
PHYSICAL REVIEW C 93, 045805 (2016)

Primordial α + d → 6Li + γ reaction and second lithium puzzle
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During the Big Bang, 6Li was synthesized via the 2H(α,γ )6Li reaction. After almost 25 years of the failed
attempts to measure the 2H(α,γ )6Li reaction in the laboratory at Big Bang energies, just recently the LUNA
Collaboration presented the first successful measurements at two different Big Bang energies [Anders et al., Phys.
Rev. Lett. 113, 042501 (2014)]. In this paper we will discuss how to improve the accuracy of the direct experiment.
To this end the photon’s angular distribution is calculated in the potential model. It contains contributions from
electric dipole and quadrupole transitions and their interference, which dramatically changes the photon’s angular
distribution. The calculated distributions at different Big Bang energies have a single peak at ∼50◦. These
calculations provide the best kinematic conditions to measure the 2H(α,γ )6Li reaction. The expressions for the
total cross section and astrophysical factor are also derived by integrating the differential cross section over the
photon’s solid angle. The LUNA data are in excellent agreement with our calculations using a potential approach
combined with a well established asymptotic normalization coefficient for 6Li → α + d . Comparisons of the
available experimental data for the S24 astrophysical factor and different calculations are presented. The Big Bang
lithium isotopic ratio 6Li /7Li = (1.5 ± 0.3) × 10−5 following from the LUNA data and the present analysis are
discussed in the context of the disagreement between the observational data and the standard Big Bang model,
which constitutes the second lithium problem.
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I. INTRODUCTION

The primordial nuclei were formed during the first 20
minutes after the Big Bang. Among them the lithium isotopes,
7Li and a much smaller amount of 6Li, were synthesized.
Later on, cosmic rays, novae, and pulsations of asymptotic
giant branch (AGB) stars were the main generators of the
7Li isotope, and 6Li was formed mainly by cosmic rays. In
1982, two important papers [1,2] for the first time noted that
metal-poor (−2.4 � [Fe/H] � −1.4), warm (5700 � Teff �
6250 K) dwarf stars demonstrated remarkably constant 7Li
abundance (the Spite plateau), which does not depend on
metallicity and effective temperature. It was quite a surprising
observation because depletion of lithium over such a broad
temperature range should be significant. Because it was
impossible to explain the existence of the Spite plateau over a
wide range of temperatures, it was suggested that no depletion
of 7Li took place in the observed dwarf warm stars and that the
constant abundance of 7Li is the primordial one. However, this
interpretation of the Spite plateau was periodically challenged.
For example, in Refs. [3,4] the meltdown of the Spite plateau
was discovered in some low metallicity stars.
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Explanation of the lithium abundance in low metallicity
stars in the halo of our Galaxy where the lithium abundance
demonstrates independence on metallicity, forming the Spite
plateau, became one of the hot topics in modern cosmology
and nuclear astrophysics. Note that the observations of the
primordial lithium are restricted to white dwarfs because
the loosely bound 7Li nuclei are easily destroyed by the
7Li(p,α)4He reaction when the temperature exceeds 2.6 ×
106 K. For this reason, red giants cannot be used to determine
the lithium primordial abundance.

In the standard Big Bang nucleosynthesis model, 7Li is
formed right after the Big Bang, together with 1H, 2H, 3He,
and 4He. The primordial reactions start from the deuteron
formation p + n → d + γ . The deuteron’s yield depends on
the primordial baryon/photon ratio ηB . Because the deuterons
are seeds, which are necessary to synthesize heavier elements,
the abundance of heavier elements, and lithium in particular,
also depends on ηB . 2H and 7Li are two primordial nuclei
which are most sensitive to ηB .

The abundance of the primordial 7Li within the framework
of the standard Big Bang scenario, calculated using the
extended reaction network and nine years of results from
the Wilkinson Microwave Anisotropy Probe (WMAP) [5], is
7Li/H = 5.13 × 10−10. It is 7Li/H = (4.56–5.34) × 10−10 [6]
based on the Planck results [7] plus information about the
lensing potential and from ground-based high resolution
experiments. The latter is considered to be the most up to date
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estimation of the 7Li isotope abundance within the standard
Bing Bang scenario. This abundance remains significantly
higher than more recent observations in metal-poor halo
stars [4]: 7Li/H = 1.58+0.35

−0.28 × 10−10. The shortage of the
observed 7Li compared to the standard Big Bang predictions
represents the so-called first lithium puzzle.

During the Big Bang a very small amount of 6Li was
synthesized via the 2H(α,γ )6Li reaction. Later, 6Li was mostly
formed by cosmic rays. The primordial 6Li is assumed to
be present in the gas from which the stars were formed.
Unlike most of the other elements, when 6Li is synthesized
inside the stars by hydrostatic nucleosynthesis, it is quickly
destroyed. But in the atmosphere of the halo metal-poor warm
dwarfs, the primordial 6Li can survive for 13 billion years not
being affected by cosmic rays, although its survival can be
questioned. 7Li is used to help determine the primordial Big
Bang 6Li abundance. First, the presence of 6Li constrains the
destruction of 7Li, because 6Li is more easily destroyed than
7Li. Besides, if 6Li was formed before the formation of the
stars, then the same is true for 7Li.

Stellar 7Li abundance is usually determined from the
resonance line at 670.8 nm but in exceptional cases also
from the weaker line at 610.4 nm. The isotope 6Li can be
detected through the isotopic shift in the Li I 670.8 nm line.
The distortion of the line profile is very small and therefore
requires very high quality spectra. Reference [8] reported for
the first time the detection of a high abundance of 6Li in very
metal-poor stars. The authors concluded that the observed 6Li
was formed during Big Bang nucleosynthesis. The detection
of 6Li was based on the fact, noted above, that the presence
of 6Li in the stellar atmosphere causes an asymmetry in the Li
670.8 nm line. The average 6Li /7Li isotopic ratio in the nine
stars in which 6Li was detected was 6Li /7Li ∼ 5 × 10−2 [8].
Such a high isotopic ratio of the primordial lithium isotopes
in the metal-poor stars contradicts the Big Bang based model
predictions of 6Li /7Li ∼ 10−5 [6] and cannot be explained
by the galactic cosmic rays. This disagreement between the
observations and Big Bang predictions of the lithium isotopic
ratio constitutes the second lithium problem.

Later it was pointed out in Ref. [9] that the line asymmetry
caused by convection in the photospheres of metal-poor stars
is practically indistinguishable from the asymmetry produced
by a weak 6Li distortion of a symmetric 7Li line. Hence, the
6Li abundance obtained in Ref. [8] could be significantly
overestimated, and the result obtained in Ref. [8] can be
considered only as an upper limit of the lithium isotopic
ratio. In Ref. [10] the lithium isotopic ratio was reanalyzed
within the framework of the three-dimensional (3D), nonlocal
thermodynamic equilibrium (NLTE) model. The authors came
to the conclusion that “the observational support for a
significant and non-standard 6Li production source in the
early universe is substantially weakened by our findings” [10],
which inspires a hope that the primordial abundance of 6Li
calculated in the standard Big Bang nucleosynthesis can be
reconciled eventually with observational data.

The yields of the observed and predicted primordial 7Li are
established quite well [6]. If the observed 6Li is primordial (a
Big Bang product) then its abundance is determined by the

2H(α,γ )6Li reaction. The first successful attempt to measure
the 2H(α,γ )6Li reaction was reported in Ref. [11] where resid-
ual 6Li nuclei were detected. The astrophysical factor was mea-
sured in the vicinity of the first resonance 6Li(3+) at the relative
α − d energy E = 0.712 MeV and at higher energies. But no
data were obtained at Big Bang energies, 30 � E � 400 keV.
In Ref. [12] the astrophysical S24(E) factor was also measured
only at the resonance energy, using in-beam spectroscopy.

In Ref. [13], for the first time, an attempt was made to
measure the astrophysical factor at Big Bang energies, using
the Coulomb breakup of 6Li at 26 MeV/A energy on a 208Pb
target. However, only an upper limit was established. The
failure of this indirect attempt to measure the S24(E) astro-
physical factor could be anticipated because the E1 transition,
which usually dominates, is suppressed in the case under
consideration: the effective charge for the dipole transition is
very small owing to practically the same charge/mass ratio for
the α-particle and deuteron. Because the Coulomb dissociation
cross section is dominated by the E2 transition, the obtained
data may be considered only as an upper limit. After that,
another unsuccessful attempt to measure the S24(E) factor
ended with an upper limit S24(53 keV) < 2.0 × 10−7 MeV b,
and a pessimistic conclusion that it would be impossible to
measure directly S24(E) at Big Bang energies [14].

The second attempt to use the indirect Coulomb dissoci-
ation technique was made in Ref. [15], where the breakup
of 6Li ions at 150 MeV/A on a 208Pb target was measured.
However, in this case, the breakup was dominated by nuclear
breakup, which overwhelmed the Coulomb breakup. Hence,
no information about S24(E) was extracted from the analysis
of the breakup data. Further, in Ref. [15] the astrophysical
factor was calculated using a two-body potential model (see
below). Finally, after almost 25 years of failed attempts to
measure the 2H(α,γ )6Li reaction at Big Bang energies, just
recently the LUNA Collaboration presented the first successful
measurements at two different Big Bang energies [16].
Definitely it is a remarkable achievement in the studies of
Big Bang nucleosynthesis.

In this work we discuss the astrophysical 2H(α,γ )6Li
reaction within the framework of the potential approach and
impact on experimental measurements. For the first time, we
present the angular distribution of the photons emitted in this
direct radiative capture. Although the photon differential cross
section is being derived for the 2H(α,γ )6Li process, it can be
applied for any direct electric radiative capture reaction. The
calculated angular distributions provide the best kinematics
to be used in the measurement of the emitted photons,
which differ from the one used in the LUNA experiment.
Optimal kinematics will allow one to decrease significantly the
uncertainty of direct measurements of the 2H(α,γ )6Li process
compared to the uncertainties in the LUNA experiment. By
integrating the differential cross section over the photon solid
angle, the total cross section and astrophysical factor of the
direct radiative capture are derived. The calculations of the
photon’s angular distribution and astrophysical S24(E) factor
are done in the potential model using the well determined
asymptotic normalization coefficient for the virtual decay
6Li → α + d. The primordial 6Li abundance is presented.
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II. PHOTON DIFFERENTIAL CROSS SECTIONS, TOTAL
CROSS SECTIONS, AND ASTROPHYSICAL S FACTORS

A. Photon angular distribution in direct radiative capture

In this section the expression for the angular distribution of
the photons emitted in the α(d,γ )6Li direct radiative capture
is derived, and it is further simplified in the subsequent
section. This result can help to improve future experiments on
this reaction by decreasing their uncertainties. Often photon
angular distributions are not discussed in the papers dealing
with measurements of the astrophysical factors. That is why we
believe it is timely to do it. Besides, by integrating the photon
differential cross section over the photon’s solid angle, the total
cross section and the astrophysical factor can be derived.

We consider the photon angular distribution, taking into
account the spin-orbit interaction in the initial state. Hence, the
initial scattering wave function depends on the initial α − d
relative orbital angular momentum li , the channel spin s, and
the total angular momentum in the initial channel Ji . In the case
under consideration s = Jd , where Jd = 1 is the spin of the
deuteron. The differential cross section of the emitted photons
with momentum kγ and helicity λ = ±1 in the electromagnetic
transition from the initial continuum state li , s, Ji to the final
state lf ,s, Jf in the center of mass of 6Li is given by

dσλ

d�
∼ k2

γ

∣∣∣∣−1

c

∫
dr〈ϕ 6Li(ζα, ζd ; rα d ) |Ĵ(r)|

×

(+)
k (ζα, ζd ; rα d )〉 · A∗

λ kγ
(r)

∣∣∣∣
2

. (1)

Here, Aλ kγ
(r) is the vector potential of the photon with helicity

λ and momentum kγ at coordinate r. The initial wave function
is



(+)
k (ζα, ζd ; rα d ) = ϕα (ζα) ϕd (ζd ) ψ (+)(k,rα d ), (2)

ϕ(ζi) is the bound-state wave function of nucleus i with the
set of the internal coordinates ζi , which includes spin-isospin
variables. ψ (+)(k,rα d ) is the α − d scattering wave function in
the initial state, rα d is the radius vector connecting the centers
of mass of the α particle and the deuteron, k is the initial α − d
relative momentum related to the initial relative kinetic energy
as E = k2/(2 μα d ), where μα d is the α − d reduced mass.
The momentum of the emitted photon is kγ = (E + ε)/�,
expressed in fm−1, and ε is the binding energy for the virtual
decay 6Li → α + d. The antisymmetrization between the
nucleons of the α particle and the deuteron is neglected. Note
that all the kinematic factors defining the photon differential
cross section including the spin-dependent factors will be
recovered later.

We use the long-wavelength approximation, which is valid
for kγ Rα d � 1. Here Rα d is the effective α − d distance
determined so that distances r ∼ Rα d give the dominant
contribution to the amplitude of the direct radiative capture.
The long electromagnetic wavelength of the emitted radiation
allows us to approximate the charge current density by the
current density of the pointlike α particle and deuteron,

neglecting their internal structure:

Ĵ(r) = Zd e

2 md

[δ(r − rd ) p̂d + p̂d δ(r − rd )]

+ Zα e

2 mα

[δ(r − rα) p̂α + p̂α δ(r − rα)], (3)

where p̂i = −i � ∂/∂ri is the momentum operator, rd =
−(mα/mα d ) rα d and rα = (md/mα d ) rα d are the coordinates
of the centers of mass of the deuteron and α particle,
respectively, mi and Zi are the mass and atomic number
of nucleus i, and mij = mi + mj . We neglect here the spin
contribution to the current density because below we consider
only the electric transitions which are largely due to the charge
current.

Now the overlap function of the bound-state wave functions
of 6Li, α particle, and deuteron can be introduced:

Ilf s Jf
(rα d ) = 〈ϕα(ζα) ϕd (ζd )|ϕ 6Li(ζα, ζd ; rα d )〉

=
∑

mlf
m′′

s

〈
lf mlf s m′′

s

∣∣Jf Mf

〉
Ylf mlf

(r̂α d )

×χs m′′
s
Ilf s Jf

(rα d ), (4)

where Ilf s Jf
(rα d ) is the radial overlap function,

〈lf mlf s m′′
s |Jf Mf 〉 is the Clebsch-Gordan coefficient,

lf = 0 is the α − d relative orbital angular momentum in
the bound state, Jf = 1 is the spin of the ground state of
6Li, χs m′′

s
is the spin wave function describing the state

with channel spin s and its projection m′′
s , and r̂ = r/r

is the unit vector. The integration in the matrix element
〈ϕα(ζα) ϕd (ζd )|ϕ 6Li(ζα, ζd ; rα d )〉 is taken over all the internal
coordinates ζα and ζd , making the overlap function depend
only on the radius vector rα d .

In the peripheral region the radial overlap function is given
by

Ilf sJf
(rα d )

rα d>r0≈ Clf sJf
W−ηf , lf +1/2(2 κ rα d )/rα d, (5)

where Clf sJf
is the asymptotic normalization coefficient

(ANC) for the virtual decay 6Li → α + d expressed in fm−1/2,
W−ηf , lf +1/2(2 κ rα d ) is the Whittaker function determining the
radial shape of the overlap function beyond the α − d nu-
clear interaction region, ηf = (Zα Zd e2/� c)(μα d c/�)(1/κ)
is the Coulomb α − d bound-state parameter, and κ =√

2 μα d c2 ε/� c is the α − d bound-state wave number ex-
pressed in fm−1. The radial overlap function is expressed in
fm−3/2. r0 is the channel radius, which is selected so that at
rα d > r0 the nuclear interaction between the deuteron and α
particle is negligible.

The matrix element in Eq. (1) now can be rewritten as

1

c

∫
dr 〈ϕ 6Li(ζα, ζd ; rα d ) |Ĵ(r)|
(+)(ζα, ζd ; rα d )〉 · A∗

λ kγ
(r)

= 1

c

∫
dr

〈
Ilf s Jf

(rα d )
∣∣Ĵ(r)|ψ (+)(k,rα d )〉 · A∗

λ kγ
(r). (6)

045805-3



MUKHAMEDZHANOV, SHUBHCHINTAK, AND BERTULANI PHYSICAL REVIEW C 93, 045805 (2016)

To simplify further this matrix element we need to use the multipole expansion of the vector potential [17,18] :

Aλ kγ
(r) = 1

2 π

√
� c

kγ

eλ kγ
ei kγ ·r = 1

2
√

2 π kγ

∑
L M

√
2 L + 1 DL

M λ(ϕ,θ,0)
(
Aekγ LM (r) + λ Amkγ LM (r)

)
. (7)

Here, eλ kγ
is the unit polarization vector of the plane wave, which is orthogonal to the photon momentum kγ , and Aekγ LM (r) and

Amkγ LM (r) are the eletric and magnetic multipoles, correspondingly. In the system z‖kγ the helicity of the circularly polarized
photon λ = ±1. DL

M λ(ϕ, θ,0) is the Wigner D function and L is the multipolarity of the transition. In Eq. (7) only the electric
multipoles Ae kγ L M (r) will be taken into account because, for the reaction under consideration, the contribution of the magnetic
multipoles Amkγ L M (r) is negligible [19]. Following Ref. [17], Ae kγ LM (r) can be rewritten as

Ae kγ L M (r) = −2 iL

√
� c

kγ

[∇r × (
jL(kγ r) YL

LM (r̂)
)]

= 2 iL−1
√

� c kγ

[√
L + 1

2 L + 1
jL−1(kγ r) YL−1

LM (r̂) −
√

L

2 L + 1
jL+1(kγ r) YL+1

LM (r̂)

]
, (8)

where YL̃
LM (r̂) is the vector spherical harmonics [17,18] and jL(kγ r) is the spherical Bessel function.

Now the matrix element (6) can be reduced to

1

c

∫
dr

〈
Ilf s Jf

(rα d )
∣∣Ĵ(r) |ψ (+)(k,rα d )〉 · A∗

λ kγ
(r)

=
√

�

2 π c kγ

∑
L M

i−L+1
√

2 L + 1
(
DL

M λ(ϕ,θ,0)
)∗

∫
dr

〈
Ilf s Jf

(rα d )
∣∣Ĵ(r)|ψ (+)(k,rα d )

〉

×
[√

L + 1

2 L + 1
jL−1(kγ r)

(
YL−1

LM (r̂)
)∗ −

√
L

2 L + 1
jL+1(kγ r)

(
YL+1

LM (r̂)
)∗

]

≈
√

�

2 π c kγ

∑
L M

i−L+1 kL−1
γ

(2 L − 1)!!

√
L + 1

(
DL

M λ(ϕ,θ,0)
)∗

∫
dr

〈
Ilf s Jf

(rα d )
∣∣Ĵ(r)|ψ (+)(k,rα d )〉rL−1

(
YL−1

LM (r̂)
)∗

. (9)

In the long-wavelength approximation kγ r � 1, jL(kγ r) ≈ (kγ r)L/(2 L + 1)!!. Hence, the lowest partial waves dominate and the
term containing jL+1(kγ r) ≈ (kγ r)L+1/(2 L + 3)!! is small compared to the term containing jL−1(kγ r) ≈ (kγ r)L−1/(2 L − 1)!!
and can be neglected.

Taking into account that [20]

∇r[rL YLM (r̂)] =
√

L(2 L + 1) rL−1 YL−1
L M (r̂), (10)

Equation (9) can be reduced to

1

c

∫
dr

〈
Ilf s Jf

(rα d )
∣∣Ĵ(r)|ψ (+)(k,rα d )〉 A∗

λ kγ
(r) ≈

√
�

2 π c kγ

∑
L M

i−L+1 kL−1
γ

(2 L + 1)!!

√
(L + 1)(2 L + 1)

L

(
DL

M λ(ϕ,θ,0)
)∗

×
∫

dr
〈
Ilf s Jf

(rα d )
∣∣Ĵ(r)|ψ (+)(k,rα d )〉∇r[rL (YLM (r̂))∗]. (11)

Integrating by parts and using the static current conservation

∇rĴ(r) = i kγ c ρ̂(r), (12)

where

ρ̂(r) = Zd e δ(r − rd ) + Zα e δ(r − rα) (13)

is the charge density operator, one gets

1

c

∫
dr

〈
Ilf s Jf

(rα d )
∣∣Ĵ(r)|ψ (+)(k,rα d )〉 A∗

λ kγ
(r)

≈ 1

2 π

√
� c

2 kγ

∑
LM

i−L kL
γ

(2 L − 1)!!

√
L + 1

L

(
DL

M λ(ϕ,θ,0)
)∗〈

Ilf s Jf
(rα d )

∣∣(Q̂(e)
LM (rα d )

)∗|ψ (+)(k,rα d )〉. (14)
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Here,

Q̂
(e)
L M (rα d ) =

√
4 π

2 L + 1

∫
dr ρ̂(r) rL YLM (r̂) (15)

is the electric static 2L moment operator.
Thus the initial matrix element (6) containing A∗

λ kγ
(r) after the multipole expansion and series of transformations is reduced

to the one that is expressed in terms of the electric charge density operator. This is possible due to Siegert’s theorem [21].
Equation (1) for the differential cross section of the electric transition takes the form

dσλ

d�
∼

∣∣∣∣∣ 1

2 π

√
� c

2 kγ

∑
L M

i−L kL+1
γ

(2 L − 1)!!

√
L + 1

L

(
DL

M λ(ϕ,θ,0)
)∗〈

Ilf s Jf
(rα d )

∣∣(Q̂(e)
LM (rα d )

)∗|ψ (+)(k, rα d )〉
∣∣∣∣∣
2

. (16)

In the case under consideration, the dominant contribution comes from the electric dipole (L = 1) and electric quadrupole
(L = 2) transitions. Because the sum over multipoles L is coherent, the interference of the dipole and quadrupole amplitudes
should be taken into account.

Integrating over r in Eq. (15), one gets

Q̂
(e)
LM (rα d ) =

√
4 π

2 L + 1
e Zeff(L) r

L
α d YLM (r̂α d ). (17)

e Zeff(L) is the effective charge for the electric transition of the multipolarity L, where

Zeff(L) = μL
α d

(
Zα

mL
α

+ (−1)L
Zd

mL
d

)
. (18)

To derive Eq. (17) we took into account that YL M (−r̂α d ) = (−1)L YLM (r̂α d ).
The improvement of the leading order of the long-wavelength approximation leads to the replacement of rL

α d in Eq. (17) by
more refined expressions [22]. For the dipole transition, rα d in Eq. (17) should be replaced by

O1(rα d ) = 3

y3
[(y2 − 2) sin y + 2y cos y] rα d, (19)

and for the quadrupole transition r2
α d should be replaced by

O2(rα d ) = 15

y5
[(5 y2 − 12) sin y + (12 − y2) y cos y] r2

α d, (20)

where y = kγ rα d .
The initial scattering wave function with spin-orbit interaction is given by

ψ (+)(k, rα d ) = 4π
∑
Ji

∑
li

ili ψ
(+)
li sJi

(k,rα d )
∑
mli

ms

〈
li mli s ms

∣∣Ji Mi

〉
Yli mli

(r̂α d )χs ms

∑
m′

li
m′

s

〈
li m

′
li
s m′

s

∣∣Ji Mi

〉
Y ∗

li m′
li

(k̂). (21)

It is assumed that the projection Mi of Ji is fixed. For z‖k, Yli m′
li
(k̂) = √

(2 li + 1)/4 π δm′
li

0 and, hence, m′
s = Mi . Then

ψ (+)(k,rα d ) =
∑
Ji

∑
li

ili
√

4 π (2 li + 1) ψ
(+)
li sJi

(k,rα d )
∑
mli

ms

〈
li mli s ms

∣∣Ji Mi

〉
Yli mli

(r̂α d )χs ms
〈li 0 s Mi |Ji Mi〉. (22)

The asymptotic behavior of the radial scattering wave function is taken in the form

ψ
(+)
li sJi

(k,rα d ) ≈ 1

2 i rα d

e−i δli sJi

[
Ili (k,rα d ) − e2 i δli sJi Oli (k,rα d )

]
, (23)

where

Ili (k,rα d ) = Gli (k,rα d ) − i Fli (k,rα d ) (24)

and

Oli (k,rα d ) = Gli (k,rα d ) + i Fli (k,rα d ) (25)

are the incoming and outgoing spherical waves expressed in terms of the regular, Fli (k,rα d ), and singular, Gli (k,rα d ), Coulomb
solutions of the radial Schrödinger equation. δli sJi

is the scattering phase shift.
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Inserting Eqs (4) and (22) into the matrix element of Eq. (16) one finds that

〈
Ilf s Jf

(rα d )
∣∣Q̂(e)∗

LM (r)|ψ (+)(k, rα d )〉 =
√

4 π

2 L + 1

∑
Ji

∑
li

ili
√

4 π (2 li + 1)

×
∑

mli
ms mlf

〈
lf mlf s ms

∣∣Jf Mf

〉 〈
li mli s ms

∣∣Ji Mi

〉 〈
li 0 s Mi

∣∣Ji Mi

〉

× 〈
Ilf s Jf

(rα d ) Ylf mlf
(r̂α d )

∣∣e Zeff(L) r
L
α d Y ∗

LM (r̂α d )
∣∣Yli mli

(r̂α d ) ψ
(+)
li s Ji

(k,rα d )
〉

= √
4 π (2 lf + 1) e Zeff(L)

∑
Ji

∑
li

∑
mli

ms mlf

ili
〈
lf mlf s ms

∣∣Jf Mf

〉 〈
li mli s ms

∣∣Ji Mi

〉

× 〈li 0 s Mi |Ji Mi〉 〈lf 0 L0|li0〉 〈
lf mlf LM

∣∣li mli

〉
Rlf s L Jf li Ji

(k), (26)

Rlf s L Jf li Ji
(k) =

∫ ∞

0
drα d rL+2

α d Ilf s Jf
(rα d ) ψ

(+)
li s Ji

(k,rα d ). (27)

When deriving Eq. (26), it was taken into account that 〈χsm′′
s
|χsms

〉 = δm′′
s ms

and [20]

∫
d�Y ∗

lf mlf
(r̂α d ) Y ∗

LM (r̂α d ) Yli mli
(r̂α d ) =

√
(2 lf + 1) (2 L + 1)

4 π (2 li + 1)
〈lf 0 L 0|li 0〉〈lf mlf LM

∣∣li mli

〉
. (28)

Now we are able to rewrite the expression for the photon differential cross section including all the kinematical factors. If the
polarization of the initial and final nuclei (in the case under consideration deuteron and 6Li) and of the photon are not measured,
then the differential cross section takes the form

dσ

d�
= 1

4

(2 lf + 1)

(2 Jd + 1)(2 Jα + 1)

(� c)3

μα d c2

k

E2

e2

� c

∑
Mi Mf

∑
J ′

i Ji

∑
L′L

iL
′−L Zeff(L′) Zeff(L)

×
√

(L′ + 1)(L + 1)

L′ L

kL′+L+1
γ

(2 L′ − 1)!! (2 L − 1)!!

∑
m′

lf
mlf

∑
m′

s ms

∑
M ′ M

∑
λ=±1

DL′
M ′ λ(ϕ, θ,0) DL∗

M λ(ϕ, θ,0)

×
∑
l′i li

∑
m′

li
mli

ili−l′i
〈
lf m′

lf
s m′

s

∣∣Jf Mf

〉 〈
lf mlf s ms

∣∣Jf Mf

〉 〈
l′i m

′
li
s m′

s

∣∣J ′
i Mi

〉

× 〈
li mli s ms

∣∣Ji Mi

〉 〈l′i 0 s Mi |J ′
i Mi〉 〈li 0 s Mi |Ji Mi〉 〈lf 0 L′ 0|l′i0〉 〈lf 0 L 0|li 0〉

× 〈
lf m′

lf
L′ M ′∣∣l′i m′

li

〉 〈
lf mlf LM

∣∣li mli

〉
R∗

lf s L′ Jf l′i Ji
(k) Rlf s L Jf li Ji

(k). (29)

Equation (29) can be further simplified taking into account that [23]∑
mlf

ms mli

〈
lf mlf s ms

∣∣Jf Mf

〉 〈
li mli s ms

∣∣Ji Mi

〉 〈
lf mlf LM

∣∣li mli

〉

= (−1)s+Jf +li+L
√

(2 Jf + 1)(2 li + 1) 〈Jf Mf LM|Ji Mi〉
{
lf s Jf

Ji L li

}
, (30)

where {lf s Jf

Ji L li
} is the 6j symbol [23].

Then

dσ

d�
= 1

4

(2 lf + 1)(2 Jf + 1)

(2 Jd + 1)(2 Jα + 1)

(� c)3

μα d c2

k

E2

e2

� c

∑
Mi Mf

∑
J ′

i Ji

∑
L′L

iL
′−L Zeff(L′) Zeff(L)

×
√

(L′ + 1)(L + 1)

L′ L

kL′+L+1
γ

(2 L′ − 1)!! (2 L − 1)!!

∑
M ′ M

∑
λ=±1

DL′
M ′ λ(ϕ, θ,0) DL∗

M λ(ϕ, θ,0)

×
∑
l′i li

ili−l′i 〈l′i 0 s Mi |J ′
i Mi〉 〈li 0 s Mi |Ji Mi〉 〈lf 0 L′ 0|l′i0〉 〈lf 0 L 0|li 0〉
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× (−1)l
′
i+li+L′+L

√
(2 l′i + 1)(2 li + 1) 〈Jf Mf L′ M ′|J ′

i Mi〉 〈Jf Mf LM|Ji Mi〉

×
{
lf s Jf

J ′
i L′ l′i

}{
lf s Jf

Ji L li

}
R∗

lf s L′ Jf l′i J ′
i
(k) Rlf s L Jf li Ji

(k). (31)

From 〈Jf Mf L′ M ′|J ′
i Mi〉〈Jf Mf LM|Ji Mi〉 it follows that M ′ = M and [20]

DL′
M λ(ϕ, θ,0)

(
DL

M λ(ϕ, θ,0)
)∗ = (−1)M−λ DL′

M λ(ϕ, θ,0) DL
−M −λ(ϕ, θ,0)

= (−1)M−λ
∑

J

〈L′M L − M|J0〉 〈L′λ L − λ|J0〉DJ
00(ϕ, θ,0)

= −(−1)M
∑

J

〈L′M L − M|J0〉 〈L′λ L − λ|J0〉PJ (cos θ ) (32)

and ∑
λ=±1

〈L′λ L − λ|J0〉 = 〈L′1 L − 1|J0〉[1 + (−1)L
′+L−J ]. (33)

Then

dσ

d�
= −1

4

(2 lf + 1)(2 Jf + 1)

(2 Jd + 1)(2 Jα + 1)

(� c)3

μα d c2

k

E2

e2

� c

∑
Mi Mf

∑
J ′

i Ji

∑
L′L

iL
′−L Zeff(L′) Zeff(L)

√
(L′ + 1)(L + 1)

L′ L

× kL′+L+1
γ

(2 L′ − 1)!! (2 L − 1)!!

∑
M

(−1)M
∑

J

〈L′M L − M|J 0〉 〈L′1 L − 1|J 0〉[1 + (−1)L
′+L−J ]

×PJ (cos θ )
∑
l′i li

ili−l′i 〈l′i 0 s Mi |J ′
i Mi〉 〈li 0 s Mi |Ji Mi〉 〈lf 0 L′ 0|l′i0〉 〈lf 0 L 0|li 0〉

× (−1)l
′
i+li+L′+L

√
(2 l′i + 1)(2 li + 1) 〈Jf Mf L′ M|J ′

i Mi〉 〈Jf Mf LM|Ji Mi〉

×
{
lf s Jf

J ′
i L′ l′i

}{
lf s Jf

Ji L li

}
R∗

lf s L′ Jf l′i J ′
i
(k) Rlf s L Jf li Ji

(k). (34)

Equation (34) is quite general and can be applied to the analysis of the photon angular distribution in direct radiative capture
reactions contributed by electric transitions with different multipolarities L or with one dominant L. In Eq. (29) �c = 197.3
MeV fm, e2/(�c) = 1/137, μα d c2 and E are expressed in MeV, and kγ and k are expressed in fm−1. Assuming that only L = 1
or L = 2 contributes, one can easily derive differential cross sections for the electric dipole and quadrupole transitions.

Equation (34) can be further simplified for the 2H(α, γ )6Li reaction, for which lf = 0, Jf = 1, s = 1, and Jα = 0. For this
reaction {

0 s Jf

Ji L li

}
= (−1)Jf +L+Ji

δs Jf
δli L√

(2 Jf + 1)(2 L + 1)
,

{
0 s Jf

J ′
i L′ l′i

}
= (−1)Jf +L′+J ′

i
δs Jf

δl′i L′√
(2 Jf + 1)(2 L′ + 1)

, (35)

〈0 0 L 0|li0〉 = δli L, and 〈0 0 L′ 0|l′i0〉 = δl′i L′ .
Then for the differential cross section for the reaction under consideration we get

dσ

d�
= − 1

12

(� c)3

μα d c2

k

E2

e2

� c

∑
Mi Mf

∑
J ′

i Ji

∑
L′L

Zeff(L′) Zeff(L)

√
(L′ + 1)(L + 1)

L′ L

× kL′+L+1
γ

(2 L′ − 1)!! (2 L − 1)!!

∑
M

(−1)M
∑

J

〈L′M L − M|J0〉〈L′1 L − 1|J0〉

× [1 + (−1)L
′+L−J ] PJ (cos θ ) 〈L′ 0 Jf Mi |J ′

i Mi〉 〈L 0 Jf Mi |Ji Mi〉
× 〈L′ MJf Mf |J ′

i Mi〉 〈LMJf Mf |Ji Mi〉R∗
0 L′ 1 J ′

i
(k) R0 L 1 Ji

(k). (36)

Equations (34) and (36) are our first main result.
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B. Total cross sections

The total cross sections can be obtained by integrating the above differential cross sections over the photon’s solid angle.
Integrating Eq. (34) keeps only the term J = 0 which leads to L′ = L. Then∑

Mf M

〈Jf Mf LM|J ′
i Mi〉〈Jf Mf LM|Ji Mi〉 = δJ ′

i Ji
, (37)

〈LM L−M|0 0〉 = (−1)L−M
√

1/(2 L + 1), and 〈L1 L−1|0 0〉 = (−1)L−1 √
1/(2 L + 1). From 〈lf 0 L 0|li 0〉 it follows that two

subsequent li can differ by 2. At astrophysically relevant energies only minimal li dominate. Hence we can drop the sum over li ,
assuming that each li is uniquely determined by L. Also

〈li 0 s Mi |Ji Mi〉 = (−1)s+Mi

√
2 Ji + 1

2 li + 1
〈Ji − Mi s Mi |li 0〉 (38)

and ∑
Mi

(〈Ji − Mi s Mi |li 0〉)2 = 1. (39)

Taking into account the above results, the total cross section reduces to

σ = 2π
(2 lf + 1)(2 Jf + 1)

(2 Jd + 1)(2 Jα + 1)

(� c)3

μα d c2

k

E2

e2

� c

∑
Ji

(2 Ji + 1)
∑
L

(Zeff(L))
2 (L + 1)(2 L + 1)

L

× k2 L+1
γ

((2 L + 1)!!)2
(〈lf 0 L 0|li0〉)2

[{
lf s Jf

Ji L li

}]2 ∣∣Rlf s L Jf li Ji
(k)

∣∣2
. (40)

The total cross section for the dipole (quadrupole) transition can be obtained from Eq. (40) by taking L = 1 (L = 2).
The total cross section for the reaction under consideration takes the form (lf = 0, s = Jf , li = L)

σ = 2 π

3

(� c)3

μα d c2

k

E2

e2

� c

∑
Ji

(2 Ji + 1)
∑
L

(Zeff(L))
2 L + 1

L

k2 L+1
γ

((2 L + 1)!!)2

∣∣R0 L 1 Ji
(k)

∣∣2
. (41)

Equations (40) and (41) are our second main result.
The astrophysical factor is determined by

S(E) = E e2 π ηi σ (E). (42)

Here, ηi is the Coulomb parameter in the initial state of the
radiative capture process. Replacing σ (E) by σEi(E), where
i = 1,2, we get the astrophysical factors for the dipole (E1)
and quadrupole (E2) transitions, correspondingly.

C. Potential model

The most important quantity in calculations of the radiative
capture reactions is the radial matrix element Rlf s L Jf li Ji

(k),
which is expressed in terms of the the initial and final nuclear
wave functions. Different approaches were used to calculate
the radial matrix elements. The most frequent used potential
approach was based on the pioneering works [24,25]. In the
potential approach the initial scattering wave function is a
solution of the Schrödinger equation with the α-d potential,
which can be found from the fitting experimental elastic
scattering phase shifts in the corresponding partial waves
(li = 1,2 in the case under consideration). The result is very
sensitive to the choice of the final overlap function Ilf s Jf

(rα d ).
It was long ago recognized [26] that the 2H(α,γ )6Li reaction
is peripheral at astrophysically relevant energies; that is, the
overall normalization of the astrophysical factor at Big Bang

energies 30 � E � 400 keV is practically determined by the
square of the ANC Clf sJf

.
In Ref. [27] the 6Li bound-state wave function was

calculated within the framework of the multicluster dynamic
model. Projection of this bound-state wave function on the
two-body channel α + d channel gives the overlap function
with correct tail. The two-body potential model was used in
Ref. [26] to calculate the astrophysical factors for the electric
dipole and quadrupole transitions and the total S(E) factor at
energies E � 500 keV. In the two-body potential model the
overlap function is replaced by the α − d bound-state wave
function:

Ilf sJf
(rα d ) = S

1/2
nr lf sJf

ϕnr lf sJf
(rα d ), (43)

where ϕnr lf sJf
(rα d ) is the α − d two-body bound-state wave

function calculated in some phenomenological Woods-Saxon
α − d plus Coulomb potential, and nr = 1 is the principal
quantum number showing the number of the nodes of the
radial bound-state wave function at rα d > 0. Snr lf sJf

is the
spectroscopic factor of the configuration α + d in the ground
state of 6Li. The tail of the bound-state wave function is given
by

ϕnr lf sJf
(rα d )

rα d>r0≈ bnr lf sJf
W−ηf , lf +1/2(2 κ rα d )/rα d, (44)

where bnr lf sJf
is the single-particle ANC. The value of

bnr lf sJf
depends on the adopted bound-state potential. The
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spectroscopic factor Snr lf sJf
reflects the fact that the overlap

function is not an eigenfunction of any Hamiltonian and,
hence, is not normalized to unity, in contrast to the bound-state
wave function. Eq. (44) puts a limitation on the spectroscopic
factor for a given bnr lf sJf

.
The bound-state Woods-Saxon potential should be adjusted

to obtain the experimental α − d binding energy (well-depth
procedure). However, there are an infinite number of such po-
tentials because there are three fitting parameters: geometrical
parameters, radius and diffuseness, and the well depth. The
final adjustment can be done using the spectroscopic factor.
The two-body potential model was also used in Ref. [15]. To
find the α − d bound-state wave function, the Woods-Saxon
potential was adjusted to fit the experimental s-wave elastic
scattering phase shift and to reproduce the experimental α − d
binding energy. Since the experimental elastic scattering phase
shift includes the many-body effects of the scattered nuclei, the
same is true for the two-body potential, which fits the elastic
scattering data. Hence, the spectroscopic factor in Eq. (44)
should be set to Snr lf sJf

= 1. However, there are again an
infinite number of the Woods-Saxon potentials, which differ
by the most crucial quantity: the ANC (the inverse scattering
problem theorem by Gel’fand, Levitan, and Marchenko [28]).
The potential adopted in [15] was one of the infinite set of the
phase-equivalent potentials with the ANC, which exceeds the
experimental ANC [29] and ab initio calculations [30,31] by
≈18%. Hence, the normalization of the peripheral part of the
S(E) factor calculated in Ref. [15] exceeded the correct one by
≈38%. All these questions about ambiguity of the two-body
bound-state potentials were addressed in detail in Ref. [32].

The first full microscopic six-body approach to calculate
the final state 6Li bound-state wave function was developed
in Ref. [19] using the variational Monte Carlo method. The
projection of the 6Li on the two-body channel α + d has a
correct tail with the ANC close to the experimental one [29].
The calculated total S(E) factor is in a good agreement with
direct measurements around 3+ resonance at E = 712 keV.

In our work, to calculate the photon differential cross
sections we used the potential model approach. To calculate
the bound-state wave function, two different potentials were
used. The first one is the Woods-Saxon potential with the
following geometrical parameters: radius r0 = 1.20 fm and
diffuseness a = 0.7 fm. The square of the single-particle ANC
of the bound-state wave function generated by this potential
is b2

1011 = 7.22 fm−1. To get the correct normalization of the
leading asymptotic term of the final-state overlap function
I011(rα d ), that is, the square of the ANC C2

011 = 5.29 fm−1,
we have to introduce in Eq. (43) the spectroscopic factor
S1011 = 0.72. This method is referred to as M1. The second
method is similar to the one described in Ref. [32]. In this
method, referred to as M2, the Woods-Saxon potential used
in Ref. [15] was modified to generate the bound-state wave
function with correct asymptotic behavior. In this case the
spectroscopic factor is S1011 = 1; that is, the overlap function
I011(rα d ) and bound-state wave function ϕ1011(rα d ) do coincide
at all radii. Thus, both used overlap functions have the same
asymptotic behavior being different in the internal region.
In both methods the initial α − d scattering wave function
is generated by the Woods-Saxon potential from [15]. Its

parameters are adjusted to reproduce the experimental phase
shifts in the partial waves li = 1,2: the radial parameter is
r = 1.25 fm, diffuseness a = 0.65 fm, and the depth of the
potential 56.7 MeV. At li = 2 this potential reproduces the 3+
resonance. To calculate the bound-state and scattering wave
functions and the radial matrix elements we used the modified
RADCAP code [33].

III. PHOTON ANGULAR DISTRIBUTION IN DIRECT
RADIATIVE CAPTURE 2H(α, γ )6Li

The calculated photon angular distributions for the
2H (α,γ )6Li direct radiative capture using both methods, M1
and M2, are shown in Fig. 1 for four different Big Bang
energies, E = 70, 100, 200, and 400 keV. As one can see,
the dipole differential cross section has the peak at 90◦. The
quadrupole transition has two peaks, at 45◦ and 135◦. However
their interference dramatically changes the angular distribution
generating one peak at ≈50◦. Note that the exact location of
the peak slightly depends on the energy. These calculations
provide a recipe for the best experimental kinematics. Note that
in the experiment performed by LUNA [16] the germanium
detector was placed at a 90◦ angle with respect to the ion
beam direction. At this angle the differential cross section is
significantly smaller than at the peak value at ≈50◦.

Another important conclusion is that both methods, M1
and M2, give practically indistinguishable results, confirming
that at low energies the reaction 2H (α,γ )6Li is completely
peripheral. It means that only the tail of the α − d bound-
state wave function contributes to the reaction matrix element.
Hence, to calculate the reaction matrix element it is enough
to use any reasonable bound-state Woods-Saxon potential that
supports the s-wave α − d bound state with 1.47 MeV binding
energy, and then to introduce a proper spectroscopic factor to
provide correct normalization of the asymptotic term of the
overlap function.

IV. ASTROPHYSICAL FACTOR

In Fig. 2 the experimental and calculated astrophysical
S24(E) factors for the reaction 2H(α,d)6Li are presented. In
contrast to the differential cross section, the total astrophysical
factor is given by the sum of the dipole and quadrupole
astrophysical factors and does not contain their interference
term. The potential model used in the present calculations with
two different bound-state wave functions has been described in
Sec. II C. The expression for the astrophysical factor has been
derived in Sec. II B by integrating the photon’s differential
cross section over the photon’s solid angle. Agreement
between the LUNA data at two Big Bang energies and the
potential model calculations based on the ANC provides
compelling evidence of the power of the ANC method. Note
that the LUNA results are the first direct measurement of the
2H(α,γ )6Li cross section inside the Big Bang energy range.

The potential model that we use here allows us to reproduce
the available direct data in the region of the first resonance,
E = 0.712 MeV, and even at higher energies. The validity of
the potential model at higher energies can be easily explained.
At energies higher than Big Bang energies the quadrupole
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(a)

(c)

(b)

(d)

FIG. 1. Angular distributions of the photons emitted in the direct radiative capture 2H(α,γ )6Li at E = 70 keV (a), E = 100 keV (b),
E = 200 keV (c) and E = 400 keV (d). All red (green) lines are obtained using method M1 (M2). The red dashed line (sparsely dotted green
line): the angular distribution calculated for the E1 transition; the red dotted line (densely dotted green line): the E2 transition; the solid red
line (dashed-dotted green line): the total photon differential cross section, which is the sum of the electric dipole and quadrupole terms and
their interference term.

transition dominates. Owing to the presence of the factor r2
α d ,

the quadrupole radial matrix element is dominantly peripheral
in the energy interval up to ∼2 MeV. Hence, the potential
model used here with correct normalization of the tail of the
overlap function I011(rα d ) given by the ANC allows one to
calculate the astrophysical factor in the broad energy interval
0 � E � 2 MeV.

Note that the calculations from [19] and [15] at Big
Bang energies are higher than presented here. For example,
at 70 keV, which is the most effective Big Bang energy,
S24(70 keV) = 4.0 MeV nb in Ref. [19], S24(70 keV) = 3.16
MeV nb in Ref. [15], and the present result is S24(70keV) =
2.58 MeV nb. The inset in Fig. 2 shows the difference between
different calculations of the S24(E) factors in the Big Bang
energy interval. At higher energies, calculations from [19]
reproduce the data quite well, while the results from [15]
are systematically higher than the data before and after the
resonance.

The accuracy of the long-wavelength approximation in the
case under consideration is quite high: a replacement of rL

in the integrand of the radial matrix elements (27) by O1(r),
Eq. (19), for L = 1 and O2(r), Eq. (20), for L = 2 changes the
astrophysical factor by only ≈1%. Note that two data points
obtained by LUNA were extrapolated in Ref. [16] to other
energies using calculations in Ref. [32]. The calculations in

this paper using the method M2 are similar to calculations
from [32] but performed with a different, more accurate
code [33].

Hence the reaction rates calculated here and in Ref. [16]
also agree. These reaction rates are significantly lower than
the adopted reaction rate from [34] and systematically lower
than the reaction rate adopted by NACRE [35]. For example,
at T9 = 1, which corresponds to E = 86.2 keV, the adopted
NACRE reaction rate exceeds the calculated one in Ref. [32]
by about 21.5%.

V. 6Li /7Li ISOTOPIC PRIMORDIAL ABUNDANCE RATIO

Evidently the present paper’s and LUNA’s estimations of
the Big Bang abundance of 6Li based on the reaction rate of the
2H(α,γ )6Li coincide. For the baryon-to-photon ratio 6.047 ×
10−10, which is within the interval determined by the Planck
Collaboration [36], the calculated primordial abundance of 6Li
is 6Li/H = (0.74 ± 0.16) × 10−14 [16] which is 34% lower
than the abundance given in Ref. [34].

In the latest comprehensive analysis of Big Bang nucleosyn-
thesis, the primordial abundance of 6Li was determined to be
6Li /H = (0.90–1.77) × 10−14 (the Planck baryon-to-photon
ratio was adopted) [6] and 6Li /H = (1.23–1.32) × 10−14

(WMAP baryon-to-photon ratio was taken into account) [37].
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FIG. 2. Astrophysical S24(E) factors for the 2H(α,γ )6Li reaction.
Black dots are data from Ref. [13]; green crosses are data from
Ref. [12]; black triangles are data from Ref. [11]. Two blue boxes are
the LUNA experimental data reported at E = 94 and 134 keV [16]
shown together with their uncertainties. The purple long dashed-
dotted line is the S24(E) astrophysical factor from Ref. [19]. The
black dashed-dotted line is the S24(E) factor from Ref. [15]. All the
red (green) lines are our calculations obtained using model M1 (M2).
The red dotted (green dotted), red long dashed (green dashed), and
red solid (green dashed-dotted) lines are the dipole, quadrupole and
total S24(E) factors, correspondingly, from the present calculations.
Notations in the inset are the same.

As we see, the central values of both results are twice as high
as LUNA and present estimations. In both works [6,37] the
nuclear reaction rate from [15] was used, claiming that this
reaction rate was obtained from the 6Li Coulomb breakup.
However, it was clearly stated in Ref. [15] that the attempt
to determine the S24(E) factor from the Coulomb breakup
failed and that a potential two-body model was used to
calculate S24(E), which turns out to be ∼30% higher than
our and LUNA astrophysical factors [32] because a too large
value of the ANC was used in Ref. [15]. Hence, the second
claim in Ref. [6] that the calculated astrophysical factor in
Ref. [15] and experimental LUNA astrophysical factor [16]
“agree well” is also questionable, and one of the reasons
of high values of the 6Li primordial abundance obtained
in Refs. [6,37] is that the adopted reaction rates for the
2H(α,γ )6Li were based on results from [15].

Thus, by now the primordial abundance of 6Li has been
established quite accurately. Taking into account the latest
estimate of the 7Li abundance 7Li /H = (5.1 ± 0.4) × 10−10

obtained from the most recent data on the 3He(α,γ )7Be
reaction rate [38–40], the resulting isotopic ratio is
6Li /7Li = (1.5 ± 0.3) × 10−5 [16]. This isotopic ratio is
also the result of the present paper. The the Big Bang
lithium isotopic ratio obtained from the LUNA experiment
and the indirect ANC method is lower than the previous
estimates: 2.3 × 10−5 [37] and (2–3.3) × 10−5 [6]. However,
invoking the reaction rate following from the present paper

(or from [32]) and [16] will bring the results obtained in
Refs. [6,37] closer to our and LUNA estimations.

The established primordial lithium isotopic ratio is lower
by three orders of magnitude then the upper limit determined
from the lithium observational data in poor-metal, warm dwarf
stars, which constitutes the second lithium puzzle. However,
the recent publication in Ref. [10] brings a hope that improving
the accuracy of the observational 6Li data can resolve this
puzzle without involving nonstandard physics.

VI. SUMMARY

An analysis of the primordial 2H(α,γ )6Li reaction is
presented. First, the general expression for the angular dis-
tribution of the photons and specifically for the reaction under
consideration is derived. After that the expressions for the total
cross sections for the electric dipole and quadrupole transitions
are obtained. The calculated photon’s angular distribution,
which takes into account the electric dipole and quadrupole
transitions and their interference, exhibits a peak at ≈50◦.
It provides a recipe for the best experimental kinematics.
Note that, in the first direct measurements performed by
LUNA [16], the germanium detector was placed at a 90◦
angle with respect to the ion beam direction, at which the
cross section is significantly smaller than at the peak value.
New measurements with a better geometry can significantly
improve the accuracy of the data. Also the experimental and
calculated S24(E) astrophysical factors are presented. Nice
agreement between the LUNA data at two Big Bang energies
and the potential model calculations based on the ANC proves
the power of the ANC method.

The obtained primordial lithium isotopic ratio in Ref. [16]
and here, 6Li /7Li = (1.5 ± 0.3) × 10−5, is a very important
result for understanding of the second lithium problem. In
resolving this puzzle one needs to reconcile both the Big
Bang model prediction of the lithium isotopic ratio and
the observational data or to explain their three-orders-of-
magnitude difference. The better the accuracy of the Big
Bang Li isotopes abundance prediction and the better the
agreement with the observational data, the less there will be
room for speculations. The results published by LUNA and
in this work, 6Li /7Li = (1.5 ± 0.3) × 10−5, sets up quite a
strong limit on the primordial isotopic ratio from the Big
Bang model. The uncertainty of this ratio is contributed to
by only 8% uncertainty of the 7Li abundance [6] and by
22% uncertainty of the 6Li primordial abundance [16]. One
of the main conclusions from our work is that the determined
optimal kinematics can significantly improve the accuracy of
the 2H(α,γ )6Li astrophysical S factor and, hence, the standard
Bing Bang 6Li abundance.

But even existing predictions of the Big Bang isotopic
ratio 6Li /7Li = (1.5 ± 0.3) × 10−5 set quite a strong upper
limit, which is much more accurate than the observational
data. It looks like such a low value of the Big Bang lithium
isotopic ratio makes the second lithium problem even more
difficult to resolve. However, in Ref. [10] the lithium isotopic
analysis in four halo metal-poor stars was revisited using, for
the first time, a combined 3D and NLTE modeling technique.
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This upgraded model systematically reduces the Li isotopic
ratio in all four analyzed stars, significantly weakening the
validity of data requiring a significant nonstandard primordial
6Li production source. Hence, it is too early to discuss the
compatibility of the Big Bang isotopic ratio 6Li /7Li, which
follows from the latest data on the 2H(α,γ )6Li and 3H(α,γ )7Li
Big Bang reactions, and the observational data of the lithium
isotopic ratio in halo, metal-poor, warm stars until the
observational analysis is improved significantly. At least, the
work published in Ref. [10] brings a new hope that the second
lithium problem can be resolved without invoking nonstandard
physics.
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