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Consistency between the monopole strength of the Hoyle state determined by structural calculation
and that extracted from reaction observables
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We analyze the α-12C inelastic scattering to the 02
+ state of 12C, the Hoyle state, in a fully microscopic

framework. With no free adjustable parameter, the inelastic cross sections at forward angles are well reproduced
by the microscopic reaction calculation using the transition density of 12C obtained by the resonating group
method and the nucleon-nucleon g matrix interaction developed by the Melbourne group. It is thus shown that
the monopole transition strength obtained by the structural calculation is consistent with that extracted from the
reaction observable, suggesting no missing monopole strength of the Hoyle state.
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The 02
+ state of 12C, the so-called Hoyle state, has inten-

sively been studied theoretically and experimentally [1–13].
Despite a rather clear understanding of its three-α structure, the
description of the Hoyle state appeared in reaction observables,
the (α,α′) inelastic scattering cross section in particular, has
not been achieved. It was reported in many studies [14–17]
that the (α,α′) cross section theoretically obtained with using
the transition density of 12C from the ground state to the 02

+
state significantly overshot the observed cross section. This
puzzle is called the missing monopole strength of the Hoyle
state [15].

In these preceding studies, however, a semimicroscopic
treatment of the distorting potential between α and 12C as
well as the coupling potentials for the excitation of 12C was
adopted. This suggests some ambiguities in the distorting and
coupling potentials that connect the structural information and
the reaction observable. In the present study we apply a fully
microscopic framework to the (α,α′) inelastic scattering to the
02

+ state of 12C and show that the calculated result agrees with

the experimental cross section and that essentially there is no
room for the missing monopole strength.

In this study we adopt the g-matrix folding model with the
target-density approximation (TDA) [18–20]; the local density
of the target nucleus is used as an input density for the g
matrix. This TDA g-matrix approach has been derived from
the nucleus-nucleus multiple scattering theory [21] in Ref. [19]
and shown to work well for describing the elastic scattering
of 3He [19] and α [18,20] off several moderately heavy and
heavy target nuclei. We do not include the chiral three-nucleon
force (3NF) modification to the g matrix because its effect on
α elastic [20] and inelastic [22] scattering was shown to be
very small except at backward angles.

We consider α as a projectile (P) and 12C as a target
nucleus (T). The α particle is assumed to stay in the
ground state, whereas the transitions of 12C between the
01

+,21
+,02

+,31
−,22

+, and 03
+ states are explicitly taken into

account. The coupled-channel (CC) equation to be solved is
given by
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where χJ
γL(R) is the radial part of the P-T scattering wave

function in the (γL) channel; γ specifies the state of T;
and L is the orbital angular momentum between P and T.
The total spin of T in the γ state is denoted by I . The
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definition of the coordinates is given in Fig. 1. Eγ is defined
by Eγ = E − εγ with E being the incident energy of P
in the center-of-mass system and εγ being the excitation
energy of T. M is defined by M = APAT/(AP + AT), where
AP(T) is the mass number of P (T). The Coulomb poten-
tial between P and T is denoted by UCoul(R). Yλ is the
spherical harmonics, ĵ1(kFs) is defined by 3/(kFs)j1(kFs),
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FIG. 1. Definition of the coordinates.

jn is the spherical Bessel function, (L′0L0λ0) is the
Clebsch-Gordan coefficient, and W (LSL′S ′|Jλ) is the Racah
coefficient.

This coupled-channel approach with a g matrix has widely
been adopted so far [22–25]; the possible double counting
for the coupling to nonelastic channels is expected to be
negligible, as discussed in Ref. [22]. Equation (2) contains
two key ingredients. One is the nuclear transition density ρλ

γγ ′

and the other is the g matrix g(dr/ex); the superscript dr (ex)
indicates the direct (exchange) part of g, an explicit form of
which is shown in, e.g., Ref. [26].

We adopt the transition density of 12C obtained by the
resonating group method (RGM) based on a three-α model [2];
the 01

+,21
+ (4.44 MeV), 02

+ (7.65 MeV), 31
− (9.64 MeV),

22
+ (9.84 MeV) [16], and 03

+ (10.3 MeV) states are considered
as mentioned above. These densities are shown to reproduce
the elastic and inelastic form factors for electron scattering
and are thus highly reliable. In the CC calculation of the (α,α′)
process, we include all the six states listed above; we use
the experimental values of the excitation energies. For the
ground state density of α,ρP, we take the phenomenological
one determined from electron scattering [27] in which the
finite-size effect of proton charge is unfolded with a standard
procedure [28].

As for g, we use the Melbourne g-matrix interaction [29],
which has been highly successful, with no free parameters, in
describing various nucleon-nucleus elastic and inelastic cross
sections in a wide range of incident energies. The use of a
g-matrix interaction having a predictive power is one of the
most essential features of the present study. As mentioned, we
use the TDA for evaluating the argument ρ in g(dr/ex), i.e., ρ =
ρλ=0

γ γ (rm), where rm denotes the midpoint of the interacting
two nucleons. For the nondiagonal potentials, we take the
average of the densities in the initial and final states, i.e.,
ρT = [ρλ=0

γ γ (rm) + ρλ=0
γ ′γ ′ (rm)]/2.

It should be noted that this framework is not fully micro-
scopic in the sense that we do not use the same interaction
in the structure and reaction parts. Following the multiple
scattering theory, we use the effective interaction based on
a bare nucleon-nucleon force at positive energies; in practice
the Melbourne g-matrix interaction is adopted. In principle, in
the structure part a similar prescription can be used at negative
energies. Although an attempt in this direction is ongoing in
the nuclear physics field, it has not been completed yet; the
description of the 02

+ state of 12C is known to be extremely
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FIG. 2. Differential cross sections of α-12C inelastic scattering
to the 02

+ state at 172.5, 240, and 386 MeV, as a function of the
scattering angle in the center-of-mass system. The experimental data
are taken from Refs. [16,30,31].

difficult in particular. In this situation, it will be reasonable to
use a structure wave function that reproduces the properties of
the nucleus, whatever the interaction for the structure part is.

Figure 2 shows the differential cross sections of
12C(α,α′)12C(02

+) at 172.5, 240, and 386 MeV, compared with
the experimental data [16,30,31]. A relativistic correction for
the kinematics is included in the present calculations, although
its effect is found to be negligibly small. One sees that with
no free adjustable parameters the inelastic cross section to
the 02

+ state of 12C is reproduced well at forward angles at
these three energies. At larger angles the calculation slightly
overshoots the experimental data. As a possible reason for
this discrepancy, we consider that the 3NF effects will slightly
decrease the cross section at backward angles, as found in
Ref. [22]. In addition, couplings with higher excited states,
which are not included in this work, may change the cross
sections at those angles. At any rate, however, there seems to
be no room for the missing monopole strength; if it could exist,
the inelastic cross section would decrease at all angles and the
good agreement at forward angles would be lost, though it is
not so clear at 172.5 MeV because of the lack of data at very
forward angles. We show the results for the elastic scattering
in Fig. 3 in the same way as in Fig. 2; a very good agreement
between the calculated cross section and the experimental data
is obtained, which confirms the reliability of the microscopic
reaction calculation adopted.

In a recent work [33] it was shown that the monopole
transition strength, 4.5 ± 0.5 efm2, to the 02

+ state determined
by comparing the theoretical result with the experimental data
is consistent with that deduced from electron scattering. How-
ever, the antisymmetrized molecular dynamics calculation
adopted in the reaction analysis gives a larger value (6.6 efm2)
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FIG. 3. Same as in Fig. 2 but for the elastic scattering (the ratio to
the Rutherford cross section). The experimental data are taken from
Refs. [16,30,32].

of the transition strength. Therefore in Ref. [33] the structural
input and the reaction observables still have a gap of about
30%. Furthermore, the interaction strength was adjusted so as
to reproduce the elastic scattering data; the renormalization
factors for the real (imaginary) part are 1.05 (1.27) and 1.24
(1.38) for the analyses at 240 and 386 MeV, respectively.

Finally, we show by the solid (dashed) line in Fig. 4 the real
(imaginary) part of the coupling potential between the 01

+ and
02

+ states of 12C for the α inelastic scattering at 172.5 MeV.
Important characteristics of the coupling potential are that it
has a peak at the origin and is well concentrated in the nuclear
interior region. In Ref. [17] it was shown phenomenologically
that this behavior of the coupling potential is essential to
reproduce the absolute value of the 12C(α,α′)12C(02

+) cross
section. It should be noted, however, that the origin of this
behavior in the present study is completely different from that
in Ref. [17].

In summary, we have calculated the α-12C inelastic cross
section to the 02

+ of 12C with a microscopic coupled-channels
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FIG. 4. Coupling potential between the 01
+ and 02

+ states of
12C for the (α,α′) scattering at 172.5 MeV. The solid (dashed) line
corresponds to the real (imaginary) part of the coupling potential.

method using the RGM transition density of 12C and the
Melbourne g-matrix interaction. We have obtained a good
agreement between the calculated and measured values of the
inelastic cross section at forward angles, as well as that of the
elastic cross section. It suggests that the monopole transition
strength obtained by the RGM calculation is consistent with
the value extracted from the reaction observable. Thus, it is
concluded that there is no missing monopole strength of the
Hoyle state.
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