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Role of nucleon strangeness in supernova explosions
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Recent hydrodynamical simulations of core-collapse supernova (CCSN) evolution have highlighted the
importance of thorough control over the microscopic physics responsible for such internal processes as neutrino
heating. In particular, it has been suggested that modifications to the neutrino-nucleon elastic cross section can
potentially play a crucial role in producing successful CCSN explosions. One possible source of such corrections
can be found in a nonzero value for the nucleon’s strange helicity content �s. In the present analysis, however,
we show that theoretical and experimental progress over the past decade has suggested a comparatively small
magnitude for �s, such that its sole effect is not sufficient to provide the physics leading to CCSN explosions.
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Supernova (SN) explosions have long been recognized as
the means of populating the galaxies with heavier elements [1].
Despite much progress [2], however, the physics responsible
for these events remains murky.

For core-collapse supernovae (CCSNe) specifically, the
eventual explosion depends upon the evolution of the bounce
shock produced by the implosion of a massive star’s Fe core
to protoneutron star [2,3]. Problematically, dissipative effects
from nuclear dissociation and neutrino emission stall the
advancing shock in numerical simulations, raising the question
of what mechanism re-energizes the outwardly moving front.
Since the early work in Ref. [4], the conventional explanation
is that delayed neutrinos reheat the postshock region of the
CCSN, reinvigorating the shock front’s advance. This picture
has placed a considerable premium upon controlling the vari-
ous physics effects [5] that go into the neutrino-nucleon inter-
actions inherent to the so-called delayed-neutrino mechanism.

This is especially true in the vicinity of the gain radius — the
locus where cooling from neutrino emission is in approximate
equilibrium with the corresponding heating due to neutrino
absorption [3]. As such, even incremental modifications to
the neutrino-nucleon cross section such as might follow from
corrections to the nucleon’s flavor structure could alter the
explosive evolution of CCSNe. Effects of this kind might
then in turn play a decisive role in numerical simulations that
successfully produce CCSN explosions.

The importance of such considerations was brought to the
fore by the recent publication of Melson et al. [6], which
studied the impact of a large magnitude nucleon strange
helicity �s = −0.2 in a simulated CCSN originating from
a 20 M� progenitor star. As we shall describe, computing
with �s = −0.2 induces a ∼15% reduction in the strength
of the neutrino’s axial coupling to the neutron, leading to
the diminution of neutron opacities to neutrinos relative to a
calculation using �s = 0, for which no explosive behavior
was obtained. Using �s = −0.2 resulted in a calculation
of a CCSN explosion ∼300 ms after the shock bounce in
Ref. [6]. In practice, this large amplitude for �s served as a
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proxy for O(∼15%) corrections to neutrino-nucleon opacities
that might arise from various effects; here for definiteness,
however, we study the specific plausibility of such large
values for �s, given present knowledge of nucleon structure.
The relevant physics is the neutrino-nucleon total elastic cross
section, to lowest order in the weak coupling [5]:

σi(ε) = 2G2
F ε2

3π

(
c2
V i + 5c2

Ai

)
. (1)

Here, ε is the energy of the incident neutrino, and i is an isospin
label. Electroweak physics specifies the values of the nucleon
couplings of the weak vector and axial-vector (or, “axial,” be-
low) currents cV i and cAi , which for SU (2) are known to be [7]

cVp = 1

2
− 2 sin2 θW , cV n = −1

2
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2
, cAn = −gA

2
,

(2)

where gA ≈ 1.26 and sin2 θW ≈ 0.2325. These effective
couplings are the main input to the neutrino-nucleon physics,
and they potentially receive corrections from other flavor
sectors — especially strange.

Differences of spin-conserving, axial current matrix ele-
ments can ultimately be related to the quark helicity content of
the nucleon. That is, by considering nucleonic matrix elements
of the weak axial current (here, in the light flavor SU (2) sector
with isospin label i = p, n)〈
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the axial form factor may be accessed through the appropriate
helicity difference of the neutral current + components as
defined on the light front (for reviews of the light-front
formalism, see Refs. [8–10]):
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in which P, P ′ are the 4-momenta of the initial- and final-
state nucleon, and λ, λ′ = ↑ , ↓ are their associated helicity
designations; the ± above corresponds to i = p, n. As usual,
the form factor is scaled in terms of the elastic momentum
transfer Q2 = −(P ′ − P )2.

By merit of the parity oddness of the γ +γ5 operator that
weights GA(Q2) in Eq. (3) for μ = +, the axial form factor at
Q2 = 0 is directly related to the quark-level spin content of the
nucleon as well as the effective neutrino-nucleon coupling [5],

cAi = 1

2

(±GA(0) − Gss̄
A (0)

) = ±gA − �s

2
, (5)

in the absence of electroweak radiative corrections [11]. The
fact that it is the negative of �s which enters Eq. (5) may be
interpreted as resulting from the isoscalar nature of the strange
axial form factor Gss̄

A relative to the isovector GA; the former
quantity is the analog of the SU (2) axial form factor defined
in Eqs. (3) and (4), but evaluated in a basis that couples the
axial current to nucleon strangeness. In Eq. (5) we have also
made the explicit identification Gss̄

A (0) = �s. From the result
of Eq. (5) it is straightforward to infer the qualitative impact
of nonzero strange helicity in the nucleon. Analyses generally
prefer �s � 0, such that(
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)2 �
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)2
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which leads to the respective enhancement and suppression
of the ν − p and ν − n cross sections given by Eq. (1) for
�s � 0 relative to the zero strange quark helicity scenario.

Notably, the question of the Q2 ∼ 0 behavior of Gss̄
A (Q2) is

of central importance to the proton spin problem [12], wherein
the total 1/2 helicity of the proton is decomposed in the usual
fashion among quark helicities, orbital angular momenta, and
gluon total angular momentum according to

1
2 = 1

2��q + Lq + Jg, ��q = �u + �d + �s. (7)

In the expression above, �s contains contributions from both
s and s̄, and we emphasize that �q ≡ 〈�q + �q̄〉, such that
��q/2 yields the quark helicity contribution to the proton
spin.

Thus, given its fundamental importance, �s has been
modeled in various ways and has been the focus of multiple
experimental efforts, as discussed below. Assuming it to be
the sole correction to the ν − N cross section of Eq. (1)
as in Ref. [6], the magnitude of �s used to successfully
produce an exploding CCSN is at odds with the latest hadron
structure calculations and measurements. Citing the lower
bound of the 2002 analysis by Horowitz [5], which obtained
�s = −0.1 ± 0.1, the hydrodynamical simulations of Ref. [6]
were performed at the extreme lower value �s = −0.2.

The result �s = −0.1 ± 0.1 found in Ref. [5] was obtained
from the 1987 ν − p, ν̄ − p elastic scattering measurements
at BNL [13]. It must be stressed that this original analysis did
not endeavor to determine �s specifically, but rather simply
included a correction term η, fitted to the neutrino-proton data,
which was intended to parametrize potential modifications to
the weak axial current regardless of origin. For this and other
reasons pointed out by Kaplan and Manohar [14], the results of
the analysis in Ref. [13] should be taken with caution regarding
the nucleon’s strange helicity.

The value �s = −0.2 used in Ref. [6] lies well beyond the
range of the analyses and measurements that have emerged
in the decade following Ref. [5]. These determinations of
�s come from the complementary directions of theory and
phenomenological analyses of relevant data, as we describe
below.

Among newer sources of experimental information, global
analyses of quark helicity distributions constrained by data
(mainly, spin-polarized parity-violating deeply inelastic scat-
tering [DIS] of electrons on nucleons) constrain the magnitude
and sign of the total strange helicity, permitting a somewhat
larger contribution to the proton spin. For example, the parton
distribution function (PDF) analyses summarized in Ref. [15]
include those of Glück, Reya, Stratmann, and Vogelsang [16];
Blümlein and Böttcher [17]; Leader, Sidorov, and Stamenov
[18]; the Asymmetry Analysis Collaboration [19]; and de
Florian, Navarro, and Sassot [20]. These yield moderate values
for the total strange helicity, resulting in the average value
�s = −0.120 ± 0.021. These analyses proceed by assuming
a parametric form for the Bjorken x dependence of the quarks’
helicity distributions �s(x,Q2

0) and �s̄(x,Q2
0) at the boundary

Q2
0 of a numerical QCD evolution scheme. The total strange

helicity asymmetry is then

�s = (s+ − s-) + (s̄+ − s̄-) =
∫ 1

0
dx[�s(x) + �s̄(x)], (8)

and s± represent spin-dependent distributions for strange
quarks with helicities parallel and antiparallel to that of their
parent nucleon. A persistent limitation of this approach is
the lack of experimental constraints on the parametric form
at Q2

0, as well as at the distribution endpoints, particularly
x ∼ 0, where the necessary extrapolation to evaluate Eq. (8)
is especially fraught.

Since the PDF-based analyses described in Ref. [15], there
have been other direct measurements of �s, occasionally
yielding somewhat smaller results. Of these, we briefly
describe a representative sample.

Direct observations of spin asymmetries have enabled
more precise extractions of �s in the past several years.
For instance, in 2007 HERMES measured the total strange
helicity at intermediate Q2 = 10 GeV2 [21], obtaining �s =
−0.09 ± 0.02. Given its form in Eq. (8), the Q2 dependence
of �s is governed by flavor-singlet QCD evolution, and the
corresponding moment at the perturbative starting scale Q2

0
may therefore differ slightly. Moreover, these determinations
were highly sensitive to the fragmentation function (FF)
parametrization, which is inherently nonperturbative. This
source of systematic uncertainty inspired additional dedicated
efforts to extract �s at COMPASS [22,23]. Of these, Ref. [23]
reported several values of �s at Q2 = 3 GeV2 using different
extrapolation schemes. Employing a direct extrapolation to
x = 0,1 as well as the DSSV parametrization, respectively,
COMPASS obtained

�s = −0.02 ± 0.02 (extrapolation),

= −0.1 ± 0.02 (DSSV). (9)

Finally, we also mention the result of a recent reanalysis
of the spin-dependent strange PDFs �s(x) and �s̄(x) [24],
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FIG. 1. A summary of �s determinations in this analysis.
Experimental and phenomenological findings subsequent to Ref. [5]
(solid, black square, [a]) are contained in the lower rectangle.
These include the averaged results in Ref. [15] [b], Ref. [21] [c],
the extrapolation and DSSV-based methods of Ref. [23] [d and
e, respectively], and the average of Refs. [24] and [27] [f ]. The
lower inverted triangle represents the mean of these measurements:
�s = −0.087 ± 0.009. Modern theoretical calculations are given in
the top rectangle, including the averaged small-�s lattice calculations
[28–32] [g], the AWI-based computation of Ref. [26] [h], and
Refs. [33] [i] and [34] [j ]. The upper inverted triangle depicts the
theory average: �s = −0.032 ± 0.005, while the vertical dot-dashed
line represents the value used in Ref. [6].

made in light of new CLAS data on the proton spin structure
function g

p
1 (x,Q2) [25]. Computing the strange portion of the

nucleon spin from PDFs constrained by these data, the result
�s = −0.106 ± 0.023 followed [26]. Meanwhile, another
comprehensive global analysis of these data was reported
by Sato et al. [27], in this case making use of a novel
Monte Carlo–based fitting scheme. This calculation arrived
at a comparable central value and range for the moment of the
twist-2 strange spin-PDF, �s = −0.10 ± 0.01. We report the
average of these two results (�s = −0.103 ± 0.013) as well
as the other experimental information in Fig. 1, noting that the
above determinations correspond to somewhat different Q2,
which introduces some modest uncertainty.

While the precision of experimental data presently allows
values of the strange helicity as large as �s ∼ −0.1, various
theoretical calculations are considerably more stringent, sev-
eral examples of which we highlight below. In lattice gauge
theory, for instance, contributions from strange quarks to
nucleonic matrix elements inherently arise from disconnected
diagrams whose evaluation is vastly more computationally
expensive. Technical improvements, however, as well as the
exponentiating availability of the necessary computational
resources have now rendered such calculations more feasible.

Thus, in recent years �s has become amenable to cal-
culation using lattice techniques as carried out by, e.g.,

the QCDSF collaboration [28]. This group obtains �s =
−0.020 ± 0.010 (stat.) ± 0.004 (sys.). Meanwhile, a separate
lattice collaboration [29] has preliminarily calculated �s
(albeit without renormalization effects), also finding a small,
negative result: �s = −0.019 ± 0.011. As opposed to these
Nf = 2 analyses, however, work described in Ref. [30]
employed the 2+1-flavor gauge configurations of the MILC
Collaboration [35], yielding the renormalized value �s =
−0.031 ± 0.017 at the physical pion mass. Reference [31]
found the slightly larger value �s = −0.0227 ± 0.0034 in
a setting wherein the axial charges were comprehensively
evaluated. Similarly, the analysis of Ref. [32] obtained �s =
−0.018 ± 0.006 using a numerical scheme motivated by the
Feynman-Hellmann theorem adapted to the lattice, although
this study and its predecessors (with the exception of Ref. [30])
were performed with unphysically large pion masses. These
various lattice computations exhibit a general concordance,
and for them we find an average of �s = −0.022 ± 0.005.

Unlike these efforts, the recent calculation of the χQCD
Collaboration [26] explicitly enforced the anomalous Ward
identity (AWI) through a normalization factor κA weighting
local axial-vector currents on the finite lattice. Following
chiral extrapolation to the physical pion mass, this produced
a comparatively large value relative to the other lattice works,
�s = −0.084 ± 0.024.

Other model calculations are also possible under the
auspices of various theoretical frameworks. For example, the
cloudy bag model calculation of Ref. [33], which followed the
older calculation presented in Ref. [36], incorporated strange
quarks into nucleon structure by including kaon-hyperon
fluctuations in the extended meson cloud of the proton. Doing
so, the flavor-SU (3) axial charges could be evaluated in the
context of the MIT bag model, resulting in the values

g
(0)
A = �u + �d + �s = 0.37 ± 0.02,

(10)
g

(8)
A = �u + �d − 2�s = 0.42 ± 0.02,

from which one may derive the similarly small �s = (g(0)
A −

g
(8)
A )/3 = −0.02 ± 0.01. This method thus yields extremely

close agreement with the aforementioned small-�s lattice
calculations, aside from Ref. [26].

In yet another model-based analysis, Hobbs et al. [34]
investigated the strange content of the proton using the frame-
work of light-front wave functions (LFWFs). Truncating the
nucleon Fock expansion at a two-body quark-scalar tetraquark
state containing s and s̄, Ref. [34] obtained a universal wave
function for the strange content of the nucleon with the ability
to interpolate between elastic form factor measurements and
DIS structure functions in the strange sector:

∣∣�λ
P (P +,P⊥)

〉 = 1

16π3

∑
q=s,s̄

∫
dxd2k⊥√
x(1 − x)

ψλ
qλq

(x,k⊥)

× |q; xP +,xP⊥ + k⊥〉 , (11)

wherein the internal light-front 4-momentum of the strange
quark interacting with the weak axial current is (k+,k⊥,k−) =
(xP +,k⊥,k−) in a frame with zero transverse momentum
for the nucleon, P⊥ = 0⊥. By then constraining the helicity
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wave functions ψλ
qλq

(x,k⊥) to unpolarized DIS measurements,
Ref. [34] found novel bounds on the elastic observables μs and
ρs . In addition, with a phenomenological determination of the
strange quark wave function of the nucleon, the strange sector
matrix element analogous to Eq. (4) could be computed, which
led to the result

−0.041 � �s � −0.039 , (12)

in line with the small strange helicity magnitudes of the
above-mentioned theoretical calculations. We summarize this
sampling of theoretical calculations of �s along with the
above-mentioned experimental information in Fig. 1.

In fact, by making use of the same numerical approach
employed by Ref. [34] to explore the parametric LFWF model
space, we find that a strange helicity asymmetry as large
as �s = −0.2 as in Ref. [6] would require magnitudes for
nucleon strangeness in the DIS sector as ruinously large as
xS+ ∼ 0.1, where we define

xS± ≡
∫ 1

0
dx x[s(x) ± s̄(x)]. (13)

Such a sizable value is highly excluded by global analyses
of the world’s high energy data [37,38]. We obtain this by
performing systematic scans of the parameter space of the
model in Ref. [34] and admitting for consideration only
those combinations consistent within 5% of �s = −0.2.
The resulting locus of points representing these specific
model parameter combinations may then be plotted in a
two-dimensional space spanned by xS− vs xS+ as shown in
Fig. 2. We note that, while the smallest value of xS+ tolerated
by the model for �s = −0.2 occurs for xS+ = 0.062, the
mean of the full set corresponds to xS+ = 0.1. In either case

0 0.1 0.2
 xS+

-0.02

0

0.02

 x
S

FIG. 2. Parameter scans for the Ref. [34] model consistent with
�s = −0.20 ± 0.01. Results using wave functions with Gaussian
(dots) and dipole-like (squares) momentum dependence are dis-
played. Parameter combinations satisfying �s ∼ −0.2 require large
wave-function normalizations, generating the lower bound xS+ �
0.062. This substantially overshoots the range (vertical band) for
xS+ determined by CTEQ [37]. The large disk near (xS+, xS−) =
(0.09, 0.002) represents the model used for the strange PDFs plotted
in Fig. 3.

0.01 0.1 1
 x

0

0.05

0.1

0.15

0.2

0.25

 x
 ( 

s(
x)

 +
 s(

x)
 )

 Q2 = Q2
0 = 1 GeV2

 Q2 = 2.5 GeV2

 HERMES 2014

FIG. 3. x[s(x) + s̄(x)] consistent with �s = −0.2 according to
the model of Ref. [34]. The model parameters leading to the above
correspond to the large dot at xS+ ∼ 0.09 in Fig. 2. The model
has been evolved from Q2

0 = 1 GeV2 (solid line) to Q2 = 2.5 GeV2

(dot-dashed line) for comparison with HERMES [39] (red circles). A
model constrained to |�s| comparable to that of Ref. [6] thus hugely
overestimates the strange PDF — especially for x � 0.1.

this far exceeds the range determined by global analyses of DIS
data such as a recent dedicated CTEQ strangeness study [37],
which found the 90% limit 0.018 � xS+ � 0.04 indicated
by the green band in Fig. 2. Similarly, a simple estimate
using the fitted distributions of MSTW at the QCD evolution
starting scale Q2

0 = 1 GeV2 leads to the comparable 68% range
0.017 � xS+ � 0.033 [38].

As a further demonstration, we consider a particular model
taken from the space plotted in Fig. 2, and use it to compute
the unpolarized quark PDF combination x[s(x) + s̄(x)]. This
has been measured by various experimental collaborations,
including HERMES [39], and we compare a model prediction
associated with �s = −0.2 with these data at Q2 = 2.5 GeV2

in Fig. 3. According to expectation given the large values
of xS+ shown in Fig. 2 for �s = −0.2, the evolved model
plotted in Fig. 3 as the dot-dashed curve egregiously overhangs
the experimental data obtained via kaon production in semi-
inclusive DIS.

A general and robustly motivated light-front model is
therefore difficult to reconcile with large strange quark
helicities without simultaneously predicting implausibly large
values for the total strange momentum xS+ and x-dependent
distribution x[s(x) + s̄(x)]. This finding is in step with the
comparatively small magnitudes of �s obtained in the most
well-supported theoretical calculations, as well as the minimal
strangeness permitted by global analyses of high-energy
data.

While slight ambiguity remains as to whether �s = 0,
significant improvements in the past decade on the dual
fronts of experimental measurement and theory have strongly
excluded the large magnitudes �s ∼ −0.2 barely allowed at
the lower reaches of the earliest analyses. As demonstrated
above and summarized in Fig. 1, more recent experiments
suggest �s � −0.1, whereas theoretical analyses impose
�s � −0.04. Most lattice and bag model–based calculations
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especially prefer still smaller strange helicity magnitudes,
�s ∼ −0.02 — fully an order of magnitude shallower than
the critical value assumed in the simulations of Ref. [6].

We therefore conclude that while the nucleon’s strange
spin is an important consideration in the microphysics of
CCSN simulations, it cannot contribute at the higher level
employed in, e.g., Ref. [6]; by extension, �s cannot represent
the single, decisive effect generative of CCSN explosions.
Rather, for the sake of future numerical simulations of CCSNe,
we advocate the use of more moderate values of �s such
as would be supported by the most up-to-date calculations
and measurements. Giving precedence to experimental limits,
we suggest �s = −0.1 as a well-motivated figure for which
hydrodynamical calculations would be on firm ground. At the
same time, improved experiments may eventually track toward
the smaller magnitudes of most theoretical computations, and

we therefore recommend �s = −0.04 as a more conservative,
auxiliary value in line with such work.

Ultimately, to complement these reduced magnitudes for
�s, we further urge the exploration of other potential
mechanisms, which might enter at the microscopic level of
the relevant nuclear physics or in the form of heretofore
unexplored dynamical effects in the macroscopic structure of
CCSNe themselves.
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