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Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion
systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-
domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms,
molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious
quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of
evaporated particles.
Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing
potential in a certain boundary region sufficiently far from the described system. However, such absorption
cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust),
which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged
boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we
extend TABC to time-dependent modes.
Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional.
The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations
of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged.
Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based
on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results.
With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious
fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas
remains in the box; the amount of nucleons in the gas is found to be roughly the same as the number of absorbed
particles in ABC.
Conclusion: We demonstrate that by using TABC, one can reduce finite-volume effects drastically without
adding any additional parameters associated with absorption at large distances. Moreover, TABC are an obvious
choice for time-dependent calculations for infinite systems. Since TABC calculations for different twists can be
performed independently, the method is trivially adapted to parallel computing.
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I. INTRODUCTION

The time-dependent density functional theory (TDDFT) for
electronic systems had been developed as dynamical extension
of stationary DFT [1] in the early 1980s [2] and has evolved
in the meantime to a widely used, efficient, and reliable tool
to describe the dynamics of all sorts of electronic systems,
see [3,4] for a review of the basics, and [3,5–7] for examples
of applications. A parallel development took place in nuclear
physics where TDDFT is known under the notion of the
time-dependent Hartree-Fock (TDHF) scheme. TDHF as such
was proposed as early as 1930 in [8]. Applications to nuclei
started in the mid 1970s when appropriate computing facilities
became available [9–11]. The ever-improving computational
capabilities had led to a revival of TDHF without symmetry
restrictions, applied to both finite systems [12–16] and infinite
matter under astrophysical conditions [17–19]. The numerical

tool of choice for truly dynamical processes are coordinate- or
momentum-space representations of wave functions and fields
and there exists a great variety of published codes using these
techniques for electronic systems [20,21] as well as for nuclear
TDHF [22].

A problem pertaining to all numerical solutions of TDDFT
is that one is bound to use finite basis sets. For example, the
most widely used scheme is based on the coordinate-space
representation of wave functions, densities, and potentials. The
size of the box, in which computations are carried out, is finite,
and this implies that either reflecting or periodic boundary
conditions (PBC) are imposed [22]. This leads to unphysical
artifacts. One problem is that particles which are in principle
emitted from the system and thus traverse the box boundaries
are coming back to the system area (reflected or reentering
the simulation box from the opposite side) and so perturb
the dynamical evolution. Moreover, due to the presence of
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finite box, the continuum states are artificially discretized, and
this produces artifacts at energies above continuum threshold.
Green’s functions methods allow to cope with this problem
in the regime of linear response [23,24]. In case of grid
representations, one has to work on the boundary conditions.
Outgoing, or radiation, boundary conditions which exactly
connect the dynamics on the grid to free flow in outer space
are proposed as a solution [25–27], but they are very elaborate
and hard to implement in fully three-dimensional (3D) grid
representations. An efficient and practical method are absorb-
ing boundary conditions (ABC) which were introduced first
in atomic calculations [28,29] and is meanwhile also used in
nuclear TDHF [12,30,31]. Although they can be implemented
technically with different algorithms, they amount in practice
to adding an imaginary potential in a certain boundary region.
The quality of the absorption depends on the profile of the
imaginary potential and its width [30]. A good working com-
promise has to be found in each application anew in order to
suppress unwanted remaining reflections as much as necessary.

Problems with finite simulation boxes appear also in cal-
culations of infinite matter. Periodic boundary conditions are
appropriate in this case, and yet, the wave functions are forced
to be strictly periodic which induces spurious quantization
effects. This can be avoided by twist-averaged boundary
conditions (TABC) [32–34], often referred to as ‘integration
over boundary conditions’. According to the Floquet-Bloch
theorem, a wave function in a periodic potential is periodic up
to a complex phase shift (twist) when going from one cell to
the next. Averaging over different phase shifts very efficiently
suppresses unwanted spurious quantization effects [35–39].
The benefits of TABC have also been demonstrated in nuclear
physics, including time-independent simulations of infinite
nucleonic matter [40–45] and lattice QCD [46–51]. All these
successful applications of TABC indicate that this method
can help with the problem of the unphysically discretized
continuum in TDHF calculations of finite nuclei. This is the
question, which we aim to investigate in this paper and we do
that by comparing the performance of TABC with that of ABC.

TABC is designed to suppress spurious finite-size quan-
tization effects and does that very well. It leaves, however,
all particles in the simulation box which means that the gas
of emitted particles is still around and may perturb system’s
dynamics. By employing ABC, one can avoid the gas because
the emitted particles are removed efficiently. In the same
way ABC help to reduce spurious finite-volume quantization
effects. However, imperfect absorption always leaves some
quantum beating [30]. Moreover, ABC also absorb the outer
tails of bound-state wave functions; hence, a faint background
of spurious particle emission is produced (to be avoided by
sufficiently large boxes). As no practical prescription is perfect,
we have to balance advantages and disadvantages of various
ways of implementing boundary conditions.

II. BOUNDARY CONDITIONS

TABC are realized by implementing the Bloch boundary
conditions

ψαθ (r + T i) = eiθi ψαθ (r), (1)

where θ are three phases or twist angles, T i (i ∈ {x,y,z}) is
one of the lattice vectors, ψαθ (r) is the single-particle wave
function characterized by the label α. When employing TABC,
one runs separately DFT calculations with different twists θ

and averages the results. This can also be applied to the TDDFT
case. An observable to be evaluated is averaged according
to

〈Ô(t)〉 = 1

8π3

2π∫∫∫

0

d3θ 〈�θ (t)|Ô|�θ (t)〉. (2)

Considering the spatial symmetry of the problem, it is
sufficient to average over θi between 0 and π in all three
directions for the isoscalar E2 mode and in the x and y
directions for the isovector E1 mode. The 3D integration over
θ is carried out using an n-point Gauss-Lagrange quadrature
between 0 and π and 2n-point between 0 and 2π . The total
number of TABC TDHF calculations to be performed is thus
n3 for the isoscalar E2 mode and 2n3 for the isovector E1
mode. The Slater determinants |�θ (t)〉 are obtained through
independent TDHF calculations with the different sets of twist
angles θ .

ABC can be realized by either introducing an imaginary
absorbing potential in a boundary zone or by applying a
mask function after each TDHF step. Both methods are
equivalent and can be mapped into each other [30]. Here
we use the mask function f (r). One masking step reads
ψα → ψαf (r) with f (r) = 1 for r � L/2 − labs; f (r) =
cos(π

2
r−L/2+labs

labs
)
p

for L/2 − labs < r � L/2; and f (r) = 0
for r > L/2, where L is the cubic box length and labs is
thickness of the absorbing sphere. Optimal values of p depend
on grid spacing and size of time step [30]. Here we use
p = 0.0675 throughout. We perform the calculations in two
different boxes: (L = 32 fm, labs = 6 fm) or (L = 40 fm, labs =
10 fm). Mind that the absorbing zone is applied at all sides such
that the active zone without absorption has in both cases the
same radius of L − 2labs = 20 fm.

III. METHOD

Our calculations are done using the 3D Skyrme-TDHF
solver SKY3D which is based on an equidistant, Cartesian 3D
grid [22]. We use it with a grid spacing of �x = 1 fm and time
steps of 0.1 fm/c. We use the Skyrme energy density functional
SV-bas [52]. The natural boundary conditions for the plane-
wave representation used are PBC. Note that the long range
Coulomb force is treated exactly (i.e., yielding nonperiodic 1/r
asymptotics) using a Green’s function formalism [53]. Here we
have extended the code to accommodate ABC and TABC. Our
benchmarking calculations are performed for electric dipole
and quadrupole oscillations of 16O.

The oscillations are generated by an initial boost ψα(r) →
ψα(r) e−iηF (r) where η is the excitation strength and F is
the electric isovector dipole (E1) operator FE1(r) = −ταx or
isoscalar quadrupole (E2) operator FE2(r) = 2z2 − x2 − y2,
where τα is 1 for neutrons and −1 for protons [54]. For the
calculations at low excitation energy shown in Figs. 1 and 2
we mask the operators with a Woods-Saxon–like form factor
F (r) → F (r)/{1 + exp [(r − r0)/�r]} to avoid unphysical
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artifacts near the box boundaries [55]. Here we chose r0 =
5 fm and �r = 2 fm throughout. For the calculations at high
excitation energies shown in Figs. 3 and 5, following Ref. [22],
we replace the coordinates r = {xi} with periodic substitutes
xi → sin(2πxi/L) to make the excitations explicitly periodic.
The boost augments the stationary ground-state wave functions
with a velocity field which, in turn, drives dynamics. The
observable we look at is the emerging time evolution of
the multipole moment 〈F 〉, from which we also produce the
spectral distribution of the multipole excitation strength, or
power spectrum, by the windowed Fourier transform of the
time signal [56]. Since the boost parameter η is an auxiliary
quantity, in the following discussion we replace it with the
excitation energy E∗ = E(η) − E(η = 0), where E(η = 0) is
the Hartree-Fock ground-state energy.

IV. RESULTS

Figure 1 shows the isoscalar E2 response at the low
excitation energy E∗ = 3 MeV. Compared are PBC, ABC,
and TABC(n) results, where n denotes the number of twists
per direction. The time signal in Fig. 1(a) reveals that PBC

FIG. 1. Quadrupole moment Q(t) (a) and strength function (b) for
the isoscalar E2 excitation of 16O with E∗ = 3 MeV and L = 40 fm.
The inset illustrates the geometry of the problem: the total density
of 16O (center), the absorption zone (red), and the region of zero
density (black). The low-energy part of the spectrum contains very
little strength and is not shown.

induce large-amplitude unphysical beating pattern after about
1000 fm/c. The magnitude of these reverberations is as large
as half of the maximum amplitude at t = 0. The use of
ABC completely extinguishes them. While with TABC(2)
there are still some small spurious oscillations, with TABC(4)
the damping appears almost the same as with ABC. The
corresponding strength functions are displayed in Fig. 1(b).
The results obtained with PBC exhibit large fluctuations due
to the discretized continuum. With only n = 2 points in each
direction, these oscillations are almost gone in TABC(2). The
results in TABC(4) and ABC variants yield smooth quadrupole
strength distributions and both curves are practically the
same. Since TABC(4) represent a good compromise between
feasibility and accuracy, n = 4 is therefore chosen for all
following calculations.

Although their results look very similar, the mechanism
damping the signals are much different in ABC and TABC
variants. With ABC, the erratic nucleon gas is removed from
the box whenever it encounters the boundaries. In TABC,
the gas remains in the box as the particle number is strictly
conserved by �θ (t) and every single run for given twist shows
qualitatively the same reverberations as PBC. However, these
fluctuations enter averaged quantities (2) with different phases
and so average out.

We now move to the isovector E1 mode. The corresponding
strength function is shown in Fig. 2 for the low excitation
energy E∗. To study the dependence of results on box size,
we compare results obtained with L = 32 fm and L = 40 fm
by keeping the inner region of ABC (no masking function is
applied) the same. The PBC results (not shown) exhibit the
spurious finite-volume oscillations, which strongly depends
on the box size. As the excitation energy is small, there is a
small loss of about 0.1 nucleons in the ABC variant. Overall,
ABC and TABC(4) calculations produce fairly similar strength
functions for both box sizes. The enhanced shoulder around
24 MeV for L = 32 fm in ABC is a faint remainder of the
artificial quantization of the continuum [30]. This feature
is wiped out by the improved absorption with L = 40 fm.
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FIG. 2. Isovector E1 strength for 16O with E∗ = 1 MeV and two
box sizes: L = 32 and 40 fm.
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FIG. 3. Isoscalar E2 power spectrum for 16O at E∗ = 20 MeV
and L = 32 fm. The inset shows the time evolution of the mass
quadrupole moment Q. See [57] for animations.

Another difference appears at the main peak at about 20.5 MeV
where both TABC calculations agree aside from small remain-
ing fluctuations which could be further reduced by averaging
over more twist points. The maximum for ABC and L = 40 fm
appears at a lower energy and is lower as compared to
L = 32 fm.

We now proceed to higher excitation energies, E∗ ≈
20 MeV. In this nonlinear regime for 16O [54], we look at
the power spectrum. Figure 3 shows results for the isoscalar
E2 excitation. In the time signal, PBC shows the pronounced
beat pattern stemming from low-frequency oscillations of
nucleonic gas moving within the full volume of the box.
This effect is well visible in the E2 mode as the quadrupole
moment, being quadratic in x, y, and z, is sensitive to the
border areas of the box far from the oscillating nucleus. The
clouds of oscillating nucleonic gas can be clearly seen in
the animations included in Supplemental Material (SM) [57].
Those spurious long-time fluctuations are efficiently wiped out
in both ABC and TABC after t ≈ 500 fm/c. At shorter times,
say the first 200 fm/c, we see some interesting differences in
the time signal of TABC and ABC. The initial TABC signal
takes a bit longer to decay and the negative amplitudes are
suppressed indicating that the evaporated particles are emitted
predominantly in the direction of positive quadrupole moment
(z direction). As seen in the animations in SM, the gas particles
are absorbed efficiently in ABC, which results in a more
symmetric time response.

To understand the effect of the background gas in TABS,
Fig. 4 shows angular-averaged density distributions associated
with E2 vibrations of Fig. 3. The averaging was done by
means of Gaussians centered at mesh points of the original
Cartesian 3D grid. At times longer than 500 fm/c, the resulting
nucleonic gas is uniformly distributed within the volume of
the box. The magnitude of the gas density carries information
about the effective temperature of the system and the particle
emission rate [58–61]. Integrating the gas density results in
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FIG. 4. Angular-averaged density distribution corresponding to
the isoscalar E2 mode at E∗ = 20 MeV at two snapshots: t = 0
and t = 104 fm/c. The gas densities are indicated by dotted lines:
ρn,gas = 1.15×10−5 fm−3 and ρp,gas = 1.42×10−5 fm−3.

0.38 neutrons and 0.47 protons, and this nicely agrees with the
number of absorbed particles in the ABC variant.

The power spectrum for PBC shows large fluctuations
in the resonance region around 20 MeV and huge spikes at
energies <4 MeV. Those peaks are removed by ABC and
TABC and replaced by smooth low-energy bumps associated
with nucleonic gas. In the TABC variant, the number of
particles is strictly conserved and the gas is kept in the box.
This results in a pronounced low-frequency effect. In ABC,
absorbing potential removes most of the gas efficiently leaving
only the unavoidable effect from a loosely bound nucleon halo.
There is also a small difference in the resonance spectra around
20 MeV where a dip appears with ABC. This can be attributed
to an effect from the nucleon gas in TABC, which disturbs the
dynamics in the resonance region.

The agreement between ABC and TABC is much closer
for the E1 mode shown in Fig. 5. We see again that ABC as
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FIG. 5. Isovector E1 power spectrum for 16O at E∗ = 22 MeV
and L = 32 fm. The inset shows the time evolution of the dipole
moment D. See [57] for animations.
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well as TABC remove the reverberation in the time signal and
the spurious fluctuations in the spectrum. Both approaches
reproduce nicely the strong enhancement of the low-energy
dipole peak at about 10 MeV as well as the flat profile down
to E = 0.

V. CONCLUSIONS

We demonstrated that TABC can be implemented into
TDDFT framework and tested it for nuclear vibrations. Adding
no additional parameters, the new approach removes spurious
finite-volume effects as efficiently as the previously used
method based on ABC. With only two twist phases per
direction one obtains a reasonable reduction of spurious
fluctuations; four twists per direction offer a good compromise
between feasibility and quality. Since TABC calculations for
different twists can be performed independently, the method
is easily adapted to parallel computing.

For low-energy excitations corresponding to the linear
regime, TABC give very similar results as ABC. In the
nonlinear regime, ABC absorb noticeable parts of wave
functions which for TABC remain in the box as floating
nucleon gas. Nonetheless, we see a good agreement. Both

methods suppress efficiently the box artifacts and provide very
similar spectra, except for some difference in the quadrupole
response at very low energies where TABC shows a sizable
bump associated with the slow long-range fluctuations of the
nucleon gas. ABC is more efficient in suppressing this artifact.

In future applications, the new TDDFT+TABC method
will be applied to excitations of heavy, superfluid nuclei.
Furthermore, we intend to apply TABC to infinite systems
such as nuclear pasta oscillations in the neutron star crust. In
this case, the nucleonic gas represents physical reality, and the
low-frequency bump associated with the motion of the cloud
within the box is likely to impact the transport properties of
the crust.
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