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The correlations between global description of the ground state properties (binding energies, charge radii) and
nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was
concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Dutra
et al. [Phys. Rev. C 90, 055203 (2014)] will not necessarily lead to the functionals with good description of the
binding energies and other ground and excited state properties. In addition, it will not substantially reduce the
uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals,
which come close to satisfying these NMP constraints, have some problems in the description of existing data.
On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted
to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of
finite nuclei are defined not only by nuclear matter properties but also by underlying shell effects. The mismatch
of phenomenological content, existing in all modern functionals, related to nuclear matter physics and the physics
of finite nuclei could also be responsible.
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I. INTRODUCTION

Bound states of the nucleons manifest themselves in two
species: finite nuclei and neutron stars. The former system
is bound by strong forces, while the latter by gravitational
ones. The description of both types of nuclear systems is
intimately connected with a concept of nuclear matter which is
an idealized infinite system of nucleons (neutrons and protons)
interacting by strong forces. Infinite volume implies no surface
effects and translational invariance. This concept is well suited
for the description of the properties of interior of neutron stars.

However, it also has some important implications for
finite nuclei (see Refs. [1–5] in recent topical reviews on
nuclear symmetry energy). This is because the constraints on
nuclear matter properties (NMP) enter into fitting protocols of
the energy density functionals (EDF) for nonrelativistic and
covariant density functional theories [6,7] (the abbreviation
CDFT is used for the latter one). In this way they affect the
properties of finite nuclei (both static and dynamic aspects)
[1–4,6,7].

The analysis of the 263 covariant energy density functionals
(further CEDFs) with respect to NMP constraints has recently
been performed in Ref. [9]. Note that only small portion of
these functionals (less than 10) have been used in a more
or less systematic studies of the properties of finite nuclei.
The performance of other functionals with respect of the
description of finite nuclei (apart of few spherical nuclei used in
the fitting protocols) is not known. The properties of symmetric
nuclear matter, pure neutron matter, symmetry energy, and its
derivatives were constrained based on experimental/empirical
data and model calculations in Ref. [9]. This resulted in two
sets of constraints called SET2a and SET2b relevant for CDFT
models; the part of these constraints is listed in Table III below.
Note that they are characterized by substantial uncertainties.

It turns out that among these 263 CEDFs only 4 and 3 satisfy
SET2a and SET2b NMP constraints, respectively. However,
these functionals have never been used in the studies of finite
nuclei. Thus, it is impossible to verify whether good NMP of

these functionals will translate into good global description of
binding energies, charge radii, deformations, etc. Removing
the isospin incompressibility constraint increases the number
of functionals which satisfy SET2a and SET2b constraints
to 35 and 30, respectively [9]. Again the performance of
absolute majority of these functionals in finite nuclei is
not known. However, among those are the FSUGold and
DD − MEδ CEDFs the global performance of which has been
studied in the RMF+BCS and RHB models in Refs. [8,10],
respectively. Additional constraints on the functionals come
from the properties of neutron stars [11]. It turns out that
FSUGold and DD − MEδ place maximum mass M of the
neutron star well below and above the measured limit of 1.93 �
M/M� � 2.05 [12,13], where M� is the solar mass. The
DD − MEδ functional comes to this limit only when hyperons
are included; however, there are substantial uncertainties in
the meson-hyperon couplings [11] as well as in the existence
of hyperons in the interior of neutron stars [14].

Thus, a number of questions emerge. The first one is
whether strict enforcement of these NMP constraints will
inevitably lead to an improvement of the description of the
ground state properties of finite nuclei in the CDFT and to a
reduction of theoretical uncertainties in the description of the
properties of neutron-rich nuclei. Another question is whether
there is some physics missing in the current generation of
CEDFs which could be responsible for some mismatch of the
results for finite nuclei and neutron stars. It is also important
to understand how the details of the fitting protocols affect
these conclusions. The study of these questions represents the
first goal of the present paper. The second goal is to understand
whether future experimental data on the ground state properties
of neutron-rich nuclei will allow to minimize theoretical
uncertainties for physical observables of neutron-rich nuclei
and to which extent. Such an approach assumes more reliance
on the data on finite nuclei and less dependence on the NMP
constraints in the definition of isovector properties of CEDFs.

To address these questions we perform the global analysis
of the ground state observables such as binding energies and
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charge radii obtained with the state-of-the-art CEDFs which
differ substantially in the NMPs. CEDF DD − MEδ, which
comes very close to satisfying all required NMP constraints,
is among them. Binding energies of finite nuclei play an im-
portant role in the nuclear structure and nuclear astrophysics.
Their evolution with charge and isospin defines the limits of
nuclear landscape (Refs. [10,15,16]). Accurate modeling of
nuclear astrophysics processes and the reduction of relevant
theoretical uncertainties requires the precise knowledge of
binding energies of neutron-rich nuclei which are currently
nonaccessible by experimental facilities [17].

The paper is organized as follows. Section II presents brief
outline of the theoretical framework. Theoretical uncertainties
in the predictions of binding energies and the role of future
experimental facilities in their reduction are discussed in
Sec. III. Section IV considers the impact of nuclear matter
properties of the functionals on the predictions of binding
energies in known and neutron-rich nuclei. The accuracy of the
description of the ground state properties of finite nuclei and
its dependence on the fitting protocol are discussed in Sec. V.
Section VI is devoted to general observations following from
this study. Finally, Sec. VII summarizes the results of our work.

II. BRIEF OUTLINE OF THE DETAILS OF THEORETICAL
FRAMEWORK

The results have been obtained in the relativistic Hartree-
Bogoliubov (RHB) framework the details of which are
discussed in Secs. III and IV of Ref. [10]. These deformed
RHB calculations are restricted to axial reflection symmetric
shapes.

We focus on four CEDFs (NL3* [18], DD-ME2 [19],
DD-PC1 [20], and DD − MEδ [21]) which were used in the
global studies of Refs. [10,16,22] and for which numerical
results are available. These functionals are compared in Sec. 2
of Ref. [10]. To deal with complete set of major classes
of the state-of-the-art CEDFs, we also provide new results
obtained with CEDF PC-PK1 [23] for the Yb isotope chain.
This functional has been used with success for the studies
of the masses of known nuclei by the Peking group in
Refs. [24,25].

TABLE I. Input data for fitting protocols of different CEDFs.
Columns 2–4 show the number of experimental data points on binding
energies E, charge radii rch, and neutron skin thicknesses rskin used
in the fitting protocols. Column 5 indicates which type of nuclei
[spherical (S) or deformed (D)] were used. Column 6 shows whether
microscopic equation of state (EOS) has been used in the fit of the
functional or not; here “Y” stands for “yes” and “N” for “no”.

CEDF E rch rskin Type of nuclei EOS
1 2 3 4 5 6

NL3* 12 9 4 S N
DD–ME2 12 9 3 S N
DD-MEδ 161 86 0 S Y
DD-PC1 64 0 0 D Y
PC-PK1 60 17 0 S N

These functionals reproduce the binding energies of known
nuclei at the mean field level with the rms deviations of
around 2.5 MeV (see Table II below). However, they differ
substantially in the underlying physics (see discussion in Sec. 2
of Ref. [10] and Ref. [23]) and fitting protocols (see Table I
and Fig. 5 below).

Table I shows that only two of these functionals, namely,
DD − MEδ and DD-PC1, are fitted to the equation of state
(EOS) of neutron matter obtained in microscopic calculations
with realistic forces. Although these EOS are similar at
saturation densities, they differ substantially in their stiffness
at the densities typical to the center of neutron stars [2,26,27].
Note that no reliable data, either observational or experimental,
exist for such densities. As a result, there is no way to
discriminate these predictions for the EOS.

III. THEORETICAL UNCERTAINTIES IN THE
PREDICTIONS OF BINDING ENERGIES AND THE ROLE

OF FUTURE EXPERIMENTAL FACILITIES
IN THEIR REDUCTION

The map of theoretical spreads �E(Z,N ) in the predictions
of the binding energies is shown in Fig. 1. These spreads are
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FIG. 1. The binding energy spreads �E(Z,N ) as a function of proton and neutron number. From Ref. [10].
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TABLE II. The rms deviations �Erms and �(rch)rms between calculated and experimental binding energies E and charge radii rch. Columns
2 and 4 show the �Erms and �(rch)rms values obtained in the RHB calculations of Ref. [10] for the nuclei used in the fitting protocols of first four
functionals. Note that our results for the DD − MEδ differ from the ones obtained in Ref. [21] which are shown in brackets. This is because 24
out of 161 nuclei used in the fit are deformed in our calculations; note that all these 161 nuclei were assumed to be spherical in Ref. [21]. The
results for CEDF PC-PK1 are from Ref. [23]. Columns 3 and 5 show the �Erms and �(rch)rms values obtained in global calculations. For first
four functionals, they are defined in Ref. [10] with respect to 640 measured masses presented in the AME2012 compilation [28]. For PC-PK1
they are defined with respect of 575 masses in Ref. [24].

CEDF �Efit
rms [MeV] �E

global
rms [MeV] �(rch)fit

rms[fm] �(rch)global
rms [fm]

1 2 3 4 5

NL3* 1.68 2.96 0.017 0.0283
DD-ME2 1.48 2.39 0.015 0.0230
DD − MEδ 2.33 [2.4] 2.29 0.028 [0.02] 0.0329
DD-PC1 0.69 2.01 0.039a 0.0253
PC-PK1 1.33 2.58 0.019

aNote that no information on charge radii has been used in the fit of the DD-PC1 CEDF [20].

defined as

�E(Z,N ) = |Emax(Z,N ) − Emin(Z,N )|, (1)

where Emax(Z,N ) and Emin(Z,N ) are the largest and the
smallest binding energies for each (N,Z) nucleus obtained
with four state-of-the-art functionals, namely, NL3*, DD-
ME2, DD − MEδ, and DD-PC1. Here the results of the
calculations of Ref. [10], covering the nuclear landscape
between the two-proton and two-neutron drip lines, are used.
The accuracy of the description of experimental masses by
these functionals is given in Table II. Figure 2(a) shows that
the spreads in the predictions of binding energies stay within
5–6 MeV for the known nuclei (the regions with measured
and measured+estimated masses1 in Fig. 2(a)). These spreads
are even smaller (typically around 3 MeV) for the nuclei in
the valley of β stability. However, theoretical uncertainties
for the masses increase drastically when approaching the
neutron-drip line and in some nuclei they reach 15 MeV. This is
a consequence of poorly defined isovector properties of many
CEDFs.

Figure 2(b) shows the spreads of the relative errors in the
predictions of binding energies which are defined as

�Erel(Z,N ) = |Emax(Z,N ) − Emin(Z,N )|
1
4

∑4
i=1 Ei(Z,N )

, (2)

where Ei(Z,N ) is the binding energy obtained with the ith
functional. The quantity in the denominator is the average
binding energy of the (Z,N ) nucleus obtained with four
CEDFs. These spreads in relative errors are largest in light
nuclei due to the effects which are not taken into account at
the DFT level (see Ref. [10]). For known nuclei they gradually

1The masses given in the AME2012 mass evaluation [28] can
be separated into two groups: One represents nuclei with masses
defined only from experimental data, the other contains nuclei with
masses depending in addition on either interpolation or extrapolation
procedures. For simplicity, we call the masses of the nuclei in the
first and second groups as measured and estimated. There are 640
measured and 195 estimated masses of even-even nuclei in the
AME2012 mass evaluation.

decrease with the increase of mass so that for the A � 80
nuclei the spreads in relative errors stay safely below 0.5%.

It is important to understand how future mass measurements
with rare isotope facilities (such as FRIB, GANIL, RIKEN,
and FAIR) could help to improve isovector properties of the
functionals. Figure 2 clearly shows that the increase of the
neutron number beyond the region of known nuclei leads to
an increase of the �E and �Erel spreads. However, apart of
the Z ∼ 40,N ∼ 82 region these increases are quite modest in
terms of binding energy spreads �E on going from currently
known limit of neutron-rich nuclei (for which �E ∼ 6 MeV)
up to the FRIB limit (for which �E ∼ 8 MeV). Note that for
Z � 70 nuclei a similar transition almost does not increase the
�E and �Erel spreads. The largest increase in the �E spreads
is observed in the Z ∼ 40 nuclei for which the transition from
the limit of currently known nuclei to the FRIB limit changes
�E from ∼6 MeV to ∼12 MeV [Fig. 2(a)].

These results suggest that new mass measurements with
future rare isotope beam facilities, which (dependent on
model) may reach two-neutron drip line or its vicinity for
the Z � 26 nuclei (Fig. 2), could help to improve isovector
properties of the CEDFs in the Z � 50 nuclei. However, this
improvement is expected to be modest.2 This is in part due
to the fact that beyond mean field effects are quite important
in light nuclei [10] which complicates the use of future data
on masses for the refit of the functionals at the DFT level.
The fact that the spread of relative errors in the predictions
of the masses is the largest in light nuclei (see Fig. 2(b)) also
underlines the fact that light nuclei are less “mean-field like”
as compared with heavy ones. An even smaller improvement
in the definition of isovector properties of the functionals is
expected for the 50 � Z < 82 nuclei since the increase in
the �E spreads on going from the neutron-rich limit of the
region of known nuclei to the FRIB limit is rather small being
typically around 2 MeV or less. It is also clear that future rare
isotope beam facilities will contribute very little to a better

2This is in line with recent results of Ref. [30] which indicates that
new mass measurements do not impose a strong enough constraint to
generate significant changes in the energy density functionals.
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FIG. 2. Panel (a) is based on the results presented in Fig. 1. However, the squares are shown only for the nuclei which are currently known
and which will be measured with FRIB. The regions of the nuclei with measured and measured+estimated masses are enclosed by dashed and
solid black lines, respectively. The squares beyond these regions indicate the nuclei which may be measured with FRIB. For simplicity the
line formed by the most neutron-rich nucleus in each isotope chain accessible with FRIB will be called as “FRIB limit”. The FRIB limit of
the nuclear chart is defined by a fission yield greater than 10−6 that may be achieved with dedicated existence measurements [29]. The same
color map as in Fig. 1 is used here, but the ranges of particle numbers for vertical and horizontal axis are different from the ones in Fig. 1. The
two-neutron drip lines are shown for the CEDFs NL3* and DD-PC1 by blue dashed and solid red lines, respectively. Panel (b) is based on the
same results as (a), but the spreads in relative errors in the description of the masses are shown instead of binding energy spreads �E.

understanding of the isovector properties of the Z � 82 nuclei
(Fig. 2).

The results presented in Figs. 1 and 2 are limited to the four
CEDFs which were used in the global studies of Ref. [10].
In general, this group of CEDFs has to be supplemented
by the PC-PK1 functional since then the set of the state-of-
the-art functional representing major classes of CEDFs will
be complete. This has not been done in Ref. [10] since the
description of the ground state properties by PC-PK1 has been
studied by the Peking group in the RMF+BCS framework in
Ref. [24]. However, the properties of superheavy and octupole
deformed nuclei have been studied globally with all five
functionals in Refs. [31,32].

We have not performed additional global studies with the
PC-PK1 functional since the main conclusions can be derived
based on the RHB results for the CEDFs NL3*, DD-ME2, DD-
PC1, and DD − MEδ obtained earlier in Ref. [10]. However,
we will illustrate the performance of this functional on the
example of the Yb nuclei. The results for calculated binding
energies are presented in Fig. 3. Here the results obtained
with DD-PC1 are used as a reference since this functional
provides the best description of the binding energies (see
Table II and Fig. 6(d) below). In the region of known nuclei, the
predictions of the PC-PK1 functional are very close to the ones
obtained with the DD-ME2 and DD − MEδ functionals. With
increasing neutron number N the PC-PK1 results come closer
to those obtained with DD-PC1 and above N = 122 the nuclei
are more bound in PC-PK1 than in DD-PC1. However, for the
Yb nuclei within the FRIB limit (apart of the N = 128,130
Yb isotopes), the spreads of binding energies �E presented
in Figs. 1 and 2 would be only marginally affected by the
addition of the results obtained with the PC-PK1 functional.
On the other hand, the effect of the addition of PC-PK1
on �E is very substantial for the nuclei beyond the FRIB

limit where �E increases from ∼16 MeV to ∼37 MeV for
N = 162 (see Fig. 3). These differences are caused by different
isovector properties of CEDFs under study since calculated
deformations are similar for all functionals. These results for
�E are not surprising considering that even the functionals
accurately fitted to the masses show substantial differences
in the binding energies of neutron-rich nuclei. For example,
the Skyrme functionals HFB-22 and HFB-24, which describe
known masses with an accuracy of approximately 0.6 MeV
[2], are characterized by the �E values reaching 10 MeV in
neutron-rich nuclei (see Fig. 3 in [2]).
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Note that there are some important similarities between the
NL3* and PC-PK1 functionals. First, the evolution of the pair-
ing energies and pairing gaps with neutron number in PC-PK1
is very similar to the one in NL3* (see Fig. 3 in Ref. [22] for the
NL3* results). Second, both functionals predict the position
of the two-neutron drip line at higher neutron number (at
N = 178 for NL3* and at N = 184 for PC-PK1) as compared
with the DD-* functionals with explicit density dependence
which predict it at N ∼ 162 (see Table IV in Ref. [10]).

IV. THE IMPACT OF NUCLEAR MATTER PROPERTIES
OF THE FUNCTIONALS ON THE PREDICTIONS OF

BINDING ENERGIES OF KNOWN AND
NEUTRON-RICH NUCLEI

Although new experimental data on masses of neutron-rich
nuclei generated by future rare isotope facilities will allow
to improve the isovector properties of the energy density
functionals, it is not likely that such an improvement will either
eliminate or substantially reduce all possible uncertainties.
Moreover, it is not clear whether the bias towards light and
medium mass nuclei generated by future experimental data
could be avoided since very little extension of the nuclear chart
will be generated for the Z � 82 nuclei by these experiments
(Fig. 2). This is precisely the region where most of unknown
Z � 120 nuclei are located and where the distance (in terms
of neutrons) between the region of known nuclei and the
two-neutron drip line is the largest (see Fig. 1 in Ref. [16]).

The fitting protocols of EDFs always contain data on
finite nuclei (typically binding energies, charge radii, and
occasionally neutron skin thicknesses) and pseudodata on
NMP (see Table I and Sec. II in Ref. [10] for more details).
Binding energies and radii show different sensitivity to various
terms of the CEDFs and, in addition, there are some important
correlations between the NMP and surface properties of the
functionals. For example, the calculated binding energies are
not very sensitive to the nuclear matter saturation density but
are strongly influenced by the choice of the parameters which
define the surface energy coefficient as in the empirical mass
formula [20]. A strong converse relation exists between the
nuclear charge radii and the saturation density of symmetric
nuclear matter ρ0 [33]. In addition, there is a strong correlation
between the slope of symmetry energy L0 and neutron
skins [33–35] (see Refs. [33–37] for the discussion of other
correlations).

Considering that existing data on binding energies do not
allow to fully establish isovector properties of EDFs and make
reliable predictions for masses of neutron-rich nuclei, it is
important to have a closer look on NMP in order to see
whether strict enforcement of NMP constraints could reduce
theoretical uncertainties in isovector properties of EDFs and
mass predictions for neutron-rich nuclei.

One way to do that is to see whether there is one-to-one
correspondence between the differences in NMP of two
functionals and the differences in their description of binding
energies. Figure 4 and Table III are created for such an
analysis. The differences of the binding energies of several
pairs of CEDFs are compared in Fig. 4; they are based on

the results of the RHB calculations obtained in Ref. [10].
Table III summarizes the NMPs of employed functionals
and the experimental/empirical ranges for the quantities of
interest obtained in Ref. [9]. The binding energy per particle
E/A ∼ −16 MeV and the saturation density ρ0 ∼ 0.15 fm−3

represent well-established properties of infinite nuclear matter.
On the other hand, the incompressibility K0 of symmetric
nuclear matter, its symmetry energy J , and the slope L0 of
symmetry energy at saturation density are characterized by
substantial uncertainties (see Ref. [9] for details). Effective
mass of the nucleon at the Fermi surface m*/m is also poorly
defined in experiment.

The smallest difference in the predictions of binding ener-
gies exists for the DD-ME2/DD − MEδ pair of the functionals
[Fig. 4(a)]; for almost half of the Z � 104 nuclear landscape
their predictions differ by less than 1.5 MeV and only in a few
points of nuclear landscape the differences in binding energies
of two functionals are close to 5 MeV. The NMPs of these two
functionals are similar with some minor differences existing
only for the incompressibility K0 and Lorentz effective mass
m*/m (Table III). However, the similarity of NMP does not
necessarily lead to similar predictions of binding energies.
This is illustrated in Fig. 4(d) on the example of the pair of
the DD-ME2 and DD-PC1 functionals for which substantial
differences in the predictions exist for quite similar NMP
(Table III).

An even more striking example is seen in Fig. 4(b) where the
NL3*/DD-PC1 pair of the functionals, which are characterized
by a substantial differences in the energy per particle (E/A),
symmetry energy J , and its slope L0 (Table III), have
significantly smaller differences in predicted binding energies
as compared with above mentioned DD-ME2/DD-PC1 pair of
the functionals. This is a consequence of a peculiar feature of
the relative behavior of the binding energies of the NL3* and
DD-PC1 functionals with increasing isospin which is clearly
visible in Fig. 3. Note that the J and L0 values of the NL3*
functional are located outside the experimental/empirical
ranges for these values defined in Ref. [9] (see Table III).

As mentioned in the Introduction among the functionals
for which global analysis of experimental binding energies
exists only two, namely, FSUGold and DD − MEδ satisfy the
majority of the NMP constraints. However, CEDFs FSUGold
and DD − MEδ face significant problems in the description of
finite nuclei. FSUGold is designed for neutron star applications
in Ref. [39] and it is characterized by the largest rms deviations
(6.5 MeV) from experiment for binding energies among all
CEDF’s the global performance of which is known [10]. At
present, DD − MEδ is the most microscopic functional among
all existing CEDFs; it relies on the pseudodata from ab initio
calculations to determine the density dependence of the meson-
nucleon vertices so that only four parameters are fitted to
the properties of finite nuclei. Although DD − MEδ provides
quite reasonable description of binding energies (see Table II,
Fig. 6 below, and Refs. [10,31]), it generates unrealistically
low inner fission barriers in superheavy elements [40] and
fails to reproduce octupole deformed nuclei in actinides [32].

The analysis of Refs. [10,31,32,41,42] clearly indicates
that the CEDFs NL3*, DD-ME2, PC-PK1, and DD-PC1
represent better and well-rounded functionals as compared
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FIG. 4. Binding energy spreads �E(Z,N ) for the pairs of indicated functionals. All even-even nuclei between the two-proton and
two-neutron drip lines are included in the comparison.
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TABLE III. Properties of symmetric nuclear matter at saturation: the density ρ0, the energy per particle E/A, the incompressibility K0, the
symmetry energy J and its slope L0, and the Lorentz effective mass m*/m [38] of a nucleon at the Fermi surface. The top five lines show the
values for indicated covariant energy density functionals, while the bottom two lines show two sets (SET2a and SET2b) of the constraints on
the experimental/empirical ranges for the quantities of interest defined in Ref. [9]. The CEDF values which are located beyond the limits of the
SET2b constraint set are shown in bold.

CEDF ρ0 [fm−3] E/A [MeV] K0 [MeV] J [MeV] L0 [MeV] m*/m
1 2 3 4 5 6 7

NL3* [18] 0.150 −16.31 258 38.68 122.6 0.67
DD-ME2 [19] 0.152 −16.14 251 32.40 49.4 0.66
DD − MEδ [21] 0.152 −16.12 219 32.35 52.9 0.61
DD-PC1 [20,23] 0.152 −16.06 230 33.00 68.4 0.66
PC-PK1 [23] 0.154 −16.12 238 35.6 113 0.65
SET2a ∼0.15 ∼ − 16 190–270 25–35 25–115
SET2b ∼0.15 ∼ − 16 190–270 30–35 30–80

with FSUGold and DD − MEδ. They are able to describe
not only ground state properties but also the properties of
excited states [18–20,41–46]. This is despite the fact that the
first three functionals definitely fail to describe some of the
nuclear matter properties (see Table III and Ref. [9]). It is not
clear whether that is also a case for DD-PC1 since it was not
analyzed in Ref. [9]. As a result, one can conclude that the
functionals, which provide good NMPs, do not necessarily
well describe finite nuclei. Such a possibility has already
been mentioned in Ref. [9]. This is also in line with the
results obtained for Skyrme EDFs [47] that the functionals

reproducing NMP constraints cannot be necessarily expected
to reproduce finite nuclei data, to which they were not fitted,
with very high accuracy.

As a consequence, the NMP constraints do not allow to
eliminate some of the CEDFs from the consideration and in
this way to decrease the uncertainties in the predictions of
binding energies of the neutron-rich nuclei and the position
of two-neutron drip line; for the latter see also Sec. VIII in
Ref. [10]. Considering substantial uncertainties in NMP (see
Table III and Ref. [9]), it is clear that even the combination of
their strict enforcement and the use of a large data set on finite
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FIG. 5. The nuclei (solid squares), shown in the (Z,N ) plane, which were used in the fit of indicated CEDFs. Their total number is shown
below the functional label. Magic shell closures are shown by dashed lines. The colors of the squares show the difference Eth − Eexp between
calculated and experimental binding energies. Two-proton and two-neutron drip lines of the indicated functional are shown by solid black lines.
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FIG. 6. The differences Eth − Eexp between calculated and experimental binding energies for the indicated CEDFs. The experimental data
are taken from Ref. [28] and all 835 even-even nuclei, for which measured and estimated masses are available, are included. If Eth − Eexp < 0,
the nucleus is more bound in the calculations than in experiment. Two-proton and two-neutron drip lines of the indicated functional are shown
by solid black lines.

nuclei in the fitting protocols of new CEDFs will not lead to
a substantial lowering or an elimination of the uncertainties in
the predictions of binding energies of neutron-rich nuclei.

V. FINITE NUCLEI: THE ACCURACY OF THE
DESCRIPTION OF THE GROUND STATE PROPERTIES

AND ITS DEPENDENCE ON FITTING PROTOCOL

It is clear that the part of the difference in binding energy
predictions is coming from the use of different data on finite
nuclei in fitting protocols. For example, the binding energies
of the “fitted” nuclei provide the normalization of the energy
for the functional. Fitting protocols differ substantially (see
Table I and Fig. 5) and it is important to understand how they
affect the global results.

Almost exactly the same fitting protocols exist in the case
of the NL3* and DD-ME2 functionals which were fitted to
the same 12 spherical nuclei and the same “empirical” data on
nuclear matter properties has been used in the fit [18,19]. The
only difference between them is the fact that four and three
neutron skin thicknesses were used in the fit of NL3* and
DD-ME2 CEDFs, respectively. However, the impact of this
difference is expected to be very small. Note that contrary to the
DD-* functionals, NL3* CEDF does not have nonlinearities
in the isovector channel. This leads to relatively large values
for the symmetry energy J and its slope L0 at saturation
(see Table III). As a result, the comparison of the calculated

and experimental binding energies reveals that the DD-ME2
functional has better isovector properties than NL3* [Figs. 6(a)
and 6(b)].

This also leads to somewhat better global reproduction of
the charge radii in the DD-ME2 functional (see Table II and
Figs. 7(a) and 7(b)). However, apart from a few nuclei there
is basically no difference in the description of experimental
charge radii by NL3* and DD-ME2 for the Z > 50 nuclei
[Fig. 8(a)] which suggests that the radii of these medium and
heavy mass nuclei are not sensitive to nonlinearities in the
isovector channel. On the contrary, the Sn isotopes and lighter
nuclei show much larger sensitivity to the nonlinearities in
the isovector channel. This is an important feature which has
to be taken into account when considering the use of future
data on neutron-rich nuclei in the fit of new generation of
the functionals. Note that for light nuclei beyond mean field
effects could be more important than for heavy ones and
this could be a possible reason for the deterioration of the
accuracy of the description of the masses and radii in light
systems as compared with heavy ones. It is also important to
mention that despite the large similarities in the description
of the charge radii in known nuclei by the CEDFs NL3*
and DD-ME2 [Figs. 7(a) and 7(b) and Fig. 8(a)], there is a
substantial increase of the differences in the predictions of the
charge radii by these two CEDFs for the part of the nuclear
chart roughly characterized by particle numbers Z > 70 and
N > 140 [Fig. 9(a)].
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FIG. 7. The difference between measured and calculated charge radii rch for indicated functionals. The experimental data are taken from
Ref. [48]. Two-proton and two-neutron drip lines of the indicated functional are shown by solid black lines.
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FIG. 8. Charge radii spreads �rch(Z,N ) as a function of proton and neutron number. �rch(Z,N ) = |rmax
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FIG. 9. The difference rCEDF−1
ch (Z,N ) − rCEDF−2

ch (Z,N ) in the charge radii predicted by two indicated CEDFs. The second functional in the
label “CEDF-1 vs CEDF-2” indicates the reference functional. All even-even nuclei between the two-proton and two-neutron drip lines are
included in the comparison.
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The DD-* CEDFs show better isovector properties in
the description of binding energies as compared with the
NL3* one (Fig. 6). However, there are some important differ-
ences between the meson-exchange functionals (DD-ME2 and
DD − MEδ) and point-coupling functional DD-PC1. They are
the consequences of both the selection of the finite nuclei for
the fitting protocol (Table I and Fig. 5) and the differences in
underlying physics (meson exchange versus point coupling).
Meson-exchange functionals are fitted to the spherical nuclei.
As a result, deformed nuclei are typically underbound in these
functionals [Fig. 6(b) and 6(c)]. In contrast, DD-PC1 CEDF
is fitted to the deformed nuclei and it reproduces the binding
energies of such nuclei rather well especially in the rare-earth
region and actinides [Fig. 5(d)]. However, this functional tends
to overbind spherical nuclei.

The differences in the underlying physics show themselves
in different isovector properties of point coupling and meson
exchange functionals. For example, a similar description of
experimental binding energies of neutron-deficient 72 < Z <
96 nuclei is achieved in all DD-* functionals [Figs. 6(b),
6(c), and 6(d)]. However, neutron-rich 72 < Z < 96 nuclei are
underbound in the RHB calculations with CEDFs DD-ME2
and DD − MEδ (Fig. 6(b) and 6(c)) and overbound in the
ones with DD-PC1 [Fig. 6(d)]. A similar situation exists
also for lighter nuclei in CEDF DD-PC1; neutron rich nuclei
are overbound in the calculations while neutron deficient
ones are either underbound or close to experiment. Thus, for
the DD-PC1 functional with increasing neutron number the
binding energies increase faster in the calculations than in
experiment across the whole nuclear chart. The same trend
for rate of binding energy changes is seen also in the CEDFs
DD-ME2 and DD − MEδ for light nuclei [Fig. 6(b), 6(c) and
6(d)]; this is contrary to the situation in the heavy nuclei. Thus,
the isovector dependence of binding energies is different in
light and heavy nuclei in meson-exchange and point coupling
functionals. Note that above discussed general trends are
somewhat disturbed by local differences which emerge from
the differences in the underlying shell structure.

Figure 7 and Table II show the accuracy of the description
of charge radii by density dependent functionals. One can
see that CEDFs DD-ME2 and DD-PC1 provide comparable
accuracy of the description of charge radii. On the other hand,
the DD − MEδ functional provides the worst description of
the radii among considered functionals. Figure 8(b) shows
that apart from some light nuclei the DD-ME2 and DD-PC1
functionals provide almost the same description of charge radii
across the nuclear chart. This is despite the fact that the DD-
PC1 functional has been defined without experimental data on
charge radii in Ref. [20]. Figure 8(c) and 8(d) shows that the
absolute majority of the spreads in charge radii for a set of four
functionals is coming from the DD − MEδ functional; the next
contributor to these spreads is the CEDF NL3* (Fig. 8).

However, global predictions for the charge radii are
similar for density dependent functionals. Indeed, there are
no global differences in the DD-ME2/DD-PC1 [Fig. 9(c)]
and DD − MEδ/DD-ME2 [Fig. 9(d)] pairs of CEDFs similar
to the ones observed in the NL3*/DD-ME2 [Fig. 9(a)] and
NL3*/DD-PC1 [Fig. 9(b)] pairs for the part of the nuclear
chart roughly characterized by particle numbers Z > 70 and

N > 140. However, the local differences emerging from
the underlying shell structure clearly exist. For example,
substantial differences in charge radii seen at Z ∼ 90,N ∼ 134
for the DD − MEδ/DD-ME2 pair of the functionals [Fig. 9(d)]
are due to inability of the CEDF DD − MEδ to describe
octupole deformed nuclei in the actinides [32].

VI. GENERAL OBSERVATIONS

Based on the present analysis one could make the following
observations:

(i) Figure 4 shows that fastest increase of the differences
in predicted binding energies of two functionals takes
place in the direction which is perpendicular to the
gray band of similar energies (or β-stability line).
These differences are due to (i) different isovector
properties of these functionals and (ii) the differences
in the selection of the input for the fitting protocols of
these functionals.

The differences in the NL3*/DD-ME2 pair of
the functionals are mostly due to different isovector
properties of compared functionals; they form smooth
trends with almost no local fluctuations for the
differences of both the binding energies [Fig. 4(c)
and charge radii [Fig. 9(a)]. This is a consequence
of the same fitting protocol used for both functionals
which leads to a global similarity of their underlying
single-particle structure.

The differences in the input of the fitting protocols
lead to local deviations from smooth trends which
become especially visible in the case of the NL3*/DD-
PC1 and DD − MEδ/DD-ME2 pairs of the functionals
(see Figs. 4(a) and 4(b) for the differences of the
binding energies and Figs. 9(b) and 9(d) for the
differences of the charge radii). They are due to local
differences in the underlying single-particle structure
of the compared functionals.

Thus, the selection of fitting protocol and in
particular the selection of the information on finite
nuclei has a direct influence and creates an imprint on
the global performance of the CEDF.

(ii) An important question is how much and which type
of the data on finite nuclei are essential in the fitting
protocols. Table II suggests that overdefined fitting
protocols (such as DD − MEδ with 161 binding ener-
gies and 86 charge radii) do not offer any advantages
as compared with the protocols which contain much
less data since �Efit

rms ≈ �E
global
rms and �(rch)fit

rms ≈
�(rch)global

rms for this functional. Note that DD − MEδ
is the only functional with such properties; for all
other functionals �Efit

rms < �E
global
rms and �(rch)fit

rms <

�(rch)global
rms (see Table II). The DD-PC1 CEDF [20]

is an example of the functional which achieves good
global description of charge radii (Table II) without
any experimental data on charge radii in the fitting
protocol (Table I). Curiously enough the addition
of experimental data on charge radii to the fitting
protocol of DD-PC1 could lead to the deterioration
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of the accuracy of the description of charge radii
since �(rch)fit

rms > �(rch)global
rms (Table II). It turns out

that the inclusion of very few but carefully selected
experimental charge radii (like in the CEDF DD-ME2
with nine charge radii) leads to a further but moderate
increase of an accuracy of the global description of
charge radii. The analysis of Table II also suggests
that less than 100 data points on binding energies is
sufficient for fitting protocols of a current generation
of the CEDFs not aimed at the “mass table” quality
description of binding energies.

(iii) The variations of the differences in the predictions
of the binding energies and the differences in the
predictions of the charge radii of two functionals with
proton and neutron numbers shown in Figs. 4 and 9
are not globally correlated.

(iv) It is necessary to recognize that the binding ener-
gies are affected by the effects beyond mean field
[25,49,50] which are not included in the current
calculations. It was shown in Ref. [25] for the
PC-PK1 functional that the inclusion of dynamic
correlation energies (DCE) leads to a reduction of
the rms deviations for binding energies of 575 known
even-even nuclei from 2.52 MeV (at the mean field
level) to 1.14 MeV. DCE provides an additional
binding and vary mostly in the region of 2.0–3.5
MeV. It is expected that DCE will depend relatively
weakly on the underlying functional (Ref. [25]). Thus,
the accounting of DCE will not remove existing
differences between the functionals seen in Figs. 1,
2, 3, and 4.

On the other hand, the rms deviations between
experimental and calculated binding energies will be
reduced for the DD-ME2 and DD − MEδ CEDFs
when DCE are taken into account since these function-
als typically underbind nuclei [see Figs. 6(b) and 6(c)].
However, they will be increased for DD-PC1 since it
provides good description of the binding energies of
rare-earth nuclei and actinides at the mean field level
[Fig. 6(d)]. The inclusion of DCE will have probably
overall neutral effect on the NL3* CEDF since it
will improve the description of the binding energies
of the Z � 50 nuclei but will lead to the decrease
of the accuracy of the description of heavier nuclei
[Fig. 6(a)].

(v) It is well known that high-density behavior of EOS
has little influence on the description of low-energy
nuclear structure data [20]. For the first time our
studies confirm this fact on a global scale in the
framework of CDFT. Indeed, the functionals which
have stiff equation of state (NL3*, DD-ME2, and
PC-PK1) are still accurate in the description of the
ground state properties. The current analysis clearly
indicates that apart of the NL3* functional, which does
not have a good reproduction of the isospin trends for
the binding energies, the remaining functionals are
quite comparable at the mean field level. Considering
similar (as compared with experiment) initial starting
mean field solutions for CEDFs DD-ME2, DD −

MEδ, and PC-PK1 (see Fig. 6 and Fig. 3 in Ref. [25])
and weak dependence of dynamic correlation energies
on the functional, it is reasonable to expect that CEDFs
DD-ME2 and DD − MEδ will have rms deviations
for binding energies similar to PC-PK1 (�E

global
rms ∼

1.14 MeV [25]) when DCEs are included. Thus, the
functionals with J ∼ 32 MeV and L0 ∼ 50 MeV
(DD-ME2 and DD − MEδ) and J = 35.6 MeV and
L0 = 113 MeV (PC-PK1) provide quite comparable
global description of the binding energies. For the first
time in CDFT, this confirms on a global scale earlier
observations that nuclear binding energies represent
poor isovector indicators [1].

The slope of symmetry energy L0, which is good
isovector indicator, is not well defined at present (see
Table III and Ref. [9]). However, it strongly correlates
with the size of neutron skin thickness so that CEDFs
NL3* and PC-PK1 predict larger neutron skin than
DD-* functionals (see Sec. X in Ref. [10]). At present,
the uncertainties in experimental definition of neutron
skin still exist. However, there is a hope that the
PREX-II experiment aimed at the measurement of
neutron radii in 208Pb will put a stricter constraint on
the density dependence of the symmetry energy (the
L0 parameter) (Ref. [5]).

(vi) A common trend of the discrepancies between cal-
culated and experimental charge radii is clearly seen
for all functionals in Fig. 7. The RHB calculations
typically underestimate the radii in the Z � 50 nuclei,
rather well reproduce them in the rare-earth region
and overestimate them in the actinides. This trend is
based on the consideration which excludes neutron
deficient nuclei in the lead and krypton regions; they
are characterized by shape coexistence which cannot
be described at the mean field level (see Sec. X of
Ref. [10] for a discussion of these nuclei). It remains
to be seen to which extent this trend is due to the use
of the equation

rch =
√

〈r2〉p + 0.64 fm, (3)

for charge radii. The factor 0.64 accounts for the finite-
size effects of the proton. This equation is used in
the CDFT calculations [51,52] but it ignores small
contributions to the charge radius originating from
the electric neutron form factor and electromagnetic
spin-orbit coupling [53,54] as well as the corrections
due to the center-of-mass motion.

VII. CONCLUSIONS

The question of how strictly nuclear matter constraints
have to be imposed and which values have to be used
for the definition of covariant energy density functionals
still remains not fully answered. Definitely, the equation of
state relating pressure, energy density, and temperature at
a given particle number density is essential for modeling
neutron stars, core-collapse supernovae, mergers of neutron

054310-12



COVARIANT ENERGY DENSITY FUNCTIONALS: NUCLEAR . . . PHYSICAL REVIEW C 93, 054310 (2016)

stars and the processes (such as nucleosynthesis) taking
places in these environments. However, there are substantial
experimental/empirical/model uncertainties in the definition
of the NMP constraints.

In addition, the properties of finite nuclei are defined by
the underlying shell structure which depends sensitively on
the single-particle features [6,7,31]. As a consequence, we
are facing the situation in which the functionals which are
coming close to satisfying all NMP constraints perform quite
poorly in the description of finite nuclei. This was exemplified
by the FSUGold and DD − MEδ functionals. The former
provides the worst rms deviations in global description of
binding energies [8,10], while the latter fails to reproduce
octupole deformed actinides [31] and predicts too low fission
barriers in superheavy nuclei [40] so that their existence
could be questioned. On the other hand, the functionals
which fail to reproduce the NMP constraints suggested in
Ref. [9] such as NL3* and PC-PK1 are able to reproduce
reasonably well the ground state properties of finite nuclei,
such as binding energies and charge radii, fission barriers
[41,45,55], rotating nuclei [42,44] and the energies of the
single-particle states in spherical [56,57], and deformed nuclei
[43,58].

The correlations between global description of the binding
energies and nuclear matter properties of the underlying
functionals have been discussed based on the results of recent
assessment of global performance of covariant energy density
functionals presented in Refs. [10,16,22]. It was concluded
that the strict enforcement of the limits on the nuclear matter
properties defined in Ref. [9] will not necessarily (i) lead to the
functionals with good description of binding energies or other
ground and excited state properties or (ii) substantially reduce
the uncertainties in the description of neutron-rich systems.
This is very likely due to to the mismatch of phenomenological
content, existing in all modern functionals, related to nuclear
matter physics and the physics of finite nuclei; the latter being
strongly affected by underlying shell effects.
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