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The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the
shifted antisymmetrized molecular dynamics (AMD) plus 3α-cluster generator coordinate method (GCM). The
small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a
small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude
cluster modes are incorporated by superposing 3α-cluster wave functions in the GCM. The coupling of the
excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically
by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD
excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances
in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The
low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters,
and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths
exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(0+

2 ;
7.65 MeV) and 12C(0+

3 ; 10.3 MeV) measured by (e,e′), (α,α′), and (6Li ,6Li ′) scatterings. In the calculated
low-energy ISD strengths, two 1− states (the 1−

1 and 1−
2 states) with the significant strengths are obtained over

E = 10–15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for
new cluster states such as the 12C(1−

2 ) obtained in the present calculation.
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I. INTRODUCTION

Isoscalar monopole (ISM) and dipole (ISD) strength distri-
butions measured by hadron inelastic scattering experiments
have been providing useful information for nuclear properties
concerning nuclear excitations corresponding to the compres-
sional vibration modes as well as the nuclear matter incom-
pressibility. Isoscalar giant monopole resonances (ISGMRs),
which were established in medium and heavy nuclei [1–4],
have been studied extensively between 12C and 206Pb [5–10].
The ISGMRs in medium and heavy nuclei exhaust almost
100% of the isoscalar monopole (ISM) energy-weighted sum
rule (EWSR), and the excitation energies have been used to ex-
tract the compressibility of the nuclear matter with microscopic
calculations using, for example, nonrelativistic and relativistic
mean-field approaches and those plus the random-phase ap-
proximation (RPA) (see Refs. [11–15] and references therein).
High-precision studies using hadron inelastic scatterings have
revealed that the ISM strength distributions in nuclei lighter
than 40Ca are strongly fragmented [5–7,9,10]. In the ISM
strengths in 16O, a significant percentage of the EWSR has
been found in a low-energy region. In the theoretical study of
16O with a 4α calculation by Yamada et al., it was pointed out
that two different types of ISM excitations exist in 16O [16]:
the low-energy ISM strengths of excitations into cluster states
for E � 16 MeV are separated from the high-energy ISM
strengths of the ISGMR for E > 16 MeV, which correspond
to the collective vibration mode described by coherent one-
particle and one-hole (1p-1h) excitations in a mean field. The
separation of the low-energy ISM strengths from the ISGMR
was also found in 12C [5,9]. The ISM strength distributions in
12C observed by (α,α′) and (6Li,6Li′) scatterings [5,9,17] show
that the low-energy ISM strengths in E � 12 MeV exhaust

the significant percentage of the EWSR comparable to the
high-energy strengths in E > 12 MeV of the ISGMR. In 12C, a
couple of excited 0+ states have been observed experimentally
near the 3α threshold energy (see, for instance, Refs. [9,18,19]
and references therein). Theoretically, these states are con-
sidered to be 3α-cluster states [20–38]. The remarkable E0
strength for the 0+

2 (7.65 MeV) state was observed by electron
scattering [39,40], and the inelastic form factor for the 0+

2 is
described well by 3α-cluster models [21,23,32,36]. In general,
the ISM strengths can be strongly concentrated on cluster
states in the low-energy region because the ISM operator
directly excites the cluster motion with L = 0 as well as the
compressional monopole vibration mode [16]. Therefore, the
low-energy ISM strengths separating from the ISMGR is a
good probe to study cluster states in light nuclei, as discussed
for 12C, 16O, 11B, and 24Mg [16,35,41–46].

In analogy to the ISM excitations, the ISD excitations
can be another probe to search for cluster states because
the ISD operator is able to excite the cluster motion with
L = 1 as well as the compressional dipole vibration mode.
The isoscalar giant dipole resonances (ISGDRs) observed
by (α,α′) scatterings are found generally in a higher-energy
region than the ISGMR (see Refs. [15,47–49] and references
therein). Compared with the ISM strength distributions, the
observed ISD strengths in medium and heavy nuclei are
strongly fragmented and concentrate typically in two-bump
structures [50,51]: one in the low-energy region and the other
in the relatively-higher-energy region, which are considered to
correspond to the toroidal dipole mode and the compressional
dipole vibration mode, respectively [15,49,52–55]. In 16O and
40Ca, the low-energy ISD strengths concentrate on the 1−
states at E = 7.12 MeV and E = 6.95 MeV, respectively,
which exhaust approximately 4% of the EWSR [48,56]. Also
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in 12C, the significant low-energy ISD strengths have been
observed for E � 20 MeV below the high-energy strengths
of the ISGDR [9]. The separation of the low-energy ISD
strengths from the high-energy strengths of the ISGDR for the
compressional dipole vibration mode suggests two different
types of ISD modes. In the case of light nuclei, the low-energy
ISD strengths could correspond to the excitations of the cluster
modes.

The aim of this paper is to investigate ISM and ISD
excitations in 12C from low-energy to high-energy regions
and to clarify the separation of the cluster modes from
the giant resonances for the collective vibration modes. In
the history of theoretical studies of the giant resonances,
RPA calculations in mean-field approaches have been widely
applied. Although the RPA calculations are successful for
a variety of collective excitations in heavy-mass nuclei, the
RPA is not useful to describe well-developed cluster states
and fails to reproduce the low-energy ISM strengths in 16O
[7,57] because it is a small-amplitude approach and unable
to describe the large-amplitude cluster motions. Moreover, in
most current mean-field approaches, calculations are based
a parity-symmetric mean field in a strong-coupling picture
without the angular-momentum and parity projections, and
the coupling of single-particle excitations in the mean-field
with the rotation and parity transformation is not taken into
account microscopically. The ISM transitions to the 0+ states
having 3α-cluster structures near and above the 3α threshold
have been theoretically investigated by microscopic and
semimicroscopic 3α-cluster models [21,23,32,35] as well as
other structure models such as the antisymmetrized molecular
dynamics (AMD) [33] and fermionic molecular dynamics
(FMD) [36] and also an ab initio calculation [58]. However,
these calculations have not yet been applied to investigate
the relatively high-energy ISGMR and ISGDR strengths for
the collective vibration modes contributed by coherent 1p-1h
excitations.

To take into account the large amplitude cluster modes
and the coherent 1p-1h excitations as well as the angular-
momentum and parity projections, I have recently developed
the AMD method [59–62] in Refs. [63,64]. The applications of
the AMD to collective vibration modes go back to the works on
electric dipole (E1) and ISM excitations [65,66] with the time-
dependent AMD, which was originally developed for study of
heavy-ion reactions [67,68]. However, in the time-dependent
AMD approach, the angular-momentum and parity projections
are not performed. Instead of the time-dependent AMD, I
superpose the angular-momentum and parity projected wave
functions of various configurations including the 1p-1h and
cluster modes. I first perform the variation after the angular-
momentum and parity projections in the AMD framework
(AMD + VAP) to obtain the ground-state wave function of
12C, as done in Refs. [25,33]. Then I describe small-amplitude
motions by taking into account 1p-1h excitations on the
obtained ground-state wave function with the shifted AMD
method [63,64]. To incorporate the large-amplitude cluster
motions, I combine the the generator coordinate method
(GCM) with the shifted AMD method by superposing 3α-
cluster wave functions. The angular-momentum and parity
projections are performed in the present framework. By

applying the present method, I investigate the ISM and ISD
excitations in 12C.

This paper is organized as follows: The present method is
formulated in Sec. II, and Sec. III discusses the ground-state
structure and the ISM and ISD excitations in 12C. The paper
concludes with a summary in Sec. IV.

II. FORMULATIONS OF SHIFTED AMD AND
3α-CLUSTER GCM FOR ISM AND ISD EXCITATIONS

In order to calculate the ISM and ISD excitations in 12C,
I first perform the AMD + VAP to obtain the ground-state
wave function, and then apply the shifted AMD based on the
ground state and combine it with the 3α-cluster GCM. In this
section, I explain the formulations of the AMD + VAP, the
shifted AMD, and the 3α-cluster GCM and also describe the
definitions of the ISM and ISD transitions. For the details of
the AMD method, the reader is referred to Refs. [61,62] and
references therein.

A. AMD wave function

An AMD wave function is given by a Slater determinant,

�AMD(Z) = 1√
A!

A{ϕ1,ϕ2, . . . ,ϕA}, (1)

where A is the antisymmetrizer. The ith single-particle wave
function ϕi is written by a product of spatial, spin, and isospin
wave functions as

ϕi = φX i
χiτi, (2)

φX i
(rj ) =

(
2ν

π

)4/3

exp{−ν(rj − X i)
2}, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

φX i
and χi are the spatial and spin functions, respectively,

and τi is the isospin function fixed to be up (proton) or down
(neutron). The width parameter ν is fixed to be the optimized
value. To separate the center-of-mass motion from the total
wave function �AMD(Z), the following condition should be
satisfied:

1

A

∑
i=1,...,A

X i = 0. (5)

In the present calculation, I keep this condition and exactly
remove the contribution of the center-of-mass motion. Ac-
cordingly, an AMD wave function is expressed by a set of
variational parameters, Z ≡ {X1, . . . ,XA,ξ1, . . . ,ξA}, which
specify centroids of single-nucleon Gaussian wave packets
and spin orientations for all nucleons. It should be mentioned
that the AMD wave function is similar to the wave function
used in FMD calculations [69,70].

In the AMD framework, existence of clusters is not
assumed a priori because Gaussian centroids, X1, . . . ,XA,
of all single-nucleon wave packets are independently treated
as variational parameters. Nevertheless, a multicenter cluster
wave function can be described by the AMD wave function
with the corresponding configuration of Gaussian centroids. It
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should be also mentioned that, when all |X i | goes to the small
limit, the AMD wave function is equivalent to a shell-model
configuration because of the mathematical consequence of the
antisymmetrized Gaussian wave packets.

B. AMD + VAP

To obtain the ground-state wave function of an
A-nucleon system, the AMD + VAP method is ap-
plied. In the AMD + VAP method, the parameters Z =
{X1,X2, . . . ,XA,ξ1,ξ2, . . . ,ξA} in the AMD wave function
are determined by the energy variation after the angular-
momentum and parity projections (VAP). It means that X i and
ξi for the lowest Jπ state are optimized so as to minimize
the energy expectation value of the Hamiltonian for the
Jπ -projected AMD wave function;

0 = δ

δX i

〈�|H |�〉
〈�|�〉 , (6)

0 = δ

δξi

〈�|H |�〉
〈�|�〉 , (7)

� = P Jπ
MK�AMD(Z), (8)

where P Jπ
MK is the angular-momentum and parity projection

operator. After the VAP calculation with Jπ = 0+, the opti-
mized parameters Z0 = {X0

1, . . . ,ξ
0
1 , . . .} for the ground state

of 12C are obtained.

C. Shifted AMD

To incorporate 1p-1h excitations, I consider small variations
δϕi of the single-particle wave function ϕi in the ground-state
wave function �AMD(Z0) by shifting the position of the
Gaussian centroid, X0

i → X0
i + �σ , where �σ is the small

vector specified by the label σ for the shift direction. In the
present calculation, eight directions (σ = 1, . . . ,8) are adopted
to obtain the approximately converged result for the ISM and
ISD strengths. I choose a sufficiently small shift, typically
 = |�σ | = 0.1 ∼ 0.2 fm, so as to obtain -independent
results. Details of the adopted �σ=1,...,8 are described in
Sec. III.

For the spin part, I consider the spin-nonflip single-particle
state χi and the spin-flip state χ̄i (〈χ̄i |χi〉 = 0):

χ̄i = (
1
2 + ξ̄i

)
χ↑ + (

1
2 − ξ̄i

)
χ↓, (9)

where ξ̄i = −1/(4ξ ∗
i ). For all single-particle wave functions,

I consider spin-nonflip and spin-flip states shifted to eight
directions (�σ=1,...,8) independently and prepare 16A AMD
wave functions, �AMD(Z0

nonflip(i,σ )) and �AMD(Z0
flip(i,σ ))

with the parameters,

Z0
nonflip(i,σ )

≡ {
X0

1
′
, . . . ,X0

i

′ + �σ , . . . ,X0
A

′
,ξ 0

1 , . . . ,ξ 0
i , . . . ,ξ 0

A

}
, (10)

Z0
flip(i,σ )

≡ {
X0

1
′
, . . . ,X0

i

′ + �σ , . . . ,X0
A

′
,ξ 0

1 , . . . ,ξ̄ 0
i , . . . ,ξ 0

A

}
, (11)

where X0
j

′ = X0
j − �σ /(A − 1) to take into account the recoil

effect so that the center-of-mass motion is separated exactly.
Those shifted AMD wave functions �AMD(Z0

(non)flip(i,σ )) and
the original wave function �AMD(Z0) are superposed to obtain
the final wave functions for the ground and excited states,

�sAMD
12C(Jπ

k ) =
∑
K

c0
(
Jπ

k ; K
)
P Jπ

MK�AMD(Z0)

+
∑

i=1,...,A

∑
σ

∑
K

c1
(
Jπ

k ; i,σ,K
)

×P Jπ
MK�AMD

(
Z0

nonflip(i,σ )
)

+
∑

i=1,...,A

∑
σ

∑
K

c2
(
Jπ

k ; i,σ,K
)

×P Jπ
MK�AMD

(
Z0

flip(i,σ )
)
, (12)

where the coefficients c0, c1, and c2 are determined by
diagonalization of the norm and Hamiltonian matrices. I call
this method “the shifted AMD” (sAMD) method.

The model space of the sAMD method contains the 1p-1h
excitations that are written by the small shift of single-nucleon
Gaussian wave functions of the ground-state wave function.
In the intrinsic frame before the angular-momentum and
parity projections, the ground-state AMD wave function is
expressed by a Slater determinant and, therefore, the sAMD
method corresponds to the RPA in the restricted model
space of the linear combination of the shifted Gaussian wave
functions. However, since the Jπ -projected wave functions are
superposed in the sAMD, the coupling of the 1p-1h excitations
with the rotation and parity transformation is taken into
account microscopically. Moreover, the original wave function
for the ground state is the one obtained by the variation after
the angular-momentum and parity projections, as mentioned
previously. It means that the sAMD may contain, in principle,
higher correlations beyond the RPA.

It is clear from the Taylor expansion of a Gaussian that the
small shift X i → X i + εeσ with �σ = εeσ of the Gaussian
wave packet can be expressed by a linear combination of
harmonic oscillator (HO) orbits around X i ,

φX i+εeσ
∝

∑
k=0

1

k!
(−2ε)k(r · eσ )kφX i

. (13)

In terms of the HO orbits around X i , the O(ε0), O(ε1), O(ε2),
and O(ε3) terms correspond to 0s, {0p}, {1s,0d}, and {1p,0f }
orbits, respectively. In the small ε = |�σ | limit, the number
of independent vectors �σ necessary to exactly express the
excited configurations r2φX i

for ISM is 9 = 3 + 6 because the
O(ε2) terms are needed for the r2φX i

configuration excited
by the ISM operator. Similarly, 19 = 3 + 6 + 10 independent
vectors are necessary for ISD because the O(ε3) terms are
needed to cover the r2rφX i

configurations. Note that an
infinitesimal small change of the width of the Gaussian wave
packet can be expressed by the linear combination of O(ε0) and
O(ε2) terms; namely, by the sAMD configuration even though
the sAMD basis configurations are given by shifted Gaussian
wave packets with a fixed width. Although the model space
of the shifted Gaussian for each single-particle wave function
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(b) distance(a) full
FIG. 1. Schematic figures of 3α configurations for (a) the

3αGCM (full) with the generator coordinates d , D, and θ , and (b) the
3αGCM (distance) with the generator coordinates d and D, and the
fixed θ = π/2.

is rather trivial, the the model space of the sAMD is not so
trivial because of the recoil effect. Moreover, in the sAMD
framework, the configurations excited by the ISM and ISD
operators should be efficiently covered by a smaller number
of �σ because of the effects of the antisymmetrization and
the angular-momentum and parity projections. As mentioned
previously, I choose a set of eight vectors by checking the

convergence of the ISM and ISD strengths for the number of
vectors to save computational cost.

D. 3α-cluster GCM

To incorporate the large-amplitude α-cluster motions, I
combine the 3α-cluster GCM (3αGCM) with the sAMD. In the
3αGCM, I superpose the 3α-cluster wave functions projected
from the Brink–Bloch 3α-cluster wave functions [71],

�3α = 1√
A!

A{�α(R1)�α(R2)�α(R3)}, (14)

where �α(Ri) is the α-cluster wave function written by the
harmonic oscillator (0s)4 configuration located at Ri with
the width b = 1/

√
2ν, and Ri satisfies the relation R1 +

R2 + R3 = 0. Note that �3α(R1,R2,R3) can be expressed
by the AMD wave function with the specific configuration.
To take into account various 3α configurations, the distances
d = |R1 − R2| and D = |R3 − (R1 + R2)/2|, and the angle θ
between R3 and R1 − R2 are treated as generator coordinates
in the GCM calculation [see Fig. 1(a)]. Then, I combine the
3αGCM with the sAMD and express the total wave function as

�sAMD+3αGCM
12C(Jπ

k ) =
∑
K

c0
(
Jπ

k ; K
)
P Jπ

MK�AMD(Z0) +
∑

i=1,...,A

∑
σ

∑
K

c1
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

nonflip(i,σ )
)

+
∑

i=1,...,A

∑
σ

∑
K

c2
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

flip(i,σ )
) +

∑
d,D,θ

∑
K

c3
(
Jπ

k ; d,D,θ,K
)
P Jπ

MK�3α(d,D,θ ), (15)

where the coefficients are determined by diagonalization
of the norm and Hamiltonian matrices. The summation for
three parameters d, D, θ corresponds to the 3αGCM with
full 3α configurations, which I call the 3αGCM (full) in
the present paper. To see the effect of the angular motion of
α clusters, I also perform the 3αGCM calculation with the
fixed angle θ = π/2 considering only the distance motion
between α clusters with the generator coordinates d and D
[see Fig. 1(b)], which I call 3αGCM (distance). Note that the
motion called the distance motion here means two modes with
respect to the generator coordinates d and D corresponding
to the α-2α distance and α-α distance. It also contains the
isotropic radial motion of the triangle 3α configuration.

In the present calculation, the AMD + VAP is not per-
formed for excited 0+ and 1− states differently from the
previous work on 12C, in which the AMD + VAP is performed
for 12C(0+

2,3) and 12C(1−
1 ). As discussed in Ref. [25], these

excited states have well developed 3α cluster structures which
are approximately included in the present model space of
3αGCM. Indeed, the absolute energies for 12C(0+

2,3) and
12C(1−

1 ) obtained by the present sAMD + 3αGCM calculation
are slightly lower than those obtained by the AMD + VAP
calculation in Ref. [25].

E. Isoscalar monopole and dipole transitions

The ISM and ISD operators M(IS0) and M(IS1; μ),
which excite the compressional monopole and dipole modes,

respectively, are defined as

M(IS0) =
∑

i

r2
i,in, (16)

M(IS1; μ) =
∑

i

r3
i,inY

1
μ(r̂ i,in), (17)

where r i,in is the ith nucleon coordinate with respect to the
center of mass. The ISM strength for 0+

1 → 0+
k and the ISD

strength for 0+
1 → 1−

k are given by the reduced matrix elements
of these operators as

B
(
IS0; 0+

1 → 0+
k

) = 1

2Jg.s. + 1
|〈0+

k ||M(IS0)||0+
1 〉|2, (18)

B
(
IS1; 0+

1 → 1−
k

) = 1

2Jg.s. + 1
|〈1−

k ||M(IS1)||0+
1 〉|2, (19)

where Jg.s. is the ground-state angular momentum, and in the
present case it is zero. The energy-weighted sum (EWS) of the
strengths is given as

S(IS0) ≡
∑
k�2

E0+
k
B(IS0; 0+

1 → 0+
k ), (20)

S(IS1) ≡
∑
k�1

E1−
k
B(IS1; 0+

1 → 1−
k ). (21)
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If the interaction commutes with the ISM operator, the ISM
energy-weighted sum rule (EWSR) is given as

S(IS0) = 2�
2

m

〈
0+

1 |
∑

i

r2
i,in|0+

1

〉
= 2�

2

m
A〈r2〉g.s., (22)

where 〈r2〉g.s. is the mean-square radius of the ground state.

III. RESULTS

A. Effective nuclear interactions

I use an effective nuclear interaction consisting of the
central force of the MV1 force (case 1) [72] and the spin-orbit
force of the G3RS force [73,74], and the Coulomb force. The
MV1 force consists of a two-range Gaussian two-body term
and a zero-range three-body term. The G3RS spin-orbit force is
a two-range Gaussian force. The Bartlett, Heisenberg, and Ma-
jorana parameters, b = h = 0 and m = 0.62, in the MV1 force
are adopted, and the strengths uI = −uII ≡ uls = 3000 MeV
of the G3RS spin-orbit force are used. These interaction
parameters are the same as those used in Refs. [25,33], in
which the AMD + VAP calculation describes properties of
the ground and excited states in E � 15 MeV of 12C.

The MV1 force contains the zero-range three-body repul-
sion, which is equivalent to the density-dependent zero-range
two-body interaction for spin and isospin saturated systems.
For saturation properties of a symmetric nuclear matter,
the MV1 force with the present parametrization (b = h = 0
and m = 0.62) reproduces not perfectly but reasonably the
empirical data: it gives the saturation density ρs = 0.192 fm−3,
the saturation energy E/A|ρ=ρs

= −17.9 MeV, and the incom-
pressibility K = 245 MeV.

B. Parameter setting and ground state of 12C

The width parameter ν = 0.19 fm−2 is chosen for the AMD
wave function so as to minimize the ground-state energy of 12C
calculated by the AMD + VAP. This value is slightly smaller
than the optimum value ν = 0.21 fm−2 for 4He.

In the sAMD, I tried four sets of vectors,
�σ=x,y,z = ε(1,0,0), ε(0,1,0), ε(0,0,1), �σ=1,...,6 =
ε(±1,0,0), ε(0,±1,0), ε(0,0,±1), �σ=1,...,8 = ε(±1,±1,±1),
�σ=1,...,14 = ε(±1,±1,±1), (±1,0,0), (0,±1,0), (0,0,±1) for
the shift of Gaussian centroids, and checked the convergence
of the ISM and ISD strengths on the number of the directions
σ . Here, ε is chosen to be 0.1 fm, which is small enough to
give the ε-independent result. The x, y, and z axes are chosen
to be the principle axes of the inertia in the intrinsic frame
and satisfy 〈x2〉 � 〈y2〉 � 〈z2〉 and 〈xy〉 = 〈yz〉 = 〈zx〉 = 0
for the intrinsic wave function �AMD(Z0). The ISM and
ISD strengths calculated by the sAMD with four choices,
�σ=x,y,z, �σ=1,...,6, �σ=1,...,8, and �σ=1,...,14, are shown in
Fig. 2, which shows the strength distributions smeared by
a Gaussian with the width γ = 2 MeV. It is found that the
set �σ=1,...,8 is practically enough to get an approximately
converged result for both the ISM and ISD strengths, whereas
�σ=x,y,z is enough only for the ISM strengths but not for
the ISD strengths. I adopt the set �σ=1,...,8 in the present
sAMD + 3αGCM calculation.

FIG. 2. (a) ISM and (b) ISD strength distributions of 12C calcu-
lated by the sAMD with eσ=x,y,z, eσ=1,...,6, eσ=1,...,8, and eσ=1,...,14. The
strengths are smeared by a Gaussian with the width γ = 2 MeV.

For the generator coordinates in the 3αGCM, d = 1.8 +
nd fm (nd = 0, . . . ,4) and D = 2 + nD fm (nD = 0, . . . ,5)
are adopted in the 3αGCM (full) and 3αGCM (distance). In
addition, θ = πnθ/8 (nθ = 0, . . . ,4) are used in the 3αGCM
(full).

C. Ground-state structure

The wave function �AMD(Z0) obtained by the AMD + VAP
for the ground state contains the α cluster correlation as well
as the p3/2-closed configuration, as discussed in Refs. [25,33].
As seen in the density distribution in Fig. 3, the intrinsic
wave function of the ground state has a triaxial deformation

FIG. 3. Density distribution of the intrinsic wave function of the
12C ground state obtained by AMD + VAP. The density is projected
onto the xy (left), yz (middle), and zx (right) planes.
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with the cluster structure. In the sAMD and sAMD + 3αGCM
(full) calculations, the ground-state wave function is expressed
by the linear combination of many configurations as given
in Eqs. (12) and (15); however, it is still dominated by
P 0+

00 �AMD(Z0) with 96% (91%) in the sAMD [sAMD +
3αGCM (full)]. The calculated binding energy (B.E.) and
root-mean-square matter radius (rm) of 12C calculated by the
AMD + VAP, sAMD, and sAMD + 3αGCM (full) are B.E. =
86.7 MeV, 89.0 MeV, 89.6 MeV, and rm = 2.41 fm, 2.41 fm,
and 2.46 fm, respectively, which reasonably agrees with the
experimental values B.E. = 92.16 MeV and rp = 2.33 fm (the
point-proton radius) reduced from the charge radius [75].

D. ISM strengths

The ISM strengths for 0+
1 → 0+

k (k � 2) obtained by the
sAMD, sAMD + 3αGCM (distance), and sAMD + 3αGCM
(full) are shown in Fig. 4. The VAP + 3αGCM (full) result
without sAMD basis, which is obtained by the 3αGCM (full)
combined with only the VAP ground-state configuration, is
also shown. In the sAMD, sAMD + 3αGCM (distance), and
sAMD + 3αGCM (full) results, the total energy-weighted
sum (TEWS) of the ISM strengths corresponds to 97%,
100%, and 100% of the EWSR in Eq. (22), respectively.
In the three calculations with the sAMD configurations,
the remarkable ISM strengths exist over E = 25–30 MeV
corresponding to the ISGMR. In the sAMD result [Fig. 4(a)],
a low-energy ISM resonance is found at E ∼ 15 MeV and
is regarded as a signal of the excitation of the cluster mode
originating in the ground-state cluster correlation. As seen
in the sAMD + 3αGCM (distance) result [Fig. 4(b)], this
low-energy mode comes down below E = 10 MeV, and its
ISM strength is remarkably enhanced by the large-amplitude
distance motion between α clusters. It should be noted that
a part of the ISGMR strength feeds the low-energy strength.
Furthermore, in the sAMD + 3αGCM (full) calculation with
the radian and angular motions of α clusters, the low-energy
mode splits into two states around E = 10 MeV [see Fig. 4(c)].
It is striking that, in the VAP + 3αGCM (full) result without
the sAMD, the low-energy strengths for the cluster states are
almost consistent with those of the sAMD + 3αGCM (full)
result, whereas the high-energy strengths for the ISGMR
are not obtained. Moreover, the total energy-weighted sum
(TEWS) of the ISM strengths is only 50% of the EWSR in
Eq. (22). This indicates that the 1p-1h excitations taken into
account by the sAMD configurations describe the ISGMR and
are necessary to exhaust the EWSR.

The lower state in the sAMD + 3αGCM (full) result is
assigned to the experimentally known 0+

2 state at 7.65 MeV.
The calculated B(IS0) agrees well with the experimental
value B(IS0) = 120 ± 4 fm4 evaluated from the E0 strength
measured by electron scatterings [40] as B(IS0) = 4B(E0)
assuming the isospin symmetry. The higher state corre-
sponds to the 0+

3 state predicted by the AMD and FMD
calculations [25,28,33,36] as well as the 3α-cluster calcula-
tions [22,34]. The sum of the ISM strengths of the two 0+ states
(0+

2 and 0+
3 ) in the sAMD + 3αGCM (full) is almost the same

as the ISM strength of the low-energy mode obtained by the
sAMD + 3αGCM (distance). Namely, the low-energy mode

FIG. 4. The ISM strengths calculated by the sAMD, sAMD +
3αGCM (distance), sAMD + 3αGCM (full), and VAP + 3αGCM
(full). The strengths B(IS0) are shown by dashed lines and those
smeared by a Gaussian with the width γ = 1/

√
π MeV are shown

by solid curves.
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with the remarkable ISM strength arises from the excitation
of the distance motion between α clusters, and its strength
is dominantly carried by the 0+

2 and partly shared by the 0+
3

state. In the comparison of the ISM strengths between the
sAMD, sAMD + 3αGCM (distance), and sAMD + 3αGCM
(full) results, it is found that the enhancement and splitting
of the low-energy ISM strengths occur from the distance and
angular motions of α clusters, respectively.

E. ISD strengths

The ISD strengths for 0+
1 → 1−

k (k � 1) calculated by the
sAMD, sAMD + 3αGCM (distance), and sAMD + 3αGCM
(full) as well as the VAP + 3αGCM (full) are shown in Fig. 5.
Interestingly, also in the ISD strengths, the enhancement and
splitting of the low-energy strengths occur from the distance
and angular motions of α clusters, respectively. In the three
calculations with the sAMD configurations, the ISGDR is
found in the energy E = 30–55 MeV region higher than the
ISGMR energy. These high-energy strengths for the ISGDR
are not so affected by the large-amplitude cluster motions.
Below the ISGDR, the sAMD result shows a low-energy
ISD resonance at E ∼ 15 MeV regarded as a signal of the
cluster mode. The low-energy ISD strength of the cluster
mode is enhanced about twice by the distance motion between
α clusters in the sAMD + 3αGCM (distance) result, and it
splits into at least two states in E = 10–15 MeV because
of the angular motion of α clusters in the sAMD + 3αGCM
(full) result. Consequently, the low-energy ISD strengths of
the cluster mode are shared by the two states almost equally.
Similarly to the ISM strengths, in the result VAP + 3αGCM
(full) without the sAMD, the low-energy strengths for the
cluster states are almost consistent with those of the sAMD +
3αGCM (full) result, whereas the high-energy strengths for
the ISGDR are not obtained.

The lower state obtained by the sAMD + 3αGCM (full)
can be assigned to the experimentally known 1−

1 state at
10.84 MeV. For the higher 1− state, there is no corresponding
state confirmed experimentally; however, the significant ISD
strengths around E = 15 MeV have been observed by (α,α′)
scatterings and could be a signal of the higher 1− state obtained
in the present calculation. More details are discussed later.

F. Energy-weighted strength distributions

The energy-weighted ISM and ISD strength distributions
calculated by the sAMD + 3αGCM (full) are compared with
those measured by (α,α′) scatterings [9] in Fig. 6. The
calculated high-energy strengths for the ISGMR and ISGDR
are found around E = 30 MeV and E = 40 MeV, respectively.
The low-energy ISM and ISD strengths for the cluster modes
exist in the energy regions much below the giant resonances.
The percentages of the strengths in the low-energy and high-
energy regions calculated by the sAMD + 3αGCM (full) are
shown in Table I, compared with those of the sAMD and
sAMD + 3αGCM (distance) calculations.

The low-energy ISM strengths for the 0+ states around E =
10 MeV is only 11% of the EWSR in the sAMD; however, they
are largely enhanced by the large-amplitude cluster motions

FIG. 5. The ISD strengths calculated by the sAMD, sAMD +
3αGCM (distance), sAMD + 3αGCM (full), and VAP + 3αGCM
(full). The strengths B(IS1) are shown by dashed lines and those
smeared by a Gaussian with the width γ = 1/

√
π MeV are shown

by solid curves.
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FIG. 6. The energy-weighted ISM and ISD strength distributions
calculated by the sAMD + 3αGCM (full) and those measured by
(α,α′) scatterings. For the calculated result, the ratio of the strengths
in each energy bin to the TEWS is shown. The bin width is chosen to
be 1 MeV. The experimental data are the EWSR ratios from Ref. [9]
of (α,α′) scatterings, in which about 40% of the ISM EWSR and
80% of the ISD EWSR were observed in E � 45 MeV. Panel (a) also

TABLE I. The energy-weighted ISM and ISD strengths in
the low-energy and high-energy regions calculated by the sAMD,
sAMD + 3αGCM (distance), sAMD + 3αGCM (full), and VAP +
3αGCM (full). The percentages of the ISM strengths in E < 17 MeV
and 17 < E < 45 MeV to the EWSR and those of the ISD strengths
in E < 20 MeV and 20 < E < 55 MeV to the TEWS are listed. The
ISM TEWS (fm4 MeV), ISM EWSR (fm4 MeV), and ISD TEWS
(fm6 MeV) are also shown.

sAMD sAMD + 3αGCM VAP + 3αGCM

(distance) (full)

IS0
TEWS 5.6 × 103 6.0 × 103 6.0 × 103 3.1 × 103

EWSR 5.8 × 103 6.0 × 103 6.0 × 103 6.2 × 103

E < 17 11% 26% 26% 26%
17 < E < 45 64% 51% 50% 3%

IS1
TEWS 1.41 × 104 1.45 × 104 1.46 × 104 2.5 × 103

E < 20 2.1% 3.6% 3.4% 27%
20 < E < 55 87% 83% 83% 64%

and exhaust 26% of the EWSR in the sAMD + 3αGCM
(distance) and sAMD + 3αGCM (full). The fact that the
sum of the low-energy strengths in E < 17 MeV and the
ISGMR strength in 17 < E < 45 MeV is almost constant
(75%–77% of the EWSR) in three calculations indicates that
the increment of the low-energy ISM strengths come from
the ISGMR strength, which originally concentrates in the
high-energy region in the sAMD. In other words, in the sAMD
calculation without the large-amplitude cluster modes, a part
of the strengths of the cluster modes is involved by the ISGMR.

The feature of the experimental ISM strength distributions
[Fig. 6(c)] which consists of the high-energy strengths of
the ISGMR and the significant low-energy strengths are
qualitatively described by the calculation [Fig. 6(a)]; however,
the quantitative description of the high-energy part is not
satisfactory in the present result. The present calculation
overestimates the centroid energy (21.9 ± 0.3 MeV) and the
strengths (27% ± 5% of the EWSR) of the observed ISGMR
and also fails to describe the width of the ISGMR. The
present model space of the sAMD is restricted only in the
single-particle excitations written by shifted Gaussians and is
insufficient to describe the spreading width of the ISGMR.

For the low-energy ISM strengths, the calculated strength
for the 0+

2 state exhausts 18% of the EWSR, which agrees
well with the experimental values for the 0+

2 (7.65 MeV),
15% in Ref. [39], and 17% in Ref. [40], measured by
(e,e′) scatterings [see Fig. 6(a) and Table II]. The data
evaluated by (α,α′) [9] and (6Li ,6Li ′) [17] scatterings is
7.6% ± 0.9% and 9.5%, which is about a half of the values

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
shows the experimental values of the energy-weighted ISM strengths
in the unit of EWSR: the data for the 0+

2 and 0+
3 states measured

by (α,α′) [9] and (6Li ,6Li ′) [17] scatterings, and that evaluated by
the E0 strength measured by (e,e′) scatterings [40] assuming mirror
symmetry.
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TABLE II. The energy-weighted ISM strengths for the 0+
2 and

0+
3 states. The experimental data are those measured by (α,α′)

[9] and (6Li ,6Li ′) [17] scatterings, and those evaluated by the E0
strengths measure by (e,e′) [39,40] assuming the mirror symmetry.
The theoretical values are calculated by the sAMD + 3αGCM (full).
The percentages to the EWSR are shown.

Calc. (e,e′) [39] (e,e′) [40] (α,α′) [9] (6Li ,6Li ′) [17]

0+
2 18 15 17 7.6 ± 0.9 9.5

0+
3 8 6.9 ± 0.9 5 ± 1

measured (e,e′) scatterings. This inconsistency of the ISM
strength for the 0+

2 state might come from the reaction model
dependence in the DWBA analysis of nuclear scatterings.
For the 0+

3 state, the calculated strength exhausts 8% of the
EWSR, which reasonably agrees to the experimental values,
6.9% ± 0.9% and 5% ± 1%, for the 0+

3 (10.3 MeV) measured
by the (α,α′) and (6Li ,6Li ′) scatterings, respectively. The
observed ISM strengths around E = 10 MeV were considered
as a broad 0+

3 state at E = 10.3 MeV with a width of
� ∼ 3 MeV [9]. However, a recent experiment reported an
indication that it contains two 0+ states at E = 9.04 ± 0.09
MeV with � = 1.45 ± 0.18 and E = 10.56 ± 0.06 MeV with
� = 1.42 ± 0.08 MeV [18]. It is likely that the ISM strengths
for the 0+

3 (10.3 MeV) reported in Refs. [9,17] may contain the
strengths for the two 0+ states around E = 10 MeV above
the 0+

2 . Theoretically, the 3α orthogonal condition model
(3αOCM) calculations predicted two 0+ states above the
0+

2 state [31,37], whereas the AMD, FMD, and microscopic
3α-cluster calculations predicted only one 0+ state in this
energy region [22,25,28,33,34,36]. According to the 3αOCM
calculations, one of the two 0+ states is a very broad state.
The present framework is a bound state approximation, and
therefore, it is not suitable to describe such the state strongly
coupled by 3α continuum. If the missing 0+ state comes to
this energy region and mix with the 0+

3 state, it could share a
portion of the ISM strength for the 0+

3 obtained in the present
calculation. It means that the calculated ISM strength for the
0+

3 exhausting 8% of the EWSR may correspond to the sum
of the ISM strengths for possible 0+ states in this energy
region consistently to the experimental strengths evaluated by
assuming a single 0+ state at E ∼ 10 MeV in Refs. [9,17].

Let me look into the ISD strength distributions. The
calculated ISD strengths in E < 55 MeV is 86% of the TEWS
in the sAMD + 3αGCM (full), which is consistent with the
observed ones in E < 45 MeV exhausting 78% ± 9% of the
EWSR [9]. As seen in Fig. 6(b), the high-energy ISD strengths
corresponding to the ISGDR show a broad distribution mainly
in E = 30–55 MeV. The structure of the broad ISGDR is
qualitatively consistent with the observed ISD strengths shown
in Fig. 6(d); however, the present calculation overestimates the
observed peak energy of the ISGDR by about 10 MeV.

The low-energy ISD strengths between E = 10–20 MeV
exhaust 3.4% of the TEWS in the sAMD + 3αGCM (full).
The calculated low-energy ISD strengths in 12C is comparable
to the observed low-energy ISD strengths (4% of the EWSR)
in 16O [48]. Compared with the sAMD result, the strength

is enhanced by a factor 1.5 in the sAMD + 3αGCM (full)
because of the cluster components in both the ground state
and excited 1− states. A couple of 1− states contribute to the
low-energy ISD strengths, as seen in Fig. 6(b) for the sAMD +
3αGCM (full). The excitation energies of E = 12.6 MeV
and E = 14.8 MeV of the 1−

1 and 1−
2 states obtained by the

sAMD + 3αGCM (full) are consistent with those suggested
by the 3α-cluster calculation in Ref. [22]. The 1−

1 state is
assigned to the experimentally known 1− state at 10.84 MeV.
For the 1−

2 state, there is no experimentally confirmed state.
The calculated ISD strength for the 1−

2 state is 1.5% of the
TEWS. The significant ISD strength suggests that the ISD
excitations can be a good probe to experimentally observe the
1−

2 state. In the observed ISD strengths shown in Fig. 6(d), one
can see a bump at E ∼ 15 MeV, which can be a candidate of
the 1−

2 state obtained in the present calculation. Unfortunately,
it is difficult to extract the ISD strength for this state from the
data because of the background ambiguity. The existence of
the significant ISD strengths at E ∼ 15 MeV is also supported
by the measurement on (α,α′) scattering at 386 MeV by Itoh
et al. [76].

IV. SUMMARY

I investigated the ISM and ISD excitations in 12C with
a sAMD + 3αGCM calculation. The small-amplitude vibra-
tion modes are described by the coherent 1p-1h excitations
expressed by small shift of single-nucleon Gaussian wave
functions, whereas the large-amplitude cluster modes are
incorporated by superposing 3α-cluster wave functions in
the GCM. The coupling of the excitations in the intrinsic
frame with the rotation and parity transformation is taken
into account microscopically by the angular-momentum and
parity projections. The present calculation describes the ISM
and ISD excitations in a wide energy region covering the
excitations into cluster states in the low-energy region and
the giant resonances in the high-energy region.

In the calculated ISM strengths, the significant strengths
corresponding to the excitations into cluster states are obtained
in the low-energy region below the ISGMR. The low-energy
ISM strength of the cluster mode is remarkably enhanced by
the distance motion between α clusters, and it splits into two
states by the angular motion of α clusters. The low-energy
ISM strengths exhaust 26% of the EWSR, which is consistent
with the experimental data for the 0+ states at 7.65 and 10.3
MeV measured by (e,e′), (α,α′), and (6Li ,6Li ′) scatterings.
The feature of the experimental ISM strength distributions
which consists of the high-energy strengths of the ISGMR and
the significant low-energy strengths are qualitatively described
by the calculation; however, the quantitative description of the
high-energy part is not satisfactory in the present result. The
present calculation overestimates the centroid energy (21.9 ±
0.3 MeV) and the strengths (27% ± 5% of the EWSR) of the
ISGMR observed by (α,α′) scatterings [9] and also fails to
describe the experimental width of the ISGMR. The present
model space is restricted only in the single-particle excitations
written by shifted Gaussians and insufficient to describe the
spreading width of the ISGMR. What is missing in the present
sAMD model space probably may be 2p-2h excitations as well
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as the detailed radial behavior of the 1p-1h excitations beyond
the 2�ω excitations in the HO expression.

Also in the calculated ISD strengths, the low-energy
strength of the cluster mode is enhanced by the distance
motion between α clusters, and it splits into a couple of states
because of the angular motion of α clusters. Consequently,
two 1− states (the 1−

1 and 1−
2 ) having the significant ISD

strengths are obtained in E = 10–15 MeV. The lower state is
assigned to the experimentally known 1− state at 10.84 MeV.
For the 1−

2 state, there is no experimentally confirmed state.
The present calculation indicates that the ISD excitations
can be a good probe to experimentally observe the 1−

2
state. In the experimental ISD strengths measured by (α,α′)
scatterings [9,76], the bump observed at E ∼ 15 MeV can be
a candidate of the 1−

2 state obtained in the present calculation.
Historically, the low-energy ISD strengths in heavy-mass

nuclei have been understood by the toroidal mode. However,
the low-energy ISD strengths in 12C originates in the large

amplitude distance motion between α clusters and the final
1− states are not density saturated states but are low-density
states having spatially developed 3α clusters, and therefore,
they cannot be directly connected to such the collective modes
on the top of the mean field in a density saturated state. The
association of the cluster modes in the low-lying ISD strengths
in light nuclei with the toroidal modes in heavy nuclei is a
remaining issue.
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Schlösser, H. Wirth, H. J. Gils, H. Rebel, and S. Zagromski,
Phys. Rev. C 36, 416 (1987).

[18] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T.
Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi,
Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H.
Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J.
Zenihiro, Phys. Rev. C 84, 054308 (2011).

[19] M. Freer and H. O. U. Fynbo, Prog. Part. Nucl. Phys. 78, 1
(2014).

[20] Y. Fukushima and M. Kamimura, J. Phys. Soc. Jpn. 44, 225
(1978).

[21] M. Kamimura, Nucl. Phys. A 351, 456 (1981).
[22] E. Uegaki, S. Okabe, Y. Abe, and H. Tanaka, Prog. Theor. Phys.

57, 1262 (1977).
[23] E. Uegaki, Y. Abe, S. Okabe, and H. Tanaka, Prog. Theor. Phys.

62, 1621 (1979).
[24] P. Descouvemont and D. Baye, Phys. Rev. C 36, 54 (1987).
[25] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[26] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev.
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