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Nuclear correlations and neutrino emissivity from the neutron branch of the modified Urca process
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The neutrino emissivity from the neutron branch of the modified Urca process is calculated. The nuclear
correlation effects are taken into account by employing the correlation functions extracted from the lowest-order
constrained variational (LOCV) method applied to asymmetric nuclear matter. Two-body nucleon interaction
is modeled by a realistic Argonne AV18 potential. In order to get consistency with semiempirical saturation
parameters of nuclear matter and the existence of 2M� pulsars, we add a phenomenological Urbana UIX
three-body potential to the nucleon Hamiltonian and apply a newly formulated version of the LOCV method that
allows for three-body nucleon interactions. We find that at fixed temperature neutrino emissivity is a (weakly)
decreasing function of density, due to quenching of the contribution from tensor correlations with increasing
density. This is in variance with all previous works. We also find that three-body forces allow for the opening of
the direct Urca process at nucleon density 0.3 fm−3.
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I. INTRODUCTION

Nuclear matter is of great relevance in the study of the
physics of different systems, such as heavy ion collisions,
supernova explosions, and neutron stars [1–4]. Different
many body theories have been developed to study nuclear
matter properties based on microscopic calculations. Among
these methods one can recall the variational methods [5,6],
Brueckner-type calculations in both relativistic and nonrela-
tivistic versions [7,8], and Monte Carlo methods in various
versions [9,10]. One of the main tasks of the mentioned
approaches is to find the equation of state (EOS) of the system
under investigation. Regarding this task, neutron stars are good
candidates for exploring the superdense nuclear matter EOS.
Properties such as the mass-radius relation of these dense stars
have been calculated using different EOSs (e.g., [6,11]) and the
Tolman-Openheimer-Volkoff (TOV) equation of hydrostatic
equilibrium [12] and compared with observational data [13].
But apart from the EOS, the correlation properties of nuclear
matter (effect of interactions on the nucleon motion) also play
an important role in understanding some features of dense
nuclear matter. In a neutron star, interacting nucleons manifest
many-body effects which are directly related to the nucleonic
interactions. These effects can influence many properties
of the system. Important phenomena such as dissipation
due to viscosity and neutrino transport (emission, scattering,
and absorption) are related to the many-body effects. Some
works have been devoted already to the study of many-body
effects on properties such as viscosity, etc. through correlation
functions [14,15], but such effects have not been systematically
investigated within the variational approach as far as the
neutrino transport properties of dense matter are concerned. If
we restrict ourselves to a domain in which the stellar matter is
transparent to neutrinos, i.e., below 109 K [16], it is worthwhile
to investigate how the neutrino emissivity in main neutrino
producing processes and, as a result, the cooling behavior of the
star depend on the realistic correlation functions and whether

such dependence predicts noticeable differences compared to
simple models that ignored some important many body effects.
In fact, such studies can provide a tool for probing many-body
methods as well as the input realistic nucleon-nucleon (N-N)
potentials.

The modified Urca process (hereafter Murca; for the origin
of the names Urca and Murca, see Sec. 3.3.5 of Ref. [17]) was
introduced by Chiu and Salpeter [18]. They wrote that their
estimate of the neutrino energy loss was “essentially the result
of a dimensional analysis and could be in error by several
orders of magnitude.” Then followed calculations by other
authors [19–22]. The series of pioneer articles of 1964–1965
was concluded with a detailed paper by Bahcall and Wolf
[16] who also critically reviewed previous calculations of the
Murca cooling rate.

Friman and Maxwell in their classical paper calculated the
neutrino emissivity of different neutrino producing mecha-
nisms, including Murca, taking the medium- and long-range
strong interaction into account through the one-pion-exchange
model and the short-range component by a phenomenological
Fermi-liquid description [23].

Blaschke and others studied the nuclear in-medium effects
on the emissivity of neutrinos in Murca processes within a
thermodynamic T -matrix approach [24]. In order to facilitate
numerical calculation, they assumed a bare nucleon-nucleon
interaction of nonlocal-separable type. Under such an as-
sumption, the equation for the in-medium T matrix was
reduced to a system of algebraic equations. The obtained
Murca emissivity was about half (one-fifth) of the Friman and
Maxwell result [23] at baryon density 0.5n0 (1.5n0), where
n0 is the nuclear saturation density. Throughout the present
paper n0 = 0.16 fm−3, which corresponds to the mass-energy
density ρ0 = 2.7 × 1014 g cm−3.

Another approach to the calculation of the Murca emis-
sivity was based on the Landau-Migdal theory of Fermi
liquids (results reviewed in Ref. [25]). This approach treats
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systematically various strong-interaction effects associated
with neutrino emission generated by the charged-current
weak-interaction processes. A series of calculations started
with a quasiparticle approximation for nucleons [26,27]. The
contribution resulting from possible softening of the pion
mode in dense nuclear matter with increasing density was
also evaluated [28]. Generally, Murca emissivities obtained in
the Landau-Migdal approach (called “medium modified Urca”
in Ref. [29]) were much larger than those obtained by Friman
and Maxwell [23]; moreover, they increased strongly with
increasing density, and were plagued by huge uncertainties.

Applying the quasiparticle approximation for nucleons,
Sawyer and Soni proposed an approach based on pair cor-
relation functions for calculating the nuclear matrix element
[30]. Within this approach they could extract an analytical
expression for the neutrinos’ opacity due to their absorption
by neutrons in the presence of an additional neutron, i.e.,
νenn → npe. But they applied an unrealistic pure hard-
core N-N repulsion when modeling the two-body correlation
function. Following the formalism of Ref. [30], Haensel
and Jerzak obtained neutrino opacity due to νenn → npe
using realistic correlation functions, i.e., ones including tensor
correlation and calculated using a realistic N-N potential.
This showed the crucial importance of tensor forces [31].
They used, unfortunately, correlation functions obtained by
other authors for symmetric nuclear matter at n0, instead of
correlation functions calculated at each density in beta-stable
nuclear matter. In the present paper we will overcome these
shortcomings of Ref. [31]

One of the many body techniques which casts many
body properties through correlation functions directly from
a systematic approach is the so-called variational method. The
lowest-order constrained variational (LOCV) theory is a fully
self-consistent variational method that has successfully been
used in describing various properties of baryonic systems in the
last three decades [32–34]. In the LOCV framework the state-
dependent correlation functions can directly be extracted by
solving the Euler-Lagrange equations in a variational way [32].

The purpose of the present paper is to calculate and
investigate the emissivity of neutrinos in the neutron branch
(n-branch) Murca process, which is one of the main neutrino
producing processes in the neutron star interior [35], using
LOCV state-dependent correlation functions.

The paper proceeds as follows. The independent pair
approximation for calculation of neutrino emissivity using the
Fermi Golden rule is justified in Sec. II. Then the calculation
of emissivity based on realistic N-N correlation functions is
presented in Sec. III. Section IV is devoted to our results that
are obtained using the correlation functions arising from the
LOCV method. Our discussions and conclusions are presented
in Sec. V. A brief review of the LOCV method is given in the
Appendix.

II. INDEPENDENT PAIR APPROXIMATION
FOR NUCLEON QUASIPARTICLES

We consider a neutron star core composed mainly of
neutrons of density nn, with an admixture of protons of
density np, and electrons and muons. We assume T < 109 K,

so that nucleons and leptons are strongly degenerate Fermi
systems and the neutron star is transparent to neutrinos
[16]. The plasma of nucleons and leptons is homogeneous
and electrically neutral, and all matter constituents are in
equilibrium with respect to weak-interaction processes (beta
equilibrium). Leptons can be treated as free Fermi gases.
Nucleons interact via strong (nuclear) forces and form a
strongly asymmetric (nn � np) nuclear matter. Throughout
this paper, we limit our selves to nonsuperfluid (normal)
nuclear matter.

A strongly interacting system can be described using the
Landau theory of Fermi liquids [36]. In this theory, real nuclear
matter is replaced by a system of nucleon uasi-particles of
the same number density nn and np. The Fermi momenta
for quasiparticles coincide with those for a free Fermi gas
of nucleons, pn = �(3π2nn)1/3 and pp = �(3π2np)1/3. There
is a correspondence between the ground state and low-lying
excited states in a noninteracting Fermi gas of nucleons and a
strongly interacting Fermi liquid treated in terms of nucleon
quasiparticles. Such low-lying excited states are associated
with deviation of the occupation numbers of states in the
vicinity of Fermi surfaces from the ground-state one. Namely,
the ground state corresponds to occupation of all momentum
states within a Fermi sphere, while a low-lying excited state
corresponds to filling a number of states above the Fermi
surface and emptying the same number of states within
this surface. In what follows we will use the term “states”
exclusively for the quasiparticle states. They can be labeled
by momentum and spin, similarly to the states of nucleons
in a free Fermi gas model. Because of the Pauli blocking of
the final states, only transitions between the states close to the
corresponding Fermi surfaces for neutrons and protons can
contribute to neutrino emission. The same picture is valid for
free Fermi gases of electrons and muons, for which, however,
quasiparticles coincide with particles.

For strongly degenerate nuclear matter, those excited mo-
mentum states which can be involved in the neutrino emission
processes constitute a dilute gas of elementary excitations
(Landau quasiparticles). The wave function of the dilute gas
of Landau quasiparticles can be constructed using the inde-
pendent pair approximation. The many-body initial and final
state in the emission process will be expressed in terms of the
correlated two-particle (pair) wave function in nuclear matter.
In the case of the Brueckner-Hartree-Fock (BHF) theory of
nuclear matter, the correlated two-body wave functions can
be calculated using the Bethe-Goldstone equation. The pair
correlation function in LOCV is calculated directly from
Euler-Lagrange equations resulting from minimization of the
energy functional and normalization condition.

Recently, the pair correlation functions for nuclear matter
were calculated using both LOCV and BHF approaches with
realistic nucleon interactions in the same conditions. It has
been found that both methods give similar pair correlation
functions [37]. Having constructed the many-body wave
function in the independent pair approximation, and using the
properties of the Landau quasiparticle distribution function at
temperature T (it coincides with that of the free Fermi gas, but
involves quasiparticle energies), we can calculate the Murca
neutrino emissivity using the Fermi Golden Rule.
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As is shown in the next section, in the leading order in T
the calculation reduces to the radial integrals of expressions
involving pair correlation functions. The pre-factors in the final
expression involve effective masses of Landau quasiparticles,
resulting from the statistical factors (density of initial and
final momentum states per unit energy). In the present paper
we use pair correlation functions calculated using the LOCV
method. The effective mass of nucleons has been calculated
in the framework of LOCV method as well, but only for the
symmetric nuclear matter using single particle potential energy
at zero temperature [38]. Although it is in principle possible
to calculate them for asymmetric and beta-stable matter, since
these data are not available yet, we employ nucleon effective
masses in the T = 0 system calculated in BHF method for
the same realistic bare nucleon interactions as in our LOCV
calculation [39]. We are allowed to do so because, as was
mentioned, it is shown in Ref. [37] that the defect functions
arising from LOCV and BHF methods are almost the same at
zero temperature and they are in good agreement regarding the
behavior of correlation functions.

III. NEUTRINO EMISSIVITY FROM THE n BRANCH
OF THE MODIFIED URCA PROCESS

After the temperature of neutron star core interior has fallen
below 109 K, the star is transparent to neutrinos and matter con-
stituents are degenerate [16]. Below muon threshold, the direct
Urca (Durca) process is blocked in neutron star matter with
proton abundance less than 1/9 � 0.11 because of the energy
and momentum conservation for nucleon quasiparticles [12].
Above muon threshold, the constraint on np/n is stronger [40].
In the absence of the Durca reactions which would lead to a
fast cooling of a neutron star, the Murca processes remain main
mechanisms that control the cooling rate. Detailed description
of neutrino emission processes can be found in Refs. [17,41].
Similarly as Durca, Murca involves charged-current weak
interaction between nucleons and leptons. However, in Murca
process, the nucleon undergoing the charged-current process
is correlated via two-body nuclear force with another nucleon
which acts as “active spectator.” Nuclear force allows there
for the transfer of momentum between the nucleons involved
in charged-current process and the ”active spectators” allow
therefore for the energy-momentum balance in the Murca

reactions. The basic Murca process (neutron beta decay)
is

n + n → n + p + e + νe,

p1s1 p2s2 → p1′s1′ ppsp pese pν, (1)

where the asymptotic momenta and spins in the initial and final
states are indicated to fix the notation. An inverse process is

n + p + e → n + n + νe. (2)

In the proton branch of Murca the active spectator is a proton,

n + p → p + p + e + νe, (3)
p + p + e → p + n + νe. (4)

Reactions analogous to (1)–(4) are possible if muons are
present in neutron star matter, with electrons replaced by
muons.

The neutron branch of the Murca process does not have a
density threshold: it can happen at all densities. The proton
branch has a threshold. In npe matter it is open if pFp > 1

4pFn,
where pFn (pFp) is the neutron (proton) Fermi momentum.
This condition implies that the proton fraction Yp > Ycp =
1
65 = 0.0154, satisfied almost everywhere in the neutron star
core, except for EOSs with very low symmetry energy at ρ �
ρ0 [42]. In this work we focus on the neutron branch of the
Murca process, which yields higher neutrino emissivity than
the proton branch, Eqs. (3) and (4) [17].

In neutron star matter in beta equilibrium (an assumption
valid in a cooling neutron star) the rates of processes (1) and
(2) (neutron branch of Murca) are equal. So it is sufficient
to calculate the rate of any of them and double the result. We
first obtain an expression for the electron neutrinos’ emissivity,
then we modify it to get the muon neutrinos’ emissivity.

A. The emissivity carried by νe,νe

The rate at which the neutrinos with energy Eν are emitted
in any of reactions Eqs. (1)–(4) can be computed using the
Fermi golden rule. The Murca process represented by Eq. (1)
is generated by the weak charged-current interaction with the
Hamiltonian operator density, which in the approximation of
nonrelativistic nucleons is

Ĥ cc
int(x) = G√

2
(ψ̂ (p)†ψ̂ (n)ψ̂eγ0(1 − γ 5)ψν − cAψ̂ (p)†σ iψ̂ (n)ψ̂eγi(1 − γ 5)ψ̂ν), (5)

where G is the Fermi weak coupling constant, and summation over repeated indices is assumed. In these equations ψ̂’s are the
particle’s field operators, cA is the axial vector renormalization, and σ ’s and γ ’s are Pauli and Dirac matrices, respectively.

The neutrino emissivity [energy carried away by neutrinos from processes (1) and (2) from 1 cm3 in 1 s] is obtained by
multiplying the rate by Eν and integrating over dEν . For the sum of contributions from reactions Eqs. (1) and (2) we get

QMn(e)
ν = 2

(2π�)18

∫
d3p1d

3p2d
3p1′d3ppd3ped

3pνEν

1

2
〈|Mif|2〉spin(2π )4δ(E1 + E2 − E1′ − Ep − Ee − Eνe

)

× δ(3)( p1 + p2 − p1′ − pp − pe − pνe
)nn(E1)nn(E2)[1 − nn(E1′ )][1 − np(Ep)][1 − ne(Ee)], (6)

where we use notation of Eq. (1), En( p1), En( p2), En( p1′), and Ep( pp) are nucleon (quasiparticle) energies, Eνe
= cpνe

, and
electrons are treated as a free Fermi gas. The factor 1

2 is introduced to avoid the double counting of the nn states. The functions
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nj [Ej ( pj )] are the Fermi-Dirac distributions. The quantity
〈|Mif|2〉spin is the spin averaged squared matrix element of the
weak-interaction Hamiltonian.

Due to the high degeneracy of the neutron star matter
constituents, the available phase space is determined by the
temperature and, as was discussed in Sec. II, only momentum
states close to the corresponding Fermi surface contribute to
Qν . Consequently, one can replace in the integrand of Eq. (6)

d3pi = m∗
i pFidEid	i, (7)

where d	i is the solid angle in the direction of pi and the
effective mass m∗

i (i = n,p) is calculated at the corresponding
Fermi surface,

m∗
i = pFi

vFi

, (8)

where vFi is the quasiparticle velocity at the Fermi surface,

vFi =
(

∂Ei

∂p

)
p=pFi

. (9)

For electrons

m∗
e = pFe

c
. (10)

To evaluate the mean squared matrix element we construct
the initial and final states of nucleons in the independent
pair approximation. We follow the notations of Ref. [31] and
construct the correlated two-body state vectors as

∣∣�(nn)
s1s2

〉 = 1

V

∫
d3x1d

3x2 e
i
�

( p1·x1+ p2·x2)

×
∑
sasb

f nn
sas1,sbs2

(x1 − x2) ψ̂ (n)
sa

(x1) ψ̂ (n)
sb

(x2)|0〉, (11)

∣∣�(np)
s1′ sp

〉 = 1

V

∫
d3x ′d3y ′ e

i
�

( p1′ ·x′+ pp · y′)

×
∑
sasb

f
np
sas ′

1,sbsp
(x′ − y′) ψ̂ (n)

sa
(x′) ψ̂ (p)

sb
( y′)|0〉. (12)

The correlation functions f are in general 4 × 4 matrices in
the spin space, and become unit matrices for a pair of free
nucleons.

For the nn pair, f is assumed to be purely central, because
the tensor force is weak in this isospin channel,

f nn
sas1,sbs2

(r) = f nn(r) δsas1δsbs2 , (13)

where r = |r|. For the np pair, f contains, in addition to
a central component, also a tensor component, because of a
strong tensor force in the two-body state 3S1 − 3D1:

f
(np)
sas ′

1,sbsp
(r) = f (np)

c (r) δsas ′
1δsbsp

+ f
(np)
t (r)[S(np)(n)] sas ′

1,sbsp
,

(14)

where n is a unit vector in the direction of r , and

S(np)(n) = 3 σ i
nni σ j

pnj − σ k
n σ k

p (15)

is the usual tensor operator.
Several additional steps can be made which allow for getting

an analytic expression for QMn(e)
ν [12]. The energy of a neutrino

is of the order of kBT , where kB is the Boltzmann constant, and

therefore much smaller than the relevant energies of n, p, and
e. Therefore, we can remove Eνe

and pνe
from the arguments

of the delta function in Eq. (6). Then, using the “triangle
approximation” p1

∼= p1′ + p2, i.e., neglecting proton and
electron Fermi momenta compared to the neutron one, we
finally get

QMn(e)
ν = 11513

945

G2
(
1 + 3c2

A

)
c4π�13210

m∗
n

3
m∗

p

kFp
k2
Fe

k6
Fn

R(kFn)(kBT )8,

(16)

where kFj = pFj /�. The dimensionless factor R contains the
effects of N-N interaction through correlation functions [31]:

R(kFn) = F 2
c + 12.7F 2

t , (17)

where

Fc = 4πk3
Fn

∫ ∞

0
dr r2j0(kFnr)

[
f (nn)

c (r)f (np)
c (r) − 1

]
, (18)

Ft = 4πk3
Fn

∫ ∞

0
dr r2j2(kFnr)f (nn)

c (r)f (np)
t (r). (19)

Here, jl(x) are the spherical Bessel functions of order l. Notice
that for f = fc = 1 (no correlations, no tensor correlations)
one gets R = 0, as expected.

By substituting appropriate values of constants in Eq. (16),
we obtain an expression useful for numerical calculations:

QMn(e)
ν =5.92 × 1019 n0

nn

Ye
2/3Yp

1/3

×
(

m∗
n

mn

)3 m∗
p

mp

R(kFn
)T9

8 erg cm−3s−1, (20)

where n0 = 0.16 fm−3 is the saturation density of symmetric
nuclear matter, T9 = T/109, and Ye = ne/n and Yp = np/n
are the electron and proton fractions, respectively. For a simple
model of npe matter, i.e., neglecting the presence of muons,
we have Ye = Yp.

B. The emissivity carried by νμ,νμ

When the Fermi energy of electrons exceeds the rest
energy of muons, EFe = c(m2

ec
2 + p2

Fe)1/2 � pFec > mμc2 =
105.56 MeV, muons are present in neutron star matter. As
the muon Fermi momentum is smaller than the electron one,
blocking of the electron Durca process implies a fortiori
blocking of the muon Durca one. Then, only Murca reactions
involving muons can proceed:

n + n → p + n + μ + νμ, n + p + μ → n + n + νμ.
(21)

Muons can be treated as a free Fermi gas at T = 0, so that
Eμ(p) = c(m2

μc2 + p2)1/2 and therefore

vFμ =
(

∂Eμ

∂p

)
p=pFμ

= c2 pFμ

EFμ

= c
pFμ

pFe

, (22)

where the beta equilibrium condition EFμ = cpFe was used.
Therefore, while the muon mass mμ � 207me, in npeμ matter

045806-4



NUCLEAR CORRELATIONS AND NEUTRINO EMISSIVITY . . . PHYSICAL REVIEW C 93, 045806 (2016)

in beta equilibrium

m∗
μ = m∗

e = pFe

c
. (23)

To obtain a complete expression for the emissivity of muon
neutrinos we should replace one of the kFe in Eq. (16) by
kFμ and include the muon threshold factor. Applying these
modifications, we get following expression for the emissivity
of muon neutrinos from the neutron branch of the Murca
process:

QMn(μ)
ν =5.92 × 1019 n0

nn

Yμ

(
Yp

Ye

)1/3(
m∗

n

mn

)3 m∗
p

mp

× R(kFn)T9
8�(kFe − kcμ) erg cm−3s−1, (24)

where kcμ = mμc2/�c = 0.517 fm−1.
The total emissivity of the neutron branch of the Murca

process is obtained by adding expressions in Eqs. (20) and
(24).

IV. RESULTS

As is apparent from Eqs. (16), (20), and (24), the main
parameters involved in the calculation of neutrino emissivity
at a given baryon density, which are directly related to the
nuclear interactions in neutron star matter, are proton and
electron fractions Yp and Ye, from which one obtains Yμ =
Yp − Ye and Yn = 1 − Yp, effective masses m∗

n and m∗
p, and

correlation factor R. We need a reliable many-body technique
to evaluate these parameters. As mentioned in the Introduction,
the method we have adopted is LOCV. A brief description
of the LOCV method is presented in the Appendix. As an
input N-N interaction we have used the Argonne V-18 (AV18)
potential [43]. However, it is well known that the two-body
force (2BF) cannot reproduce the saturation properties of
nuclear matter, and addition of a three-body force (3BF) is
required. In this work we have employed the Urbana IX
model for 3BF in an extended LOCV method [44]. So we
also examine the effect of 3BF on the neutrino emissivity
by comparing the results obtained using 2BF only and those
obtained using the 2BF+3BF Hamiltonian.

A. Proton and electron fraction

The nucleon component of neutron star matter is strongly
asymmetric nuclear matter with Yp  1. Electrical neutrality
requires Yp = Ye + Yμ. In beta-stable npeμ matter (BSM),
leptons and nucleons are in beta equilibrium, which implies
a relation between the chemical potentials μn = μp + μe and
μe = μμ, where μi and ni are chemical potential and number
density of particle i. Electrical neutrality and beta equilibrium
determine actually the values of Yi at a given baryon density
n. Neglecting nuclear interactions, i.e., assuming a free Fermi
gas model (FFG), we get

Y FFG
e

∼= 0.00547
n

n0
. (25)

Interaction between nucleons strongly increases Ye due to an
attractive potential well for protons moving in neutron matter.
Friman and Maxwell [23] proposed to include the effect of

FIG. 1. Electron fractions predicted by the noninteracting Fermi
gas model (dash-dotted line), the Friman and Maxwell modified
version [23] (dashed line), LOCV with two-body force only (short-
dashed line), and LOCV with two-body plus three-body forces (solid
line).

strong interaction by modifying the numerical prefactor in
Eq. (25):

Ye
∼= 0.0168

n

n0
. (26)

The values of Ye resulting from these approximations and
those obtained from the LOCV method with and without 3BF
are shown in Fig. 1. At n = n0 the electron fraction obtained
using the LOCV method without 3BF is about twice that pro-
posed in Ref. [23]. We have also presented the LOCV method’s
predicted values of Yp in Fig. 2 with and without 3BF.

Inclusion of 3BF strongly increases electron and proton
fractions. Already at n0, we obtain Yp(2BF) = 0.03 and
Yp(2BF + 3BF) = 0.07. The contribution from 3BF grows

FIG. 2. LOCV proton fraction for two-body force only (dotted
line) and the two-body plus three-body forces case (solid line).
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rapidly with density, and at 2n0 we get Yp(2BF) = 0.06 and
Yp(2BF + 3BF) = 0.16.

All fractions increase with baryon density. Including 3BF
in the LOCV calculation results in a dramatic increase of the
value of proton, electron, and muon fractions with density (the
value of Yμ can be deduced from Figs. 1 and 2).

An important consequence is that including 3BF into the
LOCV calculations in the manner worked out in Ref. [44]
allows for opening the Durca process above nDu = 0.3 fm−3.
This means that for n > 0.3 fm−3 the Murca process is
irrelevant for neutron star cooling, being a negligible addition
to the Durca emissivity. Notice that the Durca process is not
allowed even at 0.5 fm−3, the largest density considered in the
present paper, when only 2BF is considered.

B. Correlation factor

The effects of nucleon correlations in nuclear matter are
encapsulated in the correlation factor R. In Eqs. (18) and
(19) we approximated f nn by the most important LOCV
correlation function in the 1S0 channel and f nps with those in
the 3S1–3D1 channel. Recall that, in the numerical evaluation
of the electron neutrinos’ absorption rate, the authors of
Ref. [31] used symmetric nuclear matter (SNM) correlation
functions calculated using the FHNC many-body method
[5] computed with Reid soft-core 2BF [45] at saturation
density. The dependence of correlation functions on density
was neglected in Ref. [31]. In Fig. 3 we compared R of
Ref. [31] and the one calculated using our f ’s of SNM
at n0, with the AV18 2BF instead of the Reid soft-core
one of [31]. We have also presented there a curve obtained
using density-dependent correlation functions in SNM. Notice
that using density-dependent correlation functions, apart from
a dramatic reduction in the value of R, has qualitatively
changed the shape of R(n). When one uses the correlation
functions calculated at n0, the R factor grows monotonically

FIG. 3. Correlation factors R obtained using symmetric nuclear
matter (SNM) input: density-dependent LOCV correlation functions
(solid line), LOCV correlation functions at saturation density (dashed
line), and FHNC correlation functions at saturation density (dotted
line).

FIG. 4. Different components of the correlation R factor calcu-
lated with LOCV density-dependent correlation functions in beta-
stable matter with and without three-body force. Solid lines are the
results obtained including three-body force.

with increasing n. In the case when one uses f ’s calculated
consistently at each n, R(n) for SNM first grows, reaching a
broad maximum at n ∼ 2n0, and then slowly decreases with
increasing n.

In Fig. 4, the central and central-plus-tensor part of the R
factor with and without 3BF were compared. We assumed
beta-stable matter (BSM) and we used density dependent
correlation functions. One sees that including 3BF decreased
the value of the central part of R at n < 0.2 fm−3 and
increased it for n > 0.2 fm−3. The tensor contribution to R
is much larger than the central one. The total R decreases
when 3BF is switched on. However, at highest densities the
central component of R gets closer to the total R both for
2BF and 2BF+3BF calculations. This means that the effect of
the tensor character weakens as density increases. This is due
to the cancellations in the integrand involving j2(kFnr) in the
expression for Ft . These cancellations become more and more
effective with an increasing kFn.

In Fig. 5 we compared the R factors, calculated using
LOCV density-dependent correlation functions, for three cases
of composition of nuclear matter: pure neutron matter (PNM),
symmetric nuclear matter (SNM), and beta-stable matter
(BSM) with and without 3BF. It is seen that, in all three
cases, adding 3BF has led to a decrease in the value of R.
For SNM the relative effect of adding 3BF is the smallest.
On the other hand, significant difference is seen between the
SNM’s and BSM’s R factors. This implies that applying the
correct approximation for the composition of nucleon sector
of stellar matter as well as including 3BF are both important
for correct treatment of strong interaction effects in neutrino
emissivity calculations.

C. Impact of different factors on Murca emissivity

In Fig. 6 we plotted electron neutrino emissivity at T0 =
3 × 108 K vs n for BSM using density-dependent correlation
functions, calculated within the LOCV method in the 2BF and
2BF+3BF cases. In Fig. 7 the corresponding curves including
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FIG. 5. Comparison of correlation factors calculated with LOCV
density-dependent correlation functions in three different scenarios:
symmetric nuclear matter (SNM), beta-stable npeμ matter (BSM),
and pure neutron matter (PNM) with and without three-body forces.
Solid lines refer to results including three-body forces.

electron and muon neutrinos were shown. The QMn(n) curves
at any T can be obtained using the scaling relation

QMn(T ) = QMn(T0)

(
T

T0

)8

. (27)

In all cases emissivity is a monotonically decreasing function
of density. Inclusion of 3BF while decreasing the R factor
has had an overall effect of shifting the curve of emissivity to
higher values.

V. DISCUSSION AND CONCLUSION

We have calculated the emissivity of electron and muon
neutrinos in the n-branch Murca process in an npeμ model
of a neutron star. We treated the rate of the Murca using

FIG. 6. Electron neutrino emissivity of beta-stable matter at T =
3 × 108 K, obtained using two-body force only (2BF, dashed line)
and two-body plus three-body forces (2BF+3BF, solid line).

FIG. 7. Electron plus muon neutrino emissivity of beta-stable
matter (solid line) and electron neutrino emissivity of muonless beta-
stable matter (dotted line) with and without three-body force.

the approach of Ref. [31] to account for the effect of strong
interaction and nuclear many-body properties through realistic
two-body correlation functions. We employed the correlation
functions calculated by a variational microscopic many-body
method, the so-called LOCV method, assuming the AV18
two-body potential, and then we studied the effect of including
a phenomenological three-body UIX potential.

In Fig. 8 we have presented the outcome of comparison
between our results for electron neutrino emissivity and those
from other works. Since the nuclear matrix element in other
works has been evaluated near the nuclear matter saturation
density only, we have also used the LOCV beta-stable matter
correlation functions at this specific density.

FIG. 8. Comparison of electron neutrino emissivity from the
Murca n-branch process calculated at T = 3 × 108 K using different
approaches. Solid line: LOCV with three-body force included; dotted
line: LOCV without three-body force; dash-dotted line: Friman and
Maxwell [23] approach; dashed line: Sawyer and Soni [30] hard-core
interaction with core radius 0.9 fm.
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The calculation of Friman and Maxwell [23] (hereafter FM)
is based on the one-pion-exchange description for the long-
range tensor part of the strong interaction and a Fermi liquid
parametrization [36] for the short-range part of it. Their result
is shown with the dash-dotted line. As is seen in Fig. 8 our
density-independent results for 2BF are close to those of FM
at low density. However, as in our 2BF case the relative effect
of tensor correlations decreases with increasing n (see Fig. 4),
and our curve diverges from the FM one. However, after adding
3BF, whose effects grows rapidly with increasing density, our
emissivity becomes closer to that of FM (somewhat larger
below 0.2 fm−3, reaching a broad maximum at ≈0.2 fm−3,
and somewhat smaller at higher density).

As pointed out in Sec. I, treating the effect of strong
interaction in the nuclear matrix element through correlation
functions was already introduced in the work of Sawyer and
Soni in Ref. [30] (hereafter SS). This was actually the starting
idea for the authors of Ref. [31] (hereafter HJ). But SS used
a pure hard-core correlation function and so their estimated
correlation factor was dramatically sensitive to the assumed
value of the hard-core radius. For the sake of comparison,
results of SS for an unrealistically large hard-core radius 0.9
fm are shown as the dashed line in Fig. 8.

Figure 7 shows our prediction of the electron and muon
neutrinos’ emissivity curves from the neutron branch of the
Murca process. In contrast to the QMn of FM and SS, our values
are monotonically decreasing with increasing density. This
property is valid in both 2BF and 2BF+3BF cases. Moreover,
one sees steeper decrease compared with the LOCV results in
Fig. 8 obtained using the n0 correlation functions.

The calculation reported in Ref. [24] was based on the
thermodynamic T -matrix “in-medium” technique. The quasi-
particle approximation was used, as in our calculation, which
implied T 8 dependence of neutrino emissivity. A nonlocal-
separable N-N potential of Mongan [46] was assumed to
make the calculation feasible. Medium effects were basically
dispersive (a momentum-dependent potential in which a
nucleon pair moves), and the exclusion principle effect from
the background nucleons constrained the scattering of nucleon
pair. Generally, the QMn of Blaschke et al. [24] while close to
FM’s and to our results at subnuclear density (small medium
effects), become some five times smaller than the FM one at
0.25 fm−3, the highest n considered in Ref. [24].

Calculations of Murca neutrino emissivity reported in
Refs. [26,27] and reviewed in Refs. [25] have been performed
within the Fermi liquid theory of nuclear matter. They
went beyond the quasiparticle approximation, and included
additional many-body effects in strongly interacting nucleonic
medium (neutrino emission from intermediate particle-hole
states, renormalization of the weak charged-current vertices,
and collective effects due to possible softening of the pion-like
modes). With conservative assumptions about relevant param-
eters, the authors obtained QMn similar to FM at n = n0, and
an order of magnitude larger than FM at n = 2n0. Assuming a
strong softening of the pion-like mode (a possibility more
popular in 1980s than today), an increase by factors 103

and 104 at n0 and 2n0, respectively, was found. Increase of
QMn with density is very strong, but dramatic cancellation of
various large contributions could change these results. While

the calculations in Ref. [26,27] show (potential) importance of
various strong interaction effects, neglected in a more standard
approach like that in the present paper, a lack of knowledge of
crucial constants entering with high power (e.g., 6 or even 8)
into formulas for QMn in Refs. [26,27] does not allow making
controllable numerical predictions and definitive comparisons.

Concluding, employing a realistic description of strong
interaction in dense nuclear matter and accounting for the
density and composition dependence of nucleon correlations in
neutron star matter are essential for getting Murca emissivities
from neutron star cores. Still, due to lack of knowledge of
strong interactions in nucleon matter at supranuclear density
and deficiencies of the many-body theories, the uncertainty in
QMn is disappointingly large.

In the LOCV calculation of Ref. [44] adding the three-body
force increased the maximum allowable mass for neutron
stars from 1.68M� to 2.33M�. Our calculations shows that
inclusion of 3BF into the LOCV calculation is also crucial
for neutrino emissivity. In particular, inclusion of 3BF allows
opening of the Durca process at 2n0, while with only 2BF
Durca is blocked at all densities considered. Qualitatively, a
similar situation was found for A18 and A18+UIX interactions
by Akmal et al. [6] who used variational chain summation
(VCS) techniques: Durca blocked at any density for the
A18 two-body force, and Durca allowed above 5n0 when
three-body UIX interaction is included. However, at n < 3n0

considered by us, they get a rather small increase of xp due to
inclusion of the three-body force, compared to our doubling
of the proton fraction. As already can be seen from Table III
in Ref. [44], there are important differences in the symmetry
energy values at saturation density: 37.4 MeV [44] compared
with 33.3 MeV [6], which is strongly correlated with the
difference in proton fraction, xp ∝ E3

sym (see, e.g., [47]). We
expect that a very rapid growth of xp with density is related
to the large value of symmetry-energy slope parameter L.
This would probably affect our reported results regarding the
effect of three-body correlations on neutrino emissivity and
the Durca threshold.

In this work we adopted the nucleon effective masses
obtained using a different many-body theory (Brueckner-
Hartree-Fock [39]) because of the lack of the appropriate data
in the LOCV approach. We hope to calculate in the future the
important effective-mass factor, appearing in the power 4 in
the emissivity expression, in the LOCV framework for BSM
and consider its effect on our results. Furthermore, since in
the absence of the Durca process different neutrino producing
processes should compete to determine the thermal evolution
of the star, calculation of the emissivity of other processes such
as the proton branch Murca process and N-N bremsstrahlung
[17,41] is also important. We hope to address these issues in
our future work devoted to application of the LOCV method
to physics of neutron star cores.
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APPEENDIX

The LOCV method is a fully self-consistent variational
method that has achieved many successes in predicting nuclear
matter properties during recent decades. In this method we
introduce a trial many-body wave function in the form

�(12 . . . A) = F̂(12 . . . A)(12 . . . A), (A1)

where F̂ is an A-body correlation operator and is considered
as a symmetrized product of pair correlation operators (the
Jastrow form of F̂ [48]), i.e.,

F̂(12 . . . A) = Ŝ
∏
i<j

f̂ (ij ), (A2)

where each f̂ (ij ) is assumed to be built out of a set of operators
Q̂k that appear in two-particle interaction. These two-body
operators acting in the spaces of the ij nucleon pairs are
multiplied by functions fk(r) where r = |r i − rj |. Then we
construct a cluster expansion of the expectation value of our
nuclear hamiltonian, i.e.,

Ĥ =
∑

i

p̂2
i

2mi

+
∑
i<j

V̂ij +
∑

i<j<k

V̂ijk + · · · . (A3)

For the energy per nucleon we obtain

E(A) = 1

A

〈�|Ĥ|�〉
〈�|�〉 = E1 + E2 + · · · . (A4)

Here, E1 is the A-body kinetic energy, independent of fk , and
E2 is the two-body energy contribution,

E2 = 1

2A

∑
i

〈ij |Ŵ(12)|ij 〉a, (A5)

where Ŵ(12) is an effective two-body potential defined as

Ŵ(12) = [f (12),[T̂1 + T̂2,f̂ (12)]] + f̂ (12)V̂ f̂ (12), (A6)

in which T̂1 + T̂2 is the kinetic energy operator of a nonin-
teracting (1,2) pair and V̂ (1,2) is the interparticle potential
operator. We can write the two-body energy as a functional of
correlation functions while E1 is independent of fi :

E2[f ] =
∫

L(f ′,f,r)dr, (A7)

where L depends on correlation functions fk , their radial
derivatives, and the N-N potential parameters as an input. We
can now minimize E2 with respect to the variations of the

fk’s in each channel of interaction [33]. We impose a natural
normalization constraint in the form of [34]

1

A

∑
ij

〈ij |f 2
P (12) − f 2

k (12)|ij 〉a = 1. (A8)

The function fP is the modified Pauli correlation function
which for nn pair has the form

fP =
(

1 − 9

2

(
j1(kFnr12)

kFnr12

)2)− 1
2

, (A9)

where j1(x) is spherical Bessel function of order 1. The
function fP for the pp pair is obtained by putting kFp instead
of kFn. For the np pair fP = 1. Constraint (A9) introduces
a Lagrange multiplier through which all f ’s are coupled.
So we end up with a set of Euler-Lagrange equations for
correlation functions subject to the normalization constraint. It
is noticeable that χ = 〈ψ12|ψ12〉 − 1 has the role of a smallness
parameter in the cluster expansion, and by choosing an
appropriate correlation function we can truncate the expression
(28) up to two-body terms and keep the higher terms as small
as possible [49]. Finally, the correlation functions are extracted
through solving the arising coupled differential equations.
More details can be found in Ref. [50] and the references
therein.

It is well known that two-body forces alone cannot
reproduce the saturation properties of symmetric nuclear
matter. Also the three-body forces play an important role
at supernormal densities of nuclear systems. So, in order to
include the three-body forces in the LOCV method, we have
employed an Urbana type three-body interaction in the form
[51]

V123 = V 2π
123 + V R

123, (A10)

where V 2π
123 and V R

123 are the two-pion exchange and the shorter-
range phenomenological parts respectively [51]. Dealing with
the full three-body problem is difficult, and to avoid such
difficulties we have introduced a density dependent effective
two-body interaction V̄12(r) (DDETI) weighted by the LOCV
two-body correlation functions f (r) at each density and
averaged over the third particle coordinates [44]:

V̄12(r) = n

∫
d3r3

∑
σ3,τ3

f 2(r13)f 2(r23)V123. (A11)

By inserting Eq. (37) in the above equation and doing some
algebra, one can achieve the operator structure of DDETI as

V̄12(r) = (τ1.τ2)(σ1.σ2)V 2π
στ (r)

+ S12(r̂)(τ1.τ2)V 2π
t (r) + V R

c (r), (A12)

where

V 2π
στ (r) = 2π

r
n

∫ ∞

0
|r13|d|r13|

∫ |r12+r13|

|r12−r13|
|r32|d|r32|f 2(|r13|)f 2(|r32|)

∑
cyc

∑
σ3τ3

4A × [Y (mπ |r13|)Y (mπ |r32|)

+2P2(r̂13.r̂23)T (mπ |r13|)T (mπ |r32|)], (A13a)
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V 2π
t (r) = 2π

r
n

∫ ∞

0
|r13|d|r13|

∫ |r12+r13|

|r12−r13|
|r32|d|r32|f 2(|r13|)f 2(|r32|)

∑
cyc

∑
σ3τ3

4A × [Y (mπ |r13|)T (mπ |r32|)P2(r̂12.r̂23)

+T (mπ |r13|)Y (mπ |r32|)P2(r̂12 · r̂13) + T (mπ |r13|)T (mπ |r32|)P ], (A13b)

V R
c (r) = 2π

r
n

∫ ∞

0
|r13|d|r13|

∫ |r12+r13|

|r12−r13|
|r32|d|r32|f 2(|r13|)f 2(|r32|)

∑
cyc

∑
σ3τ3

U × [T (mπ |r13|)T (mπ |r32|)]2. (A13c)

In the above equations P2(x)’s are the usual Legendre
polynomials and P is equal to − 3

2 (r̂13 · r̂23)(r̂13 · r̂23) +
3(r̂12 · r̂23)(r̂12 · r̂13) − P2(r̂12 · r̂13) − P2(r̂12 · r̂23). The z axis
is taken along the vector r12 and r = |r12|. mπ indicates the
average pion mass and Y (mπr) and T (mπr) are the Yukawa
and tensor functions respectively. The factors A and U in
the above equations are determined in such a way that we
can reproduce the correct saturation properties of symmetric
nuclear matter at zero temperature.

First we extract the two-body correlation functions by using
the two-body interactions at each channel and insert them in
the above equation to obtain the DDETI. Then by adding
this DDETI to the bare two-body interaction we achieve
an effective two-body potential. Now we use this effective
two-body interaction in the LOCV procedure. As an outcome
of this process, a so-called effective two-body correlation

function is obtained. Then, again we insert the mentioned
effective two-body correlation function in Eq. (38) and repeat
this iteration process till convergence is reached. The final
effective two-body correlation function and the corresponding
effective two-body potential are used to find the equation of
state.

In the case of AV18 as the bare two-body interaction, we
have found saturation energy −23.37 MeV at n0 = 0.32 fm−3

and symmetry energy Esym(n0) = 39.13 MeV and by adding
the three-body interaction the saturation energy is reduced
to −15.58 MeV at n0 = 0.17 fm−3 and symmetry energy
Esym(n0) = 37.51 MeV [44]. So it is seen that including 3BF in
the LOCV method via above approximation has improved the
saturation energy and density; however, the symmetry energy
is still out of the standard range. More details can be found in
Ref. [44].
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