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Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach
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We extend the concept of nonlocalized clustering to the nucleus 10Be with proton number Z = 4 and neutron
number N = 6 (N = Z + 2). The Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function is formulated for the
description of different structures of 10Be. Physical properties such as energy spectrum and root-mean-square
radii are calculated for the first two 0+ states and corresponding rotational bands. With only one single THSR
wave function, the calculated results show good agreement with other models and experimental values. We apply,
for the first time, the THSR wave function on the chain orbit (σ -orbit) structure in the 02

+ state of 10Be. The
ring-orbit (π -orbit) and σ -orbit structures are further illustrated by calculating the density distribution of the
valence neutrons. We also investigate the nonlocalized dynamics of α clusters and the correlations of two valence
neutrons in 10Be.
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I. INTRODUCTION

Cluster formation plays a fundamental role in understand-
ing the structure and properties of nuclei. In recent years,
tremendous progress has been made in the investigation of
cluster structure in light nuclei [1–13], especially due to the
model wave function with nonlocalized clustering concept,
namely the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave
function [1–8]. The THSR wave function was first proposed to
describe the α-cluster condensation in gaslike states, including
the famous Hoyle state (02

+ state) in 12C [1]. Then it was
successfully applied to various other aggregates of α clusters
such as 8Be ,16O , and 20Ne [1–3] and also to one-dimensional
chain systems [5]. It was found that one single THSR
wave function is almost 100% equivalent to the resonating
group method–generator coordinate method (RGM-GCM)
wave functions for both gaslike and nongaslike states. In the
recent studies of inversion-doublet bands of 20Ne [6,7], the
nonlocalized character of clustering rooted in the THSR wave
function is proved to be a very important property for clustering
structure in light nuclei. Therefore it is very necessary to
investigate the nonlocalized cluster dynamics in other different
nuclear systems.

In recent years, there are also investigations using the
THSR wave function and its intrinsic container structure
for nuclei beyond traditional α aggregates. This starts with
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the calculation of 13C with a neutron probe interacting with
the 3α condensation [14]. Also, in this year, the 2α + �
system is investigated with the hyper-THSR wave function,
which shows the essential role of the container picture for the
cluster structure in 9

�Be [15]. In our previous work, the THSR
wave function is constructed with intrinsic negative parity and
applied in the calculation of nucleus 9Be with proton number
Z = 4 and neutron number N = 5 (N = Z + 1) [8]. In this
study, the nonlocalized clustering concept is shown to prevail
in the π orbit for 9Be.

In order to apply the nonlocalized clustering concept to
more general nuclei, it is very interesting to extend the THSR
wave function to the investigation of the N = Z + 2 cluster
nucleus 10Be in which one more valence neutron is added
to the 9Be system. The nucleus 10Be is well known for its
typical nuclear molecular orbit structure and has been studied
with many different models [16–23]. The 02

+ state of 10Be
is considered to be an intruder state, which is difficult to
describe by simple shell-model methods [19]. Besides, a chain
structure with σ binding and enormous spatial extension is
found in this 02

+ state [17,18]. Another interesting topic
for the N = Z + 2 nucleus 10Be is the correlation between
valence neutrons [20]. Recently, predictions of the 03

+ and 04
+

states [21] and the existence of α + t + t structure in 10Be [22]
have been reported. In the present work, we construct THSR
wave functions for 10Be based on the new nonlocalized picture.
With these THSR wave functions, we can well describe not
only the physical properties of different states of 10Be but also
the cluster dynamics in these states with only one single THSR
wave function.
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We organize this paper as follows. In Sec. II we formulate
the THSR wave function for both π and σ binding of 10Be.
In Sec. III, we present our results for the 01

+ ground state
of 10Be and its rotational bands. In Sec. IV, we investigate
the 02

+ state of 10Be and its σ -orbit structure. In Sec. V, we
discuss the nonlocalized α-cluster dynamics and correlations
between valence neutrons in these states. Section VI contains
the conclusions.

II. FORMULATION OF THE THSR WAVE
FUNCTION FOR 10Be

We first introduce the THSR wave function of 10Be for the
π -orbit binding structure. There are two valence neutrons in
10Be nucleus and the dineutron correlation should be taken
into consideration for nuclei with two valence nucleons such
as 6He and 10Be, as discussed previously in Ref. [20]. The
introduction of correlations in the THSR wave function is
very natural, because the original THSR wave function of α
aggregates describes very well the α-α correlations, especially
in Refs. [6,7]. Thus, we can describe the correlation of two
valence neutrons with a new THSR integration in analogy to
what we used for two α clusters.

As shown in Fig. 1(a), the motion and correlation of two
valence neutrons are described by generator coordinates Rpair

and Rn, where the first one is shared by two valence neutrons
because of the dineutron correlation and latter one is different
for each neutron. With these generator coordinates, we can
write the THSR wave function with dineutron correlation in
10Be as

|�(10Be)〉 = (C†
α)2c†pair|vac〉, (1)

where C†
α and c

†
pair are creation operators of α clusters and

dineutron pair, respectively. The α creator C†
α determines the

FIG. 1. Generator coordinates and β parameters used in the
THSR wave function for the ground state 01

+ of 10Be. Left panel
(a) shows the case with correlations between valence neutrons. Right
panel (b) shows the case of independent valence neutron motion
in βpair = 0 limit. Vectors are corresponding generator coordinates.
Dashed ellipses denote nonlocalized motion of α clusters. Solid
ellipses denote the nonlocalized motion of the valence neutrons.

dynamics of the α clusters and can be written as

C†
α =

∫
d3R exp

(
− R2

x

β2
α,xy

− R2
y

β2
α,xy

− R2
z

β2
α,z

) ∫
d3r1 . . .

d3r4ψ(r1 − R)a†
σ1,τ1

(r1) . . . ψ(r4 − R)a†
σ4,τ4

(r4),
(2)

where R is the generator coordinate of the α cluster and ri

is the position of the ith nucleon. a†
σ,τ (ri) is the creation

operator of the ith nucleon with spin σ and isospin τ at position
ri . ψ(r) = (πb2)−3/4 exp(−r2/2b2) is the wave function of a
single nucleon in the α clusters with a Gaussian form where the
parameter b in this Gaussian describes the size of α clusters.
βα,xy and βα,z are parameters for the nonlocalized motion of
two α clusters in horizontal or vertical directions respectively,
which are shown as a dashed ellipses in Fig. 1.

The dineutron creation operator c
†
pair can be denoted as

c†pair =
∫

d3Rpair exp

(
− R2

pair,x

β2
pair,xy

− R2
pair,y

β2
pair,xy

− R2
pair,z

β2
pair,z

)

×c
†
n,↑(Rpair)c

†
n,↓(Rpair). (3)

This integration of Rpair describes the correlated motion of
two valence neutrons, which is shown as the big solid ellipse
in Fig. 1(a). βpair,xy and βpair,z are parameters for this correlated
motion in each direction.

c
†
n,σ (Rpair) is the creation operator for each neutron, which

has a similar form as c
†
n,σ for 9Be in our previous work [8]:

c†n,σ (Rpair) =
∫

d3Rn exp

(
− R2

n,x

β2
n,xy

− R2
n,y

β2
n,xy

− R2
n,z

β2
n,z

)

×eimφ(Rpair+Rn)
∫

d3rn(πb2)−3/4

×e
− (rn−Rpair−Rn )2

2b2 a†
σ,n(rn). (4)

Here Rn is the generator coordinator of the valence neutrons,
rn is the position of the extra neutron, a

†
σ,n(rn) is the creation

operator of the extra neutron with spin σ at position rn,
and φRn

is the azimuthal angle in spherical coordinates
(R(Rpair + Rn),θ (Rpair + Rn),φ(Rpair + Rn)) of (Rpair + Rn).
In this creation operator, the size parameter b of the Gaussian
is taken to be the same as that in Eq. (2). This integration of
Rn describes the independent motion of each valence neutron
with parameters βn,xy and βn,z, which is shown as small solid
ellipse in Fig. 1(a).

In the βpair = 0 limit, the integration over Rpair in Eq. (3)
vanishes and the THSR wave function of 10Be becomes

|�(10Be)〉 = (C†
α)2c

†
n,↑(0)c†n,↓(0)|vac〉. (5)

This wave function corresponds to independent motions for the
two valence neutrons in 10Be nucleus, as shown in Fig. 1(b).

In this wave function, the α clusters are assumed to move
freely in the three-dimensional containers described by the β
parameters, which correspond to motions with positive parity.
For the valence neutrons, the motion is determined by both
β parameters and phase factor eimφ(Rpair+Rn) in Eq. (4). When
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m = ±1, the phase factor eimφ(Rpair+Rn) ensures negative parity
for the single-nucleon wave function, as illustrated in Ref. [8].
Besides, when m = 0, only Gaussian functions are left in the
creation operators in Eq. (4), which corresponds to a positive
parity for the valence neutrons. Therefore, we have the total
parity of 10Be as

π = π (1)
α × π (2)

α × π (1)
n × π (2)

n

=
{

(+) × (+) × (+) × (+) = + (m1 = m2 = 0),
(+) × (+) × (−) × (−) = + (m1 = 1,m2 = −1).

(6)

For the 02
+ state of 10Be, it is already known that this state

has a very typical chain structure because of the σ -binding
mechanism [17,24]. In this structure, valence neutrons stay
between or outside of two α clusters along the α-α chain.
Also, a recent study shows that α-linear chain structure of
12C and 16O can be well described by the THSR wave
function [5]. Thus, we introduce the chain structure assumption
and construct the one-dimensional constrained THSR wave
function for the 02

+ state of 10Be, as

|�chain(10Be)〉 = (C†
α)2c

†
n,↑c

†
n,↓|vac〉. (7)

Here the α-creation operator C†
α is similar to Eq. (2) but

operates only on the z axis,

C†
α =

∫
dRz exp

(
− R2

z

β2
α,z

) ∫
d3r1 . . .

d3r4ψ(r1 − R)a†
σ1,τ1

(r1) . . . ψ(r4 − R)a†
σ4,τ4

(r4), (8)

where R is the generator coordinate of the α cluster on the
z axis and ri is the position of the ith nucleon. For the
valence neutrons, a creation operator with a node structure
is constructed for the correct description of the σ orbits, as

c†n,σ =
∫

dRn,z(D − |Rn,z|) exp

(
−R2

n,z

β2
n,z

) ∫
d3rn

×(πb2)−3/4e
− (rn−Rn)2

2b2 a†
σ,n(rn). (9)

Here, Rn is the generator coordinate of the valence neutron on
the z axis and rn is the position of the valence neutron. We
introduce a new factor (D − |Rn,z|) in this THSR integration
to provide a node structure for the wave function of the
valence neutrons. Two nodes appear in the wave function
when Rn,z = ±D, which are locations near the α clusters.
As a demonstration, we choose parameter D = 2 fm and
βn,z = 5 fm, and show the single-nucleon wave function φn(z)
for valence neutron in Fig. 2. It is clearly seen in the figure
that the wave function φn(z) has a different sign between
the midregion and two flanks. Also, two nodes appear near
z = 2 fm as expected. In our calculation, the parameter D
is treated as a variational parameter to obtain a correct node
position for the wave function φn(z).

In this wave function, the α clusters move freely in one-
dimensional containers while the motion of valence neutrons
is constrained by the node structure above. It is obvious
that Eqs. (8) and (9) contain only even functions, so the

FIG. 2. Single-nucleon wave function φn(z) for the valence
neutron in the 02

+ state of 10Be. Parameters are chosen as D = 2
fm and βn,z = 5 fm.

corresponding parity in this wave function is given by

π = π (1)
α × π (2)

α × π (1)
n × π (2)

n

= (+) × (+) × (+) × (+) = +. (10)

In order to eliminate effects from spurious center-of-mass
(c.m.) motion, the c.m. part of |�〉 is projected onto a (0s)
state [25]. We use the following transformation of coordinates
ri in |�〉 to eliminate the effects of the spurious center-of-mass
motion as in Ref. [25]:

|�〉 = |(0s)c.m.〉〉〈〈(0s)c.m.|�〉. (11)

Here (0s) represents the wave function of the c.m. coordinate
XG in the s state, and the double brackets denote the in-
tegration with respect to coordinate XG. We also apply the
angular-momentum projection technique P̂ J

MK |�〉 to restore
the rotational symmetry [26],

|�JM〉 = P̂ J
MK |�〉

= 2J + 1

8π2

∫
dDJ∗

MK ()R̂()|�〉, (12)

where J is the total angular momentum of 10Be.
The Hamiltonian of the 10Be system can be written as

H =
10∑
i=1

Ti − Tc.m. +
10∑

i<j

V N
ij +

10∑
i<j

V C
ij +

10∑
i<j

V ls
ij , (13)

where Tc.m. is the kinetic energy of the center-of-mass motion.
Volkov No. 2 [27] is used as the central force of the nucleon-
nucleon potential,

V N
ij = {V1e

−α1r
2
ij − V2e

−α2r
2
ij }

×{W − MP̂σ P̂τ + BP̂σ − HP̂τ }, (14)

where M = 0.6,W = 0.4, and B = H = 0.125. Other pa-
rameters are V1 = −60.650 MeV, V2 = 61.140 MeV, α1 =
0.309 fm−2, and α2 = 0.980 fm−2. The G3RS (Gaussian
soft-core potential with three ranges) term is taken as the
two-body type spin-orbit interaction [28],

V ls
ij = V ls

0 {e−α1r
2
ij − e−α2r

2
ij }L · SP̂31, (15)

where P̂31 projects the two-body system onto triplet odd
state. Parameters in V ls

ij are taken from Ref. [21] with V ls
0 =

1600 MeV, α1 = 5.00 fm−2, and α2 = 2.778 fm−2.
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III. THE 01
+ GROUND STATE OF 10Be

The Monte Carlo method is used because of its superiority
in calculating the numerical integrations in the Hamiltonian
kernels, which otherwise is very difficult to solve analytically
for the THSR wave functions of 10Be. The Monte Carlo
technique is very flexible for extending the THSR concept.
The Monte Carlo calculation includes the integrations of Euler
angle  in the angular momentum projection and integrations
of generator coordinates {R,Rn} in the creation operators.
When using one single THSR wave function, the numerical
calculation would be much more efficient than traditional
GCM calculations. To compare our results with other models,
the width of the Gaussians in the single-nucleon wave function
is chosen to be b = 1.46 fm, which is the same as fixed in
Refs. [21,29]. The β parameters in the THSR wave functions
are treated as variational parameters and are optimized with
the variational technique.

We investigate the ground state 01
+ of 10Be and its

rotational band with both the THSR wave function of 10Be.
We choose the parameter m = 1 with spin up for one valence
neutron and parameter m = −1 with spin down for the other.
This is to ensure parallel coupling of spin and the orbital
angular momentum for both neutrons as we used in previous
investigations [8]. The optimum variational parameters for
the THSR wave function are βα,xy = 0.1 fm, βα,z = 2.0 fm,
βpair,xy = 0.8 fm, βpair,z = 1.8 fm, βn,xy = 2.0 fm, and βn,z =
2.7 fm. We also obtain results with the βpair = 0 limit, and the
corresponding optimum variational parameters are βα,xy = 0.1
fm, βα,z = 2.0 fm, βn,xy = 2.0 fm, and βn,z = 3.5 fm.

In Table I, we list the calculated results of the 0+ ground
state of 10Be together with results from other models and
experimental values. The binding energies obtained for the
ground state 01

+ is −58.2 MeV with the THSR wave functions.
When we take the βpair = 0 limit, the binding energy obtained
is −58.0 MeV. Theoretical calculations with other models, in
which the same potential is used, provide binding energies
of the ground state of 10Be ranging from about −59 MeV
to −60 MeV, which is about 1–2 MeV lower than our
results [20,29]. This difference is reasonable because we are
using only one single THSR wave function, which may not be

TABLE I. Results obtained for the 0+ ground state
of 10Be. THSR denotes binding energy calculated with
the THSR wave function. THSR (βpair = 0) denotes
binding energy calculated with the THSR wave func-
tion and the βpair = 0 limit. THSR�8 denotes calcu-
lated result by superposing 8 different THSR wave
functions. Results from other theoretical methods are
also listed.

Model E (MeV)

THSR −58.2
THSR (βpair = 0) −58.0
THSR�8 −59.0
AMD [20] −58.7
AMD+DC [20] −60.4
AMD+GCM [29] −59.2

FIG. 3. The 0+ ground state of 10Be and its rotational band.
“THSR” denotes calculated results with the THSR wave function.
“THSR (βpair = 0)” denotes calculated results with the THSR wave
function and the βpair = 0 limit. “Ref. [21]” denotes the results of
the AMD method [21]. “Exp.” denotes the experimental result. The
dashed lines indicate the corresponding α + α + n + n threshold
−55.2 MeV.

the optimal choice for the valence neutrons. If we superpose
8 THSR wave functions with different parameters β for α
clusters or valence neutrons in the THSR wave function, the
ground-state energy would decrease to −59.0 MeV, which
is consistent with other methods, as shown in Table I. The
experimental value for the ground state of 10Be is −65.0 MeV,
which is much lower than any theoretical results from our
and other groups’ works. These differences originate from the
choice of effective potentials.

From these results, we can also notice that the binding
energy of the ground state is improved by about 0.2 MeV by
the introduction of the valence neutron correlation in the THSR
wave function. This improvement shows the correlation effect
of the valence neutrons in the ground state, as we will discuss
later in Sec. V.

In our present calculation, the ansatz of Gaussians (mul-
tiplied by factors) is used for the valence neutron in the
THSR wave functions. In the future, we will discuss more
general form of the THSR wave function for a better optimized
description of the valence neutrons.

We show in Fig. 3 the energy spectrum of the 01
+ rotational

band of 10Be based on the ground state. The calculated
excitation energy of the 21

+ state is 3.5 MeV and fits very
well with the experimental value 3.4 MeV. Good agreement
can also be seen between our calculation and the AMD method
for the 21

+ and 41
+ excited states.

The root-mean-square radius of the 01
+ ground state of

10Be is also obtained from our approach. The result is 2.57 fm
with one single THSR wave function, which is consistent with
the value 2.5 fm from Ref. [21], but slightly larger than the
value 2.37 fm from Ref. [20] and the experimental value
2.30 fm. This small difference originates from the slightly
weaker binding effect described by only one single THSR
wave function, as discussed above.

The density distribution ρ(r′
n) of the extra nucleons is

calculated to give a clear view of the dynamics of the valence
neutrons. The intrinsic wave function |�〉 of 10Be can be
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FIG. 4. Density distribution of the valence neutrons in the
intrinsic ground state of 10Be. The color scale of each point in the fig-
ure is proportional to the nucleon density on the x-z plane of the
y = 0 cross section. The unit of the density is fm−3.

written in the following form:

|�〉 = CA[�THSR(2α)φpair(rn,1,rn,2)], (16)

where A is the antisymmetrizer and C is a normalization
constant. Then the density distribution ρ(n,r′) of the valence
neutrons is defined as

ρ(r′
n) = Nc〈�THSR(2α)φpair(rn,1,rn,2)|δ(rn,1 − XG − r′

n)

+δ(rn,2 − XG − r′
n)|�〉, (17)

where Nc is the normalization constant [30]. As shown
in Fig. 4, the density distribution of two valence neutrons
has the same shape as the one which we obtained for the
ground state 9Be [8] with only a single valence neutron.
The extension of the density distribution in the z direction
and the absence of neutrons along the z axis shows a good
description of the π orbit in the ground state of 10Be as
suggested by nuclear molecular orbit (MO) model [16,17].
This reproduction of π -orbit structure is obtained naturally
from the antisymmetrization in the THSR wave function,
which cancels nonphysical distribution of valence neutrons,
e.g., positions close to the center of α clusters.

IV. THE 02
+ CHAIN STATE OF 10Be

In this section we study the 02
+ state of 10Be with one

single THSR wave function as shown in Eq. (7). The optimum
parameter D in Eq. (9) is D = 2.0 fm. Other optimum
variational parameters in the THSR wave function are βα =
3.5 and βn = 4.0 fm. The calculated spectrum for the 02

+
rotational band based on the ground state is shown in Fig. 5.
The ground-state energy from THSR calculation in this figure
is chosen to be the one with −59.0 MeV obtained from the
superposed THSR wave functions as listed in Table I. Figure 5
shows systematical discrepancies between theoretical results
calculated by different models and the experimental values.
This is because of the choice of effective interactions. The
calculated energy spectrum of the 02

+ rotational band with
the THSR wave function, as shown in Fig. 5, agrees well

FIG. 5. Energy spectrum of the 02
+ rotational band relative to

the ground-state energy. The one labeled with Ref. [21] is the value
calculated with the AMD+DC method [21]. The one labeled with Ref.
[29] is the value calculated with the β − γ constrained AMD+GCM
method [29]. The dashed lines are the corresponding α + α + n + n

thresholds of −55.2 MeV.

with results of other theoretical models from Refs. [21,29].
The THSR wave function also gives energy gaps between the
states in the 02

+ band which fit very well with experimental
data and other models. It is very interesting to see that one
single THSR wave function can describe well the 02

+ state of
10Be, while in other theoretical models superposition of large
number of basis sets is needed.

We checked the orthogonality between the THSR wave
function for the 02

+ state and the 01
+ ground state. The

calculated overlap between these two states is 1.4%, which
satisfies the requirement for eigenstates.

We also calculate the root-mean-square radius for the 02
+

state of 10Be. The calculated result is 3.11 fm, which is
consistent with 2.96 fm from Ref. [20] and 3.4 fm from
Ref. [21].

To illustrate the structure of the 02
+ state of 10Be with the

THSR wave function, we show the density distribution ρ(r′
n)

of valence nucleons in Fig. 6. This distribution demonstrates

FIG. 6. Density distribution of valence neutrons in the intrinsic
02

+ state of 10Be. The color scale of each point in the figure is
proportional to the nucleon density in the x-z plane of the y = 0
cross section. The unit of the density is fm−3.
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similar characteristics after antisymmetrization as the wave
function of a single valence neutron in Fig. 2. It is clearly
seen that the distribution of valence neutrons is divided into
three regions separated by two nodes perpendicular to the
z axis, which is a typical characteristic of the σ orbit. The
node structure originates from the newly introduced factor
(D − |Rn,z|) in Eq. (9). Also a large spread of more than 10 fm
along the z axis is observed for the valence neutrons, which is
one of the reasons for the enormously large spatial extension
of the 02

+ state in 10Be. Another reason is the large α-cluster
distribution as discussed in the next section.

V. ANALYSIS OF CLUSTER DYNAMICS AND
DINEUTRON CORRELATIONS

In this section, we discuss the dynamics of the α clusters
and the valence neutrons. The THSR wave function describes
the α-cluster motion by a Gaussian style THSR integration
of generator coordinates as in Eqs. (2) or (8). The optimum β
parameters in the α-creation operators are βα,xy ≈ 0 fm, βα,z =
2.0 fm for the ground 01

+ state while the optimum value βα =
4.0 fm is obtained for the 02

+ state. Considering that large β
parameters correspond to large extension of the nonlocalized
cluster motion, it is clear that the α particles are much more
tightly bound by the π orbit than by the σ orbit. The π -binding
effect in the ground state of 10Be is also stronger than that in
the ground state of 9Be, where the optimum parameter for α
cluster is βα,z = 4.2 fm [8].

In our calculation, the THSR wave function for 10Be is
based on the nonlocalized picture of cluster dynamics. It is thus
interesting and important to study whether this nonlocalized
concept prevails for the 0+ states of 10Be. Here we follow
the scheme of hybrid wave function that was first introduced
by Zhou et al. in the discovery of nonlocalized clustering
dynamics [6]. We formulate the hybrid wave function of 10Be
as

C†
α =

∫
d3R exp

(
− R2

x

β2
α,xy

− R2
y

β2
α,xy

− R2
z

β2
α,z

) ∫
d3r1 . . . d3r4

× ψ(r1 − R ± S)a†
σ1,τ1

(r1) . . . ψ(r4 − R ± S)a†
σ4,τ4

(r4).
(18)

Here S is an introduced generator coordinate. Operator ± is
chosen to be + for the first α cluster and − for the other
α cluster. When β = 0, the wave function for α clusters
becomes a simple Brink wave function, and S represents
half of the intercluster distance of two α clusters. When
S = 0, the wave function reduced into the standard THSR
wave function as we used previously. In other cases, the wave
function becomes a hybrid of the localized Brink wave function
and the nonlocalized THSR wave function. By variational
optimization of parameter β and generator coordinate S, the
nonlocalized dynamics in the two 0+ states of 10Be can be
illustrated. Because the variational result in Sec. III shows
extreme deformation for the intrinsic wave function before
angular momentum projection, we only need to discuss the
α-cluster dynamics along the z axis.

In Fig. 7 we show the energy curves with different parameter
βz for the α-cluster motion in the hybrid wave function. For the

FIG. 7. Energy curves with different parameter βz for the α-
cluster motion in the hybrid wave function.

curves with βα,z = 0, which corresponds to the Brink model,
the minimum energy locates at nonzero value for Sz. This
seems to suggest a localized clustering dynamics, with the
distance of two α clusters around 3.2 fm for the 01

+ ground
state and 4.0 fm for the 02

+ excited state. However, when
we take βα,z = 2.0 fm and 3.5 fm for the 01

+ state and
02

+ state respectively, the energy curves shows much lower
(1–2 MeV) binding energy at Sz = 0. This shows that the
nonlocalized model characterized by parameter β provides a
better description than the localized picture for these two 0+
states of 10Be. It is also interesting to find that this model
also works for the compact 01

+ ground state with a small
β parameter βα,z = 2.0 fm, which shows that the THSR
wave function prevails for nongaslike cluster states. This is
consistent with a previous study of the compact ground state
of 20Ne, where small β parameters are also observed [6]. For
these states, localization of α clusters at the SU(3) limit comes
from the antisymmetrization because of the fermion nature
of nucleons. The localization is not due to dynamic but to
kinematic reasons, and the concept of nonlocalized dynamics
prevails in this situation [7].

We further compare the fully nonlocalized description and
the hybrid description for the 0+ states. We show in Fig. 8
the contour map of the binding energy of the 01

+ ground
state of 10Be with different parameters βα,z and Sz. We
can see two optimum points with value −58.2 MeV on the
contour map. The optimum value, which locates along the axis
where Sz = 0, corresponds to a standard THSR wave function.
Squared overlap of 99.87% between these two optimum points
is obtained by numerical calculation, which shows that these
two points correspond to almost equivalent wave functions. So,
we simply choose the simpler one along the Sz = 0 axis. We
also list in Table II the binding energies of two 0+ obtained with
the Brink wave function, THSR wave function, and also hybrid
wave function. The binding energy of the 02

+ excited state
calculated with THSR wave function is also found to be the
lowest one. We can thus conclude from the variational principle
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FIG. 8. Contour map of the binding energy of the 01
+ ground state

of 10Be with different parameters βα,z and Sz. Other parameters for
α clusters are βα,xy = 0.1 fm and Sz = 0 fm. Parameters for valence
neutrons are taken from the variational result in Sec. III. The optimum
value is marked on the map labeled with corresponding coordinates.

that the THSR wave function provides better description for
these 0+ states as a special case of the hybrid description.

Another interesting problem is the dineutron correlation
effect in the 10Be nucleus. With the THSR wave function, we
calculate the contour map of the binding energy surface for
the ground state of 10Be as shown in Fig. 9. For simplicity,
we fix the deformation between x, y, and z directions to be
0. The optimum binding energy locates near the coordinates
(1.5,2.0), where βpair,xy = βpair,z = 1.5 fm and βn,xy = βn,z =
2.0 fm. This optimum value is slightly higher than the final
result of −58.2 MeV because deformation is neglected here.
When βpair = 0, the THSR wave function turns to describe
independent motion for two valence neutrons. Thus, the
optimum value of parameter βpair > 0 shows the existence of
correlation effects in the ground state, as discussed above. A

TABLE II. Binding energies obtained for the 01
+ state and 02

+

state of 10Be with the hybrid wave function. Binding energies in
the first row are calculated with parameter βz = 0 and parameter
Sz chosen freely, which corresponds to a Brink wave function.
Binding energies in the second row are calculated with parameter βz

chosen freely and parameter Sz = 0, which corresponds to a THSR
wave function. Binding energies in the third row are calculated with
parameter βz and parameter Sz chosen freely.

βz Sz 01
+ 02

+

βz = 0 Sz free −57.1 −47.3
βz free Sz = 0 −58.2 −49.9
βz free Sz free −58.2 −49.9

FIG. 9. Contour map of the binding energy surface of the ground
state with different β parameters in the THSR wave function. The
horizontal coordinates are the βpair parameters as βpair,xy = βpair,z.
The vertical coordinates are the βn parameters as βn,xy = βn,z. Other
parameters are βα,xy = 0.1 fm, βα,z = 2.0 fm. The optimum value is
marked on the map labeled with corresponding coordinates.

large distance between the two neutrons in the dineutron pair
can be concluded because of the big value of the parameter βn.
The small value of the parameter βpair describes relatively weak
correlations between two valence neutrons in our calculation.
We also study the correlation of the two valence neutrons in the
02

+ state of 10Be. A very large value of the parameter βn and
a very small parameter βpair are obtained, which show nearly
independent motion of the two valence neutrons in this state.

VI. CONCLUSION

We investigated the N = Z + 2 nucleus 10Be from the
nonlocalized clustering concept. THSR wave functions with
π -orbit structure and chain (σ -orbit) structure are formulated
for 10Be. Correct parity and node structures are ensured in
THSR wave functions for the corresponding states. The 01

+
ground state of 10Be and its rotational band are calculated and
the results agree well with other models and experimental
values. Small improvement is observed for the binding energy
of the ground state with introduction of correlations between
two valence neutrons in a single THSR wave function. The
02

+ state is also studied with the newly formulated THSR
wave function containing a node factor. The calculated
energy spectrum of the 02

+ rotational band is consistent
with values from other models as well as with experiments.
This result is very interesting because only one single THSR
wave function is used. Root-mean-square radii are also
calculated for the first two 0+ states of 10Be, which have
good agreement with other models. The density distribution
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of valence neutrons shows good description of the σ orbit
by the THSR wave function. It is the first application of the
nonlocalized picture to σ -orbit binding systems. Analysis
of optimum β parameters shows a much tighter binding
effect for α clusters within the π -orbit structure than with
the σ -orbit structure. By analyzing energy curves and contour
maps for binding energies calculated with the hybrid wave
function, we find that the nonlocalized clustering picture
prevails for the 01

+ state and 02
+ state of 10Be. We also

discussed the correlation effect between valence neutrons of
two valence neutrons in the ground state. The investigation
of 10Be is another extension of the nonlocalized concept
and of the THSR wave function towards more general nuclear
structures. Our calculations with the THSR wave function and
the Monte Carlo technique requires less numerical work than
the traditional GCM treatment. Also, the THSR wave function

used in this work illustrates more physical insights into the
10Be nucleus. In the future, this scheme based on the nonlo-
calized concept is also promising for the study of neutron-rich
nuclei with cluster structures and the investigations of their
corresponding cluster and nucleon dynamics.
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