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Asymmetric nuclear matter based on chiral two- and three-nucleon interactions

C. Drischler,” K. Hebeler,! and A. Schwenk*
Institut fiir Kernphysik, Technische Universitit Darmstadt, 64289 Darmstadt, Germany
and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fiir Schwerionenforschung GmbH, 64291 Darmstadt, Germany
(Received 26 October 2015; published 10 May 2016)

We calculate the properties of isospin-asymmetric nuclear matter based on chiral nucleon-nucleon (NN) and
three-nucleon (3N) interactions. To this end, we develop an improved normal-ordering framework that allows us
to include general 3N interactions starting from a plane-wave partial-wave-decomposed form. We present results
for the energy per particle for general isospin asymmetries based on a set of different Hamiltonians, study their
saturation properties, the incompressibility, symmetry energy, and also provide an analytic parametrization for
the energy per particle as a function of density and isospin asymmetry.
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I. INTRODUCTION

Microscopic calculations of isospin-asymmetric nuclear
matter are important for nuclear physics and astrophysical
applications. They allow to give ab initio constraints for key
quantities for our understanding of core-collapse supernovae
and neutron stars. In addition, they can guide energy-density
functionals for global predictions of nuclear properties.

Advances in chiral effective field theory (EFT) [1,2] and
renormalization group methods [3,4] have opened the way to
improved and systematic studies of nuclear matter as well
as finite nuclei [5,6]. For symmetric matter it was found
that low-momentum nucleon-nucleon (NN) plus three-nucleon
(3N) interactions are capable of predicting realistic saturation
properties, with 3N forces fit only to few-body data [7],
whereas neutron matter was found to be perturbative [8].
In subsequent studies, symmetric matter and neutron matter
were also investigated based on chiral EFT interactions within
the self-consistent Green’s function framework [9,10], using
coupled-cluster theory [11,12], with in-medium chiral pertur-
bation theory [13] and in many-body perturbation theory [14].
Furthermore, the development of novel local chiral NN forces
opened the way to first quantum Monte Carlo studies of neutron
matter based on chiral EFT interactions [15—18]. The results
of these studies also represent first nonperturbative validation
of many-body perturbation theory for neutron matter.

Asymmetric nuclear matter has been studied within various
many-body approaches during the last decades based on phe-
nomenological NN potentials [19-25]. Chiral EFT interactions
have been applied to asymmetric matter only recently [26-28].
Explicit calculations at general proton fractions allow us to
extract key quantities like the nuclear symmetry energy more
microscopically, because no empirical parametrizations for the
energy as a function of the isospin asymmetry are needed.
Commonly, such parametrizations were either based on the
standard quadratic expansion (see, e.g., Ref. [27] for a recent
work) or inspired by the form of energy-density functionals
(see, e.g., Ref. [29]).
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A major challenge for performing such many-body calcu-
lations is the treatment of 3N forces and the quantification
of theoretical uncertainties. In contrast to many-body un-
certainties, which can be investigated by benchmarking, the
quantification of uncertainties in the nuclear Hamiltonian is a
more challenging task (see, e.g., Ref. [30]). There are currently
ongoing efforts to develop novel chiral EFT interactions (see,
e.g., Refs. [31-33]) that enable order-by-order studies of
matter and nuclei in the chiral expansion and allow us to test
the validity of the chiral power counting at nuclear densities
in a systematic way.

For these investigations 3N forces play a central role.
In Weinberg power counting the leading 3N forces at next-
to-next-to-leading order (N’LO) contain two unknown low-
energy couplings ¢p and cp, whereas the subleading 3N
forces at next-to-next-to-next-to-leading order (N3LO) do not
contain any new low-energy couplings [34,35]. The first full
N3LO calculations of neutron matter showed that subleading
3N forces at N°LO provide significant contributions to the
energy per particle [36,37]. This could be an indication for a
slow convergence of the chiral expansion for 3N forces. These
findings were confirmed by first explorative calculations of
symmetric matter up to N°LO [37]. Due to the complexity
and rich analytical structure of 3N forces at N3LO [34,35,38]
the 3N contributions at this order could only be included in
the Hartree—Fock approximation in these studies. While this
approximation is expected to be reasonable for neutron matter,
such a treatment is certainly not reliable for sufficiently large
proton fractions and consequently higher-order many-body
contributions need to be included. For the same reason the
calculations of asymmetric nuclear matter of Ref. [26] were
limited to small proton fractions.

In this paper, we present a framework that allows us to in-
clude general 3N forces in calculations of asymmetric nuclear
matter systematically and hence allows us to extend the studies
of Ref. [26] to arbitrary proton fractions. Our calculations are
based on a set of seven Hamiltonians with NN interactions
at N3LO evolved with the similarity renormalization group
(SRG) to different resolution scales A plus 3N interactions at
N2LO with 3N cutoff Asy:

H,A3n) =T + Vnn(d) + Van(Asn). ey
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TABLE I. The set of seven Hamiltonians used for the many-body calculations of this study. The low-energy couplings cp, cg were fit in
Ref. [7] to the binding energy of *H and the charge radius of “He for given SRG resolution scale 1, 3N cutoff A3y, and the long-range couplings
¢;. The Hamiltonians are based on the N°LO NN potential EM 500 MeV [39], except for Hamiltonian 6*, which is based on the N3LO NN
potential EGM 550/600 MeV [40]. Moreover, the Hamiltonians use consistent ¢; values in NN and 3N interactions, except for Hamiltonian 7,
which uses the ¢; values from the NN partial-wave analysis of Ref. [41] in 3N interactions. We refer to Sec. IV B for a discussion of the special

treatment of Hamiltonian 6%*.

NN potential A/Asn [fm™1] ¢ [GeVT!] ¢ [GeV™'] cs [GeVT!] ch CE
#1 EM 500 MeV 1.8/2.0 —0.81 -32 5.4 1.264 —0.120
#2 EM 500 MeV 2.0/2.0 —0.81 -32 5.4 1.271 —0.131
#3 EM 500 MeV 2.0/2.5 —0.81 —32 5.4 —0.292 —0.592
#4 EM 500 MeV 2.2/2.0 —0.81 -32 5.4 1.214 —0.137
#5 EM 500 MeV 2.8/2.0 —0.81 -32 5.4 1.278 —0.078
#6* EGM 550/600 MeV 2.0/2.0 —0.81 —34 3.4 —4.828 —1.152
#7 EM 500 MeV 2.0/2.0 —0.76 —4.78 3.96 —3.007 —0.686

By using 3N forces at N>LO as a truncated basis and assuming
the long-range couplings ¢; to be invariant under the SRG
transformation, the 3N short-range couplings cp, cg were fitin
Ref. [7] for seven combinations of A /A3y to the experimental
binding energy of *H and the charge radius of *He. The
resulting values of the low-energy couplings are listed in
Table 1. This set of Hamiltonians serves as an estimate for
the theoretical uncertainties due to nuclear forces in our
many-body calculations.

The paper is organized as follows: In Sec. II, we introduce
an improved density-dependent NN interaction to include 3N-
force contributions in our calculations. In Sec. III, we discuss
the expressions for the energy per particle to first and second
order in many-body perturbation theory for general isospin
asymmetries. In Sec. IV, we present our microscopic results for
the energy per particle for eleven proton fractions based on a set
of different Hamiltonians. We study their saturation properties,
the incompressibility, symmetry energy, and also provide an
analytic global fit of our results. Finally, we conclude and
summarize in Sec. V.

II. IMPROVED NORMAL ORDERING

Normal ordering is a key step for the practical treatment
of 3N forces as effective two-body interactions in many-body
calculations of matter and nuclei. It allows us to rewrite the
3N-force part of the Hamiltonian exactly in terms of normal-
ordered zero-, one- and two-body contributions plus a residual
three-body term (for details see Ref. [3]). In infinite matter
normal ordering involves a summation of one particle over oc-
cupied states in the Fermi sphere (see also Refs. [8,42]). For 3N
forces this summation can be expressed formally in the form

dk;

V3N = ’1—‘1'(73’1-‘1‘-r3 / m

ng A3 Van, 2)

which involves sums over spin and isospin projection
quantum numbers o3 and 73 as well as an integration over all
momentum states, weighted by the momentum distribution
functions n)’ for a given neutron and proton density. In the
following, we choose the Fermi—Dirac distribution function
at zero temperature, ny = O(kg — |K|), and we assume
spin-unpolarized and homogeneous matter. We can apply the
present framework also to general correlated distributions

functions. However, it was shown in infinite matter [10] that
the energy is not very sensitive to the particular choice of
the reference state for the chiral EFT interactions used in this
work. This indicates that the residual 3N contributions are very
small such that they can be neglected. V3x represents the 3N
interaction, whereas 4,53 is the three-body antisymmetrizer.
The effective interaction V3y in Eq. (2) represents a
density-dependent NN interaction that can be combined with
contributions from free-space NN interactions.

The 3N interaction V3y is the fundamental microscopic
input to Eq. (2). The momentum dependence of a general
translationally invariant 3N interaction can be most efficiently
expressed as a function of the Jacobi momenta

T %[kg . +kz>], G
where k; denote the single-nucleon momenta. In the following,
p and q (p’ and ') denote the Jacobi momenta of the initial
(final) state:

Van = Van(p.q.p'.q). 4

Hence, it is natural to perform the normal ordering Eq. (2) in
this Jacobi basis. By expressing all single-particle momenta in
terms of the Jacobi momenta and the two-body center-of-mass
momentum P = k; + k;, = k| + Kk, we obtain

— 3\’ d
Van = (5) Tro, Tre, / %nng)ﬂflm%”' ©)

The calculation of the effective interaction V sy is challeng-
ing due to the complex structure of general 3N interactions. For
practical treatment it is common to decompose 3N interactions

in a Jj-coupled 3N partial-wave momentum basis of the form
[43,44]

|pgary = |pq; (LI (1s)j1T(THT). (6)

Here, L, S, J, and T denote the relative orbital angular
momentum, spin, total angular momentum, and isospin of
particles 1 and 2 with relative momentum p. The quantum
numbers /, s = 1/2, j, and t = 1/2 label the orbital angular
momentum, spin, total angular momentum, and isospin of
particle 3 relative to the center-of-mass motion of particle
1 and 2. The 3N quantum numbers J and 7 define the total
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3N angular momentum and isospin (for details see Ref. [43]).
In particular, 3N interactions do not depend on the projection
quantum numbers m 7 and, for isospin-symmetric interactions,
also not on m7, hence we omit these labels in the basis states.

We evaluate Eq. (5) in this partial-wave basis. The basic
ingredient of our normal-ordering framework are antisym-
metrized 3N matrix elements of the form

(pqa|ViNIp'q'e)
= (pqa|(1 + Po3 + P132)V3N(1 + P13+ Pin)lp'q'a’),
(7

where P23, Pj3; are the cyclic permutation operators of three
particles and V;f\? represents one Faddeev component of the
3N interaction (see Refs. [43,45] for details).

Previous normal-ordering frameworks for infinite matter
have been developed for a specific 3N interaction, e.g., the
leading chiral 3N interactions at N2LO [8,42]. This makes it
necessary to redevelop expressions for the effective interaction
V 3x for each new contribution and for each isospin asymmetry.
Moreover, the treatment of more complicated 3N interactions,
e.g., the subleading chiral 3N interactions at N3LO [34,35],
becomes very tedious. In contrast, because the partial-wave
decomposition of these 3N interactions has been completed
very recently [45], these contributions can be included in the
present framework without additional efforts.

Although the effective interaction Vi is an effective NN
interaction, there are important differences to free-space inter-
actions: due to Galilean invariance, free-space NN interactions
can only depend on the initial and final relative momenta p and
p’. Since the many-body rest frame defines a preferred frame
the effective NN interaction V3y generally also depends on
the center-of-mass momentum P. In particular, the interaction
also depends on the angle between the momenta p, p’, and P,
which leads to a much more complicated partial-wave structure
than for free-space NN interactions. In order to avoid these
complications, the approximation P = 0 has been imposed for
the effective NN interaction in previous works [8,10,42].

The flexibility of the present framework allows us to extend
the calculation of V 3y to finite momenta P. In order to reduce
the complexity of the effective interaction and to simplify
its application in many-body calculations we average the
direction of P over all angles:

1
NGgrmye — (g P) = — / dQensgipyn.  (8)

with
2kp.
kF T

1, (Bg + P)

I'"(q,P)= 10, 3g — P|

1
2

<
2

J7 dcosnfy, p, otherwise,

€))
and y = (4k}. . P?)/(6Pq). Within this approxima-
tion the effective interaction V 3y acquires an additional de-
pendence on the absolute value of P, whereas its partial-wave
structure is still sufficiently simple so that it can be combined
with free-space NN interactions in many-body calculations in a
straightforward way. Explicitly, we obtain for the partial-wave

—9¢* —
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matrix elements normalized to the direct term:

(P(LS)I Tmy|Va(P)p'(L'S)IT'mr)

(=)t 3 Y ) /
= T @ny (E) 3/dqq fr(p.@) fr(P'.q)

Tmy+t Tmp+
X ZCT:nnTTl/;rCT'ZTTl/TszT(CI’P)
T

20 +1
x Z 2]_'_1811 8jj8sr <P610‘|V3N|P qa'), (10)
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FIG. 1. The upper panel shows the matrix elements of the
effective interaction V 3y = V3n/9 in the 'Sy channel with m; = —1
as a function of the center-of-mass momentum P for fixed relative
momenta, p = p’ = 1 fm™! (solid) and p = 2p’ = 1 fm~' (dashed
line), and proton fractions x at a neutron Fermi momentum ki =
1.4 fm~'. For the color code, see the legend in the lower panel.
The lower panel shows the diagonal matrix elements times p? as a
function of the relative momentum p. In the first- and second-order
many-body contributions, the value of P is kinematically limited to
P < ki + k72, soformr = —1to P < 2k}
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FIG. 2. Comparison of 3N Hartree—Fock energies based on Hamiltonian 2 in Table I for the P = 0 (red dashed) and P-average approximation
(blue solid line) for the effective interaction Vz; Results are shown as differences to the exact Hartree—Fock energy for three proton fractions,
x =0 (left), x = 0.3 (center), and x = 0.5 (right panel). The P = 0 values give larger deviations above saturation density, whereas the
P-average approximation behaves more systematic over the entire density range.

where fr(p,q) denotes the nonlocal 3N regulator function.
We will use the form fr(p.q) = exp —{[(p* + 3¢*/4)/ A"}
following Ref. [7]. Because of the definition of the 3N
matrix elements in Eq. (7), our effective NN potential, V;L =
Ai23VanAj23, involves two antisymmetrizers, in contrast to
the formal definition in Eq. (2).

Note that, except for neutron and symmetry matter, off-
diagonal matrix elements in spin and isospin quantum numbers
S and T contribute to the effective potential. It also depends on
the isospin projection my, a direct consequence of the isospin
dependence of the occupation function #n;. Only in the case
of neutron and symmetric nuclear matter is the interaction
diagonal in S, T, and it is also independent of the allowed m ¢
because of isospin symmetry of chiral 3N forces up to N*LO.

In Fig. 1 we present the results of some representative
matrix elements of Viy = Vé; /9 in the 'Sy channel with
my = —1 (nn) for different proton fractions x and a neutron
Fermi momentum k7, = 1.4 fm~'. The normalization of the
matrix elements is chosen such that they can be directly
combined with those of the free-space NN interaction for
calculations in the Hartree—-Fock approximation. The top
panel shows the matrix elements at fixed relative momenta,
p=p =1 fm™! (solid) and p=2p' =1 fm~' (dashed
line), respectively, as a function of P. Due to momentum
conservation, the value of P is kinematically limited to
P < ki + kg for the first- and second-order contributions,

depending on mr = 1; + 1. The lower panel shows the
diagonal matrix elements with the measure p? as a function
of the relative momentum for this range of center-of-mass
momenta. The P = 0 results are in excellent agreement with
Refs. [7,8]. For x = 0, the matrix elements have a rather weak
dependence on P. This suggests that neutron matter results can
be approximated reasonably well by the P = 0 approximation,
as checked at the Hartree—Fock level in Ref. [8], while for
increasing proton fractions the P dependence of the matrix
elements becomes more pronounced.

In Fig. 2 we compare results for the 3N Hartree—Fock
energies based on the different approximations for the effective
NN interaction. The three panels show the energy difference
to the exact Hartree—Fock result for proton fraction x =0
(left), x = 0.3 (center), and x = 0.5 (right). The effective NN
interaction based on the P = 0 approximation reproduces the
exact results well up to n ~ (0.13-0.23) fm~>, depending
on the proton fraction. For higher densities, the deviation
systematically increases, indicating a breakdown of the P = 0
approximation. In contrast, the results based on the P-average
approximation agree well with the exact results over the entire
density range.

III. MANY-BODY CALCULATIONS

For our many-body calculations we follow the calculation
strategy of Ref. [26]. We parametrize the total density in terms

TABLE II. Coefficients C,,, of the quadratic expansion (18) fit to the calculated equation of state E/A(f,i) for each Hamiltonian. The
values are from separately fitting neutron and symmetric nuclear and then extending quadratically in B according to Eq. (18). The coefficients

are given in MeV.

Co Cos Cos Cos Cos Cxn Cy Co Cos Co6
#1 0.3 —66.1 79.2 —50.3 20.3 6.1 156.2 —306.0 259.3 —83.8
#2 4.1 —78.2 92.5 —53.7 19.7 23 168.5 —319.9 263.8 —83.6
#3 12.5 —1252 191.0 —141.4 48.0 4.1 153.0 —275.9 209.2 —-59.7
#4 6.5 —83.0 92.8 —47.7 16.6 —-0.2 174.5 —322.6 260.2 —81.2
#5 9.1 —78.9 65.0 —-13.2 4.2 —4.0 178.3 =311.7 240.0 —72.6
# 6% 22 =710 106.6 —76.7 28.8 —4.8 219.0 —440.3 377.1 —119.6
#7 -0.9 —54.1 52.9 —28.5 17.6 -1.6 194.8 —385.0 332.9 —110.6
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of the neutron Fermi momentum kg and in terms of the proton
fraction x = n,/n or, equivalently, the isospin asymmetry g =
(n, —np)/n =1 — 2x. The neutron, proton, and total density
are labeled as n,,,np, andn = n, + n,, respectively. We probe
the sensitivity of our results to uncertainties of the Hamiltonian
by performing calculations for all interactions listed in Table I1.
These Hamiltonians start from two different NN potentials,
have different values of the SRG resolution scale X, different
3N cutoffs Asy, as well as different values of the long-range
couplings c;. In the future, the subleading 3N contributions

J

B RS
Vo 4n

PHYSICAL REVIEW C 93, 054314 (2016)

as well as consistently evolved 3N forces up to N°LO can
be treated in the present framework once reliable fits for the
couplings cp, cg are available. So far, fits based on present
NN interactions lead to unnaturally large cp, cg couplings at
N3LO [46]. Work in this direction is currently in progress.

Our calculations are based on a perturbative expan-
sion of the energy up to second order around the
Hartree—Fock state. In the Hartree—Fock approximation,
the energy density of isospin-asymmetric matter is given
by

dpp® /dPPZmeT(p,P) Y @7+ DI = (=D

L,S,J,T

x (p(LS)J Tmr|Van + Van(P)/91p(LS)J Tmy), (1)

with the short-hand notation i = k;0;t; and the combinatorial factor (1/9) of the effective interaction V;\I is discussed in detail
in Ref. [8]. Note that, since the matrix elements in Eq. (7) involve two instead of one antisymmetrizer, a relative conversion factor
of 3 is required for the comparison to Ref. [8]. Furthermore, we introduced the function f,.(p,P) = f d cos 6p, p”P /2 +pnP /2 p>
which depends only on the two-body isospin projection quantum number my = 1) + 1, because the integrand is symmetric in
the isospin indices t; and t,. It is important to constrain the phase-space integral to the nonvanishing region of the Fermi—Dirac
distributions. The general case of the phase-space integral can be written as

+1 Xmax
I= / d cos Qp_pn;LLP/znsz_P/zf(cos(@l,,p)) = O(Xmax — Xmin) d cos by p f(cos(p p)). (12)

1 Xmin

In terms of Dl.i(p,P) = (k%qf’ — P%/4 — p?)/(£pP), we obtain the limits,

Xmin = max[—1.0, min[+1.0,D; (p, P)]1, (13a)

Xmax = min[+1.0, max[—1.0, D] (p, P)]]. (13b)

Since f(cos(fpp)) = 1 at the Hartree—Fock level, this leads to f,,,(p,P) =
The second-order contribution to the energy density is given by

2 klnko(l_n )(1_ )
|
S

(Xmax — Xmin) O (Xmax — Xmin)-

(2) 2) 4
N+t B 1 .
N }|<12|V;3>|34>

dk;
NN N Tr, T
\% 421_[[ Lo, rr'f(zn)3

Expanding in partial waves and performing the spin sums leads to (see Refs. [8,47])

2n)*8(k; + Ky — ks — ky). (14)

> (pSMTM7|VR\p'S' My T' My)(p'S' My T" M7 | V2 |pSMsT" My)
S,8' Mg, Mg

L
=@ (- 1>S+SZPL<cos9pp> DD B 1>““LC£%LOC£8L0{ 7

S.5 L.L',L.L J,J

s
1

x (2J + DQ2J + 1)\/ QL+ DQRL' + DQRL + DQRL + D(K'(L'SYIT" My |VP |k(LS)JT" Mr)

D
[ —

Ny
N~

X (k(LS)JT M|V (L'S)JT M)

X [1 _ (_1)I:+S+T][1 _ (_1)L,+S/+T”][l _ (_1)1:/+S'+T/][

1— (_1)L+S+TW]. (15)

(

Here, the partial-wave interaction matrix elements are given
by Va(sz) = WaN + V;;,(P)/3 (see Ref. [8]), resulting from the
normal-ordered two-body part of 3N forces. {...} denote 6
symbols and Py (cos8) are Legendre polynomials. The sums

over the single-particle isospin quantum numbers have to be
performed explicitly, because the Fermi—Dirac distribution
functions break the isospin symmetry for asymmetric matter.
We stress that, in general, the effective interaction V3N
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couples different spin and isospin channels because of the
isospin dependence of the Fermi-Dirac distribution functions
in Eq. (5).

For the evaluation of Eq. (14) we need to calculate the
single-particle energies e, which are in general determined
by the solution of the Dyson equation ef = k*/(2m)+
ReX7(k,ex). For our calculations, we either use a free spectrum
or compute the self-energy in the Hartree—Fock approximation
and average over the external spin quantum numbers. More-
over, we average the isospin dependence, weighted by the

proton fraction x,
fdksz/dCOS 9k k,

Z W, (X)nk2 (Cl/2r| 1/212)

T Mr,t1,72

x Z(ZJ—i— DIl

J,S,L
x (k12/2(LS)JT Mr| VNN
+ Von(P)/6lki/2LS)ITMz),  (16)

2O (ky,x) =

2

_ (_ 1)L+S+T]

with k;; = |k; — k3|, and the combinatorial factor (1/6) of
the effective interaction Vi;, being discussed in Ref. [8]. The
isospin weighting factor w; is given by

X, T = +% (proton)
we(x) = (17)

1—x, 7= —% (neutron).

In this approximation the single-particle energies for a cer-
tain proton fraction x are then e(k,x) = k*/(2m) + =V (k,x),
with m being the average nucleon mass. In case of the free
spectrum, we apply only the kinetic energy as single-particle
energy. In neutron and symmetric matter, the isospin weighting
is equivalent to the ones in Refs. [7,8] but includes also
charge-symmetry breaking.

IV. RESULTS

A. Partial-wave convergence

For our practical calculations we include 3N matrix
elements up to J = 9/2 for the calculation of the effective
interaction V 3y via Eq. (10), where the 3N matrix elements are
calculated in the framework of Ref. [45]. We checked that this
basis space leads to well-converged results for the effective
NN potential up to partial-wave channels with J < 4. In
addition, we find excellent agreement with the matrix elements
of Vsn at P = 0 of Ref. [8] for neutron matter and with the
corresponding results for symmetric nuclear matter [7] based
on chiral 3N interactions at N°LO.

As an additional benchmark we compare in Fig. 3 the
Hartree—Fock contributions of 3N forces to the energy per
particle based on a summation of 3N matrix elements using
different truncations in J (following Ref. [48]) with results
derived directly from evaluating the operatorial structure of
the N?LO 3N interactions (see Refs. [8,47]) for neutron
matter (top panel) and for symmetric nuclear matter (lower
panel). These two independent calculations test directly the
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FIG. 3. Partial-wave convergence of the N?’LO 3N contributions
at the Hartree—Fock level in neutron matter (top) and symmetric
matter (bottom) for Hamiltonian 2 of Table I. For neutron matter the
contributions for J > 5/2 are very small, so the individual lines are
nearly indistinguishable.

convergence of the partial-wave decomposition and should
provide identical results in the limit J < Jmax — 00 up to
numerical uncertainties.

The results shown in Fig. 3 are based on the set of low-
energy couplings of Hamiltonian 2 of Table I and by including
all contributions with J < 6 for each 3N partial wave. We
find excellent agreement of the results for J < 9/2, with a
deviation of less than 100 keV at saturation density for neutron
matter and symmetric nuclear matter. Hence, for the following
we will use this basis space for the calculation of the effective
interaction V;;

B. Discussion of equation of state

In Fig. 4, we show the results for the energy per particle
for eleven proton fractions using different approximations for
the single-particle energies and the effective interactions V3x:
the dashed lines show the results based on the free single-
particle spectrum [i.e., ¥(V(k;,x) = 0], whereas the solid
lines show the results based on the single-particle energies
calculated in the Hartree—Fock approximation; the colored
(gray) bands represent results based on the effective NN
potential calculated in the P-averaged (P = () approximation,
respectively. For each of these four sets of results we determine
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FIG. 4. Energy per particle of nuclear matter as a function of the total density n =n, + n, for various proton fractions x. The two
approximations of the effective NN potential, P =0 and P average, and two approximations for the single-particle energies, free and
Hartree—Fock, are shown. The energy range is based on the set of Hamiltonians listed in Table I. The excluded Hamiltonian 6* has no influence
on the uncertainty bands. For a better view, the area between the dashed lines are not filled in the case of a free spectrum. For x = 0.5 we also
show the empirical saturation point (see text for details).
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the theoretical uncertainties by performing calculations based
on the Hamiltonians listed in Table I and extract the maximal
spread of these results. We note that, for Hamiltonian 6%, the
fits of the short-range 3N couplings cp,cg in Ref. [7] have
not taken into account the isospin breaking of the N°LO NN
potential EGM 550/600 MeV. This leads to deviations for
the *H binding energy of ~200 keV in comparison to exact
calculations. We will discuss this Hamiltonian separately but
emphasize here that it has no influence on the uncertainty
bands shown in Fig. 4.

From the many-body point of view, neutron matter (x = 0)
represents the simplest system. At N?LO, only the long-range
3N forces proportional to ¢; and c3 contribute for nonlocal
regulators fr(p,q) due to the Pauli-principle and the isospin
structure of the 3N forces [8]. In addition, no NN S-wave
tensor interactions are active in neutron matter. As a result we
find relatively narrow uncertainty bands with a width of about
4 MeV at saturation density.

Increasing the proton fraction influences the overall un-
certainty in two ways: First, the width of the bands for
each of the two single-particle spectra becomes larger up
to 5 to 6 MeV for symmetric nuclear matter at the high-
est density shown. The upper uncertainty limit is always
determined by Hamiltonian 7, which also leads to rather
small saturation densities for x = 0.5 (see below). Second,
the difference between the individual results based on the
two spectra grows systematically for larger proton fractions.
The dependence of our results on the single-particle energies
probes the perturbativeness of the Hamiltonians and provides a
measure of contributions from higher orders in the perturbative
expansion. Hence, these results indicate the need to analyze
third-order contributions more closely, which we discuss in
Sec. IV C. The two approximations lead to comparable results
and widely overlapping bands in each spectrum. We find that
the P-average approximation is slightly more repulsive, and
the bands are shifted at saturation density by ~1 MeV in
symmetric matter.

We discuss now the properties of the equation of state
based on the P-average approximation of the effective in-
teraction. Considering the free and the Hartree—Fock spec-
trum and, excluding Hamiltonian 6*, symmetric matter sat-
urates at ny = (0.138-0.190) fm—> with energies of E/A =
—(13.2-18.3) MeV. Hamiltonian 6* increases slightly the
upper limit by Ang = 0.003 fm~>. The saturation points for
each of the seven Hamiltonians of Table I are shown in
Fig. 5. The red (blue) points correspond to the calculations
with a free (Hartree—Fock) spectrum. Hence, the gray line
connecting the two calculations indicates the convergence
of the calculation. We find a Coester-like linear correlation
between the energy and density at the saturation point, but the
range is considerably smaller than the Coester line based on
NN interactions only [49]. The green band has been obtained
by independently fitting a linear function to the saturation
points for the two spectra excluding Hamiltonian 6*.

Skyrme energy-density functionals based on properties
of nuclei and nuclear matter can be used to empirically
constrain the saturation point [50-52]. Table 7 of Ref. [50]
summarizes 16 selected functionals, which reproduce well
selected properties of nuclear matter. Six more are excluded
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FIG. 5. Correlation between the saturation density and energy for
the seven Hamiltonians of Table I, indicated by the figure. The green
area highlights the obtained Coester band based on independently
fitting the saturation points for a free and a Hartree—Fock spectrum.
The gray lines connect the two spectra. As discussed in the text,
the empirical saturation point (gray box) is given by the range
of 14 selected energy-density functionals. The region is in good
agreement with our calculated Coester band. See the text for details
of Hamiltonian 6%*.

because of unreasonable behavior for large densities [50]
or being unstable for finite nuclei. The remaining ten are
listed in Table 1 of Ref. [52]. Our empirical saturation
range is determined based on these functionals plus those of
Ref. [53] (SLy4, UNEDFO, UNEDF1, and UNEDF2). As a
result we obtain the ranges ngmp = (0.164 &+ 0.007) fm™> and
E®™ /A ~ —(15.9 £ 0.4) MeV, which is indicated by the gray
boxes in Figs. 4 (for x = 0.5) and 5.

Our band in Fig. 5, based on NN and 3N interactions,
overlaps with the empirical saturation point, in contrast with
calculations based on NN interactions only [49]. This holds
especially for the equation of state based on Hamiltonian 4 and
5. We note that Hamiltonian 5 has the largest dependence on the
spectrum as it is almost twice compared to Hamiltonian 1. This
may be due to the large resolution scale A = 2.8 fm~! of the
Hamiltonian. Although the *H binding energy corresponding
to Hamiltonian 6* is not well fit, it behaves still natural and
similar as Hamiltonian 1.

Following the usual quadratic expansion in the isospin
asymmetry 8, we approximate globally the equation of state
in terms of a power series in the reduced density 71 =
n/(0.16 fm™)

E
(B0 = > CuBrE”. (18)
n=0,2

v=2,3,4,5,6

In order to determine the coefficients C,,, we fit to the energy
per particle of neutron and symmetric nuclear matter and
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interpolate then quadratically in 8 to general isospin asym-
metries. We constrain the fit to densities of (0.02-0.22) fm .
The resulting values of the coefficients are listed in Table II.
Based on the root-mean-square deviation of the global energy
expression and the equation of state of each calculated asym-
metry, we have checked that Eq. (18) provides a reasonable
approximation for our microscopic results, especially close to
symmetric matter. At n = 0.16 fm 3, the largest deviation to
the data is <220 keV for neutron-rich matter, while the typical
value for larger proton fractions is much smaller. We stress that
these coefficients only represent results from a least-squares
fit to our data and are given here just for completeness. In
particular, any physical interpretation of these coefficients has
to be done with care due to the large values of some coefficients
(see Table IT) and the resulting cancellations of terms.

Using the parametrization (18) we compute the incompress-
ibility K and the symmetry energy S,,

2 E
K = 9ﬁz(ﬁ,n) G (19a)
B=0
192 E
= E@X(ﬂ’”) A1 (19b)
=0

at the actual saturation density of each Hamiltonian. Based
on the uncertainty ranges of our results (shown as the colored
bands in Fig. 4) we obtain the ranges K = (182-254) MeV and
Sy = (28.4-35.7) MeV, considering the free and the Hartree—
Fock spectrum and excluding Hamiltonian 6*. Hamiltonian
6* would increase the upper uncertainty limits to AK =
8 MeV and AS, = 0.4 MeV. We note that the value of
Sy = (30.2-32.2) MeV (at fixed density ng = 0.16 fm™3),
which we obtained in Ref. [26] for small proton fractions, is in
agreement with these improved calculations. The uncertainty
here is larger because Eqs. (19) are evaluated here at the
actual saturation density of the Hamiltonian and not at fixed
no = 0.16 fm=>. We will study the properties of the symmetry
energy and the importance of a quartic term (~f*) of the
energy expansion in a subsequent presentation.

C. Estimate of third-order contribution

The results shown in Fig. 4 exhibit a mild sensitivity
to the single-particle spectrum employed, which indicates
that contributions beyond second order in the perturbative
expansion might give non-negligible contributions. Here, we
estimate third-order contributions to neutron and symmetric
nuclear matter in order to assess the quality of the per-
turbative convergence. At third order, the diagrams involve
particle-particle, hole-hole, and particle-hole excitations. We
consider here only particle-particle and hole-hole diagrams,
respectively (see Ref. [7] for details). The calculations are
simplified by employing angle-averaged Fermi—Dirac distri-
bution functions. Figure 6 shows the corresponding third-order
contributions, E® /A, in neutron (top panel) and symmetric
matter (bottom panel) for the two approximations of the
effective interaction and using free or Hartree-Fock single-
particle energies.
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FIG. 6. Contributions at third order in the perturbative expansion
to the energy of neutron matter (top panel) and symmetric nuclear
matter (lower panel). The color coding and line styles are the same
as in Fig. 4. Accordingly, the uncertainty estimates are based the
Hamiltonians of Table I.

At nop=0.16 fm™> and using a Hartree—Fock (free)
spectrum, we find repulsive contributions of up to ~500 keV
(~600 keV) in neutron matter and ~(100-600) keV
[~(0.3-1.3) MeV] in symmetric matter. The NN interaction
dominates the overall contributions. However, 3N forces
become more important for larger proton fractions. These
findings are consistent with the results in Ref. [54], based
on low-momentum interactions Vi, . In future work, we
will study the order-by-order convergence in the many-body
expansion by including also particle-hole contributions (see
also Ref. [14]). We emphasize that Hamiltonian 6* (see Table I)
does not influence these uncertainty estimates.

In order to address the perturbative convergence we show in
Fig. 7 for each Hamiltonian of Table I the energy contributions
(V) /A to the free Fermi gas at first (red), second (green),
and third order (blue) in many-body perturbation theory.
The variation of the two single-particle spectra defines the
uncertainty bands at second and third order. The figure shows
that the second-order results are suppressed by a factor of ~6
compared to Hartree Fock whereas the third-order estimates
are suppressed by a factor of ~5 relative to second order at the
largest density shown, n = 0.2 fm~>. The band at second order
is typically ~10% with respect to the first-order contribution.
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FIG. 7. Interaction energy at first, second, and third order in symmetric nuclear matter (x = 0.5) for the employed Hamiltonians of
Table I. As discussed in the text Hamiltonian 6* is excluded. The suppression of higher orders in the perturbative expansion demonstrates
the convergence of many-body perturbation theory and suggests that the sensitivity of the second-order results on the single-particle energies

provide a conservative estimate for the many-body uncertainties.

Only the Hamiltonian (5) with the large resolution scale
L =28 fm~! shows, as expected, a larger sensitivity on
the single-particle spectrum and a weaker suppression of
higher-order terms in many-body perturbation theory.

In conclusion, Fig. 7 demonstrates the convergence of
many-body perturbation theory for the employed Hamiltonians
and suggests that the sensitivity of the second-order results on
the single-particle energies provide a conservative estimate for
the many-body uncertainties.

V. SUMMARY AND OUTLOOK

We presented results for isospin-asymmetric matter based
on N?LO NN and N?LO 3N interactions calculated in many-
body perturbation theory. The contributions from three-body
forces beyond the Hartree—Fock approximation are included
via an improved normal-ordering framework. This novel
framework is based on partial-wave 3N matrix elements and
makes it possible to generalize the computation of the effective
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density-dependent two-body interaction to finite center-of-
mass momenta. In addition, it is also straightforward to include
contributions from subleading 3N interactions at N3L0[34,35]
by utilizing a new method for decomposing efficiently 3N
interactions in a partial-wave plane-wave basis [45]. Such
full N*LO calculations can be performed immediately once
reliable fits for the low-energy couplings cp,cg are available.

We employed the new normal-ordering framework to
calculate the effective potential as a function of the center-
of-mass momentum P by averaging this vector over all angles.
We benchmarked our results against previous results for
vanishing P and probed the sensitivity of the energy per
particle at the Hartree—Fock level to different approximations
in the normal ordering. We found that both approximations,
P =0 and P-averaging, provide good agreement with exact
results up to intermediate densities of about n ~ 0.13 fm 3,
whereas the P = 0 approximation becomes unreliable beyond
this density. In contrast, the new P-averaging approximation
remains stable and close to the calculated results for all relevant
densities.

For our many-body calculations we followed the strategy of
Ref. [7]. The NN forces were evolved via the SRG, whereas the
short-range couplings of the 3N interactions at N°LO were fit
to few-body observables at a given NN resolution scale. The
theoretical uncertainties of our many-body observables are
determined by the range obtained from the different Hamil-
tonians listed in Table 1. Recently, this has been successfully
used to study ab initio the charge radius, the neutron radius,
the weak form factor, and the dipole polarizability of “*Ca
[55]. In addition, we estimated the many-body uncertainties
by employing different approximations for the normal ordering
of the 3N interactions and using different approximations for
the single-particle energies.

PHYSICAL REVIEW C 93, 054314 (2016)

Based on the results for the energies at different proton
fractions, we fist calculated a global analytical fit in density
and proton fraction for each Hamiltonian and then extracted
results for the saturation point of symmetric matter, the
incompressibility, and for the symmetry energy by using the
standard quadratic expansion around symmetric matter. We
found a Coester-like linear correlation between saturation
density and energy, and the band covers the empirical range.
In addition, we found that a quadratic parametrization in
the isospin asymmetry reproduces the microscopic results
reasonably well.

As next steps, it will be crucial to improve the estimates of
the theoretical uncertainties and also to investigate different
regulator choices. As an example, in Refs. [31,32] novel
NN potentials at leading order (LO), next-to-leading order
(NLO), N’LO, N’LO, and N*LO and different regulator scales
were derived. The present many-body framework allows to
perform systematic order-by-order convergence studies in the
chiral expansion at different regulator scales based on such
potentials, including 3N forces up to N3LO. In addition,
the present framework can be generalized by performing the
normal-ordering with respect to a general correlated reference
state, by extending the calculations to finite temperature, and
by incorporating particle-hole and higher-order contributions
in the many-body expansion. This will allow also systematic
convergence studies in the many-body expansion.
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