit is almost empty and this fact justifies its exclusion
from the valence space in LSSM calculations [56]. There is a
clear correlation between the deformation parameter and the
simultaneous occupation of both the 1g9/2 and 2d5/2 neutron
orbits, which we proceed to discuss in some detail.
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spherical orbits for the ground states of the N = 40 isotones.
(b) Mean values of the quadrupole deformation for the same
states. Filled and open symbols refer to SCCM and SM-CI results
respectively. Asterisks represents the quasi+pseudo SU(3) regime.

The ground-state (mass) quadrupole deformation can be
computed within the SCCM method by taking the value of
β2 weighted by the ground-state collective wave function. In
Fig. 6(b) such a mean value, β̄2, is represented for the isotonic
chain N = 40. Here, almost spherical shapes are obtained at
the proton magic numbers, namely, 60Ca (β2 = +0.02) and
68Ni (β2 = −0.03). Furthermore, the most deformed nucleus
in the isotonic chain is found at Z = 24 (64Cr) with a prolate
deformation equal to β2 = +0.27. In the SM-CI description,
we compute the spectroscopic quadrupole moments and the
B(E2) transitions of the yrast band, with the standard isoscalar
effective “mass.” In the ideal rotor, the intrinsic quadrupole
moments extracted from any of these observables using the
well known Bohr-Mottelson formulas [71] should be all the
same. When deviations occur, we average the different values.
The B(E2) values are known experimentally for 64Cr and 66Fe
(see for instance reference [42]) and the SM-CI calculation
reproduces them perfectly. Therefore, the SM-CI points in
Fig. 6(b) may serve as experimental data as well. Notice
again that the agreement between SCCM and SM-CI for
these two nuclei is very good. The accord is excellent for
68Ni as well, in spite of the discrepancy in the filling of
the orbit 1g9/2. To extract the ground state deformation of
a quasispherical nucleus in the SM-CI context can be tricky
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(or even nonsensical). We have proceeded as follows; the
first excited 2+ state is mildly oblate and makes a kind of
band with the first excited 0+ state. Using its spectroscopic
quadrupole moment and the ratio of the B(E2)’s to the two
0+ states, we estimate the amount of mixing of spherical
and oblate components in the ground state and then compute
the average deformation. In Fig. 6(b) we have plotted the
deformation parameters computed in the quasi+psudo SU(3)
limit, which can be taken as upper bounds for the real ones.
The SM-CI values follow the trend of the SU(3) prediction
with typically a 20% reduction. In 62Ti and 60Ca the SCCM
deformation parameters depart drastically of this limit, as
anticipated in view of the occupancies of the spherical orbits.
62Ti is the key nucleus to settle the evolution of the ESPE in this
region.

Finally let us examine closely the case in which the two
approaches diverge the most, 60Ca. As mentioned before, the
SCCM method makes it spherical and doubly magic, as seen
both in the occupancies and in the deformation parameter.
But what is the SM-CI image of this nucleus? Common
lore associates deformation with the presence of neutrons
and protons in open orbits. Indeed, in the present SM-CI
calculation there are no active protons at all; the often used
parameter NpNn is just null. Neutrons alone in degenerate
orbits seem to call for some kind of superfluid regime, but we
shall show that this not the case at all. In the quasi+pseudo
SU(3) regime, 60Ca has an yrast band with a perfect J (J + 1)
spacing and constant values of the intrinsic mass quadrupole
moment Qm

0 = 130 fm2 or βm
2 = 0.23. Surprisingly, the

calculation with the realistic interaction LNPS produces results
that are much closer to the quadrupole than to the pairing
limit. The yrast energies are distorted by the pairing interaction
and depart from the J (J + 1) law, with E(4+)/E(2+) = 2.2
(in the pairing limit this ratio is equal to 1). However, from
the E2 observables we can extract a value Qm

0 = 100(5) fm2

or βm
2 = 0.18(1), consistent with a deformed rotor. This is

an unexpected fact (perhaps only of academic value), which
shows that, if the single particle orbits around the Fermi
surface map the SU(3) favoring quantum numbers, and if
they are quasidegenerate, deformation may set in, even in the
case that only alike particles are active in the natural valence
space.

A possible origin of the different behavior of SM-CI and
EDF results in 60Ca could be the different treatment of tensor
forces. The Gogny D1S interaction does not contain explicitly
tensor terms while the SM interaction does. These terms could

get closer the neutron 1g9/2 and 1f5/2 orbits when the proton
1f7/2 empties [54,59,72], producing a deformed 60Ca ground
state.

V. SUMMARY

In this article we develop a method to compute occupa-
tion numbers of spherical orbits within an energy density
functional framework based on the Gogny interaction that in-
cludes beyond-mean-field effects (symmetry restorations and
quadrupole shape mixing). The nuclear states are computed
with a symmetry conserving configuration mixing method
and then used to calculate the expectation values of the
operators that define the spherical orbits. These are determined
self-consistently for each nucleus as the canonical basis of
a spherical Hartree-Fock-Bogoliubov calculation. As a first
application of the method, the single-particle structure of the
ground state of the nucleus 64Cr has been studied. This analysis
has been extended to other neutron rich N = 40 isotones from
Z = 20 to 28, showing the role of the neutron 1g9/2 and 2d5/2

orbits in the onset of deformation in this region.
All these results are compared with state-of-the-art large

scale shell model calculations (SM-CI). Since the SCCM
method does not have an inert core, uses a very large
number of major harmonic oscillator shells, and the underlying
interaction is of general applicability, the evaluation of the
spherical occupation numbers can be done everywhere in
the nuclear chart. Such information (a) can provide a better
understanding of the single-particle structure of the nuclear
states obtained with SCCM calculations; (b) can be compared
with LSSM results; and (c) can help defining physically sound
valence spaces for LSSM calculations. In the near future, the
calculation of the number of nucleons occupying spherical
shells will be extended to include other relevant degrees of
freedom such as octupolarity, triaxiality, and/or time-reversal
symmetry breaking in the intrinsic wave functions.

ACKNOWLEDGMENTS

We thank G. Martı́nez-Pinedo, L. M. Robledo and T.
Duguet for useful discussions. We acknowledge the support
from GSI-Darmstadt and CSC-Loewe-Frankfurt computing
facilities; from the Ministerio de Economı́a y Competitividad
(Spain) under contracts FIS2014-53434, FPA2014-57196, and
Programas Ramón y Cajal 2012 number 11420 and Centros de
Excelencia Severo Ochoa SEV-2012-0249; A.P. was supported
by a USIAS fellowship of the University of Strasbourg.

[1] E. Caurier, G. Martı́nez-Pinedo, F. Nowacki,
A. Poves, and A. P. Zuker, Rev. Mod. Phys. 77, 427
(2005).

[2] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,
Prog. Part. Nucl. Phys. 47, 319 (2001).
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